SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Hui-Ming Tian, Zhu-Fei Chu. Inversion Optimization Strategy Based on Primitives with Complement Attributes[J]. Journal of Computer Science and Technology, 2021, 36(5): 1145-1154. DOI: 10.1007/s11390-021-0898-7 |
[1] |
Chu Z, Soeken M, Xia Y et al. Advanced functional decom position using majority and its applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2020, 39(8):1621-1634. DOI: 10.1109/TCAD.2019.2925392.
|
[2] |
Mishchenko A, Chatterjee S, Brayton R. DAG-aware AIG rewriting:A fresh look at combinational logic synthesis. In Proc. the 43rd ACM/IEEE Design Automation Conference, Jul. 2006, pp.532-535. DOI: 10.1145/1146909.1147048.
|
[3] |
Testa E, Soeken M, Amarú L G, De Micheli G. Logic synthesis for established and emerging computing. Proceedings of the IEEE, 2018, 107(1):165-184. DOI: 10.1109/JPROC.2018.2869760.
|
[4] |
Lent C S, Tougaw P D, Porod W, Bernstein G H. Quantum cellular automata. Nanotechnology, 1993, 4(1):Article No. 49. DOI: 10.1088/0957-4484/4/1/004.
|
[5] |
Nikonov D E, Bourianoff G I, Ghani T. Proposal of a spin torque majority gate logic. IEEE Electron Device Letters, 2011, 32(8):1128-1130. DOI: 10.1109/LED.2011.2156379.
|
[6] |
Mohaghegh S M, Reza S N, Mohammadi M. Innovative model for ternary QCA gates. IET Circuits, Devices & Systems, 2017, 12(2):189-195. DOI: 10.1049/ietcds.2017.0276.
|
[7] |
Amarù L, Gaillardon P E, De Micheli G. Majorityinverter graph:A novel data-structure and algorithms for efficient logic optimization. In Proc. the 1st ACM/IEEE Design Automation Conference, Jun. 2014. DOI: 10.1145/2593069.2593158.
|
[8] |
Amarù L, Gaillardon P E, De Micheli G. Majority-inverter graph:A new paradigm for logic optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2016, 35(5):806-819. DOI: 10.1109/TCAD.2015.2488484.
|
[9] |
Haaswijk W, Soeken M, Amarù L et al. A novel basis for logic rewriting. In Proc. the 22nd Asia and South Pacific Design Automation Conference, Jan. 2017, pp.151-156. DOI: 10.1109/ASPDAC.2017.7858312.
|
[10] |
Testa E, Soeken M, Zografos O et al. Inversion optimization in majority-inverter graphs. In Proc. the 2016 IEEE/ACM Int. Symp. Nanoscale Architectures, Jul. 2016, pp.15-20. DOI: 10.1145/2950067.2950072.
|
[11] |
Shi L, Chu Z. Inversions optimization in XOR-majority graphs with an application to QCA. In Proc. the 2019 China Semiconductor Technology International Conference, Mar. 2019. DOI: 10.1109/CSTIC.2019.8755713.
|
[12] |
Chu Z, Shi L, Wang L, Xia Y. Multi-objective algebraic rewriting in XOR-majority graphs. Integration, 2019, 69:40-49. DOI: 10.1016/j.vlsi.2019.08.005.
|
[13] |
Momenzadeh M, Huang J, Tahoori M B, Lombardi F. Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2005, 24(12):1881-1893. DOI: 10.1109/TCAD.2005.852667.
|
[14] |
Sen B, Sikdar B K. A study on defect tolerance of tiles implementing universal gate functions. In Proc. the 2007 International Conference on Design & Technology of Integrated Systems in Nanoscale Era, Sept. 2007, pp.13-18. DOI: 10.1109/DTIS.2007.4449484.
|
[15] |
Zhang R, Gupta P, Jha N K. Majority and minority network synthesis with application to QCA-, SET-, and TPL-Based nanotechnologies. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2007, 26(7):1233-1245. DOI: 10.1109/TCAD.2006.888267.
|
[16] |
Kong K, Shang Y, Lu R. An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 2010, 9(2):170-183. DOI: 10.1109/TNANO.2009.2028609.
|
[17] |
Wang P, Niamat M Y, Vemuru S R, Alam M, Killian T. Synthesis of majority/minority logic networks. IEEE Trans. Nanotechnol., 2015, 14(3):473-483. DOI: 10.1109/TNANO.2015.2408330.
|
[18] |
Soeken M, Amarù L, Gaillardon P et al. Exact synthesis of majority-inverter graphs and its applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2017, 36(11):1842-1855. DOI: 10.1109/TCAD.2017.2664059.
|
[19] |
Neutzling A, Marranghello F S, Matos J M, Reis A, Ribas R P. maj-n logic synthesis for emerging technology. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2020, 39(3):747-751. DOI: 10.1109/TCAD.2019.2897704.
|
[20] |
Vacca M, Vighetti D, Mascarino M, Amarù L G, Graziano M, Zamboni M. Magnetic QCA majority voter feasibility analysis. In Proc. the 7th Conference on Ph.D. Research in Microelectronics and Electronics, Jul. 2011, pp.229-232. DOI: 10.1109/PRIME.2011.5966275.
|
[21] |
Testa E, Zografos O, Soeken M et al. Inverter propagation and fan-out constraints for beyond-CMOS majority-based technologies. In Proc. the 2017 IEEE Computer Society Annual Symposium on VLSI, Feb. 2017, pp.164-169. DOI: 10.1109/ISVLSI.2017.37.
|
[22] |
Amarù L G, Gaillardon P E, De Micheli G. The EPFL combinational benchmark suite. In Proc. the 24th International Workshop on Logic & Synthesis, Jun. 2015.
|
[23] |
Walus K, Dysart T J, Jullien G A, Budiman R A. QCADesigner:A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 2004, 3(1):26-31. DOI: 10.1109/TNANO.2003.820815.
|
[1] | Xin-Li Yang, David Lo, Xin Xia, Qiao Huang, Jian-Ling Sun. High-Impact Bug Report Identification with Imbalanced Learning Strategies[J]. Journal of Computer Science and Technology, 2017, 32(1): 181-198. DOI: 10.1007/s11390-017-1713-3 |
[2] | Jishen Zhao, Cong Xu, Tao Zhang, Yuan Xie. BACH:A Bandwidth-Aware Hybrid Cache Hierarchy Design with Nonvolatile Memories[J]. Journal of Computer Science and Technology, 2016, 31(1): 20-35. DOI: 10.1007/s11390-016-1609-7 |
[3] | Han-Li Zhao, Gui-Zhi Nie, Xu-Jie Li, Xiao-Gang Jin, Zhi-Geng Pan. Structure-Aware Nonlocal Optimization Framework for Image Colorization[J]. Journal of Computer Science and Technology, 2015, 30(3): 478-488. DOI: 10.1007/s11390-015-1538-x |
[4] | Zhong-Gui Sun, Song-Can Chen, Li-Shan Qiao. A Two-Step Regularization Framework for Non-Local Means[J]. Journal of Computer Science and Technology, 2014, 29(6): 1026-1037. DOI: 10.1007/s11390-014-1487-9 |
[5] | Jie Yan, Guang-Ming Tan, Ning-Hui Sun. Optimizing Parallel Sn Sweeps on Unstructured Grids for Multi-Core Clusters[J]. Journal of Computer Science and Technology, 2013, 28(4): 657-670. DOI: 10.1007/s11390-013-1366-9 |
[6] | YAO Gang. Decomposing a Kind of Weakly Invertible Finite Automata with Delay 2[J]. Journal of Computer Science and Technology, 2003, 18(3). |
[7] | TAO Renji, CHEN Shihua. Structure of Weakly Invertible Semi-Input-Memory Finite Automata with Delay 2[J]. Journal of Computer Science and Technology, 2002, 17(6). |
[8] | TAO Renji, CHEN Shihua. Structure of Weakly Invertible Semi-Input-Memory Finite Automata with Delay 1[J]. Journal of Computer Science and Technology, 2002, 17(4). |
[9] | TAO Renji, CHEN Shihua. Constructing Finite Automata with Invertibility by transformation Method[J]. Journal of Computer Science and Technology, 2000, 15(1): 10-26. |
[10] | Chen Shihua. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. Journal of Computer Science and Technology, 1986, 1(3): 92-100. |
1. | Peng Liu, Jianguo Ni, Zhufei Chu. Wire-Crossings Optimization Based on Majority-of-Five and XOR-of-Three Primitives in QCA. International Journal of Theoretical Physics, 2022, 61(3) DOI:10.1007/s10773-022-05000-5 |