We use cookies to improve your experience with our site.
Bi-Ying Yan, Chao Yang, Pan Deng, Qiao Sun, Feng Chen, Yang Yu. A Spatiotemporal Causality Based Governance Framework for Noisy Urban Sensory Data[J]. Journal of Computer Science and Technology, 2020, 35(5): 1084-1098. DOI: 10.1007/s11390-020-9724-x
Citation: Bi-Ying Yan, Chao Yang, Pan Deng, Qiao Sun, Feng Chen, Yang Yu. A Spatiotemporal Causality Based Governance Framework for Noisy Urban Sensory Data[J]. Journal of Computer Science and Technology, 2020, 35(5): 1084-1098. DOI: 10.1007/s11390-020-9724-x

A Spatiotemporal Causality Based Governance Framework for Noisy Urban Sensory Data

  • Urban sensing is one of the fundamental building blocks of urban computing. It uses various types of sensors deployed in different geospatial locations to continuously and cooperatively monitor the natural and cultural environment in urban areas. Nevertheless, issues such as uneven distribution, low sampling rate and high failure ratio of sensors often make their readings less reliable. This paper provides an innovative framework to detect the noise data as well as to repair them from a spatial-temporal causality perspective rather than to deal with them individually. This can be achieved by connecting data through monitored objects, using the Skip-gram model to estimate spatial correlation and long shortterm memory to estimate temporal correlation. The framework consists of three major modules: 1) a space embedded Bidirectional Long Short-Term Memory (BiLSTM)-based sequence labeling module to detect the noise data and the latent missing data; 2) a space embedded BiLSTM-based sequence predicting module calculating the value of the missing data; 3) an object characteristics fusion repairing module to correct the spatial and temporal dislocation sensory data. The approach is evaluated with real-world data collected by over 3 000 electronic traffic bayonet devices in a citywide scale of a medium-sized city in China, and the result is superior to those of several referenced approaches. With a 12.9% improvement in data accuracy over the raw data, the proposed framework plays a significant role in various real-world use cases in urban governance, such as criminal investigation, traffic violation monitoring, and equipment maintenance.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return