We use cookies to improve your experience with our site.
De-Shuai Han, Qi-Liang Yang, Jian-Chun Xing, Guang-Lian Ma. EasyModel: A Refinement-Based Modeling and Verification Approach for Self-Adaptive Software[J]. Journal of Computer Science and Technology, 2020, 35(5): 1016-1046. DOI: 10.1007/s11390-020-0499-x
Citation: De-Shuai Han, Qi-Liang Yang, Jian-Chun Xing, Guang-Lian Ma. EasyModel: A Refinement-Based Modeling and Verification Approach for Self-Adaptive Software[J]. Journal of Computer Science and Technology, 2020, 35(5): 1016-1046. DOI: 10.1007/s11390-020-0499-x

EasyModel: A Refinement-Based Modeling and Verification Approach for Self-Adaptive Software

  • Self-adaptive software (SAS) is gaining popularity as it can reconfigure itself in response to the dynamic changes in the operational context or itself. However, early modeling and formal analysis of SAS systems becomes increasingly difficult, as the system scale and complexity is rapidly increasing. To tackle the modeling difficulty of SAS systems, we present a refinement-based modeling and verification approach called EasyModel. EasyModel integrates the intuitive Unified Modeling Language (UML) model with the stepwise refinement Event-B model. Concretely, EasyModel: 1) creates a UML profile called AdaptML that provides an explicit description of SAS characteristics, 2) proposes a refinement modeling mechanism for SAS systems that can deal with system modeling complexity, 3) offers a model transformation approach and bridges the gap between the design model and the formal model of SAS systems, and 4) provides an efficient way to verify and guarantee the correct behaviour of SAS systems. To validate EasyModel, we present an example application and a subject-based experiment. The results demonstrate that EasyModel can effectively reduce the modeling and formal verification difficulty of SAS systems, and can incorporate the intuitive merit of UML and the correct-by-construction merit of Event-B.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return