
Gao JU, Chen W, Xu JJ et al. An efficient framework for multiple subgraph pattern matching models. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 34(6): 1185–1202 Nov. 2019. DOI 10.1007/s11390-019-1969-x

An Efficient Framework for Multiple Subgraph Pattern Matching

Models

Jiu-Ru Gao1, Wei Chen1, Jia-Jie Xu1, Member, CCF , ACM , An Liu1, Member, CCF , ACM

Zhi-Xu Li1, Member, CCF,ACM , Hongzhi Yin2, Member, CCF,ACM , and Lei Zhao1,∗, Member, CCF,ACM

1School of Computer Science and Technology, Soochow University, Suzhou 215006, China
2School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4072, Australia

E-mail: jrgao@stu.suda.edu.cn; wchzhg@gmail.com; {xujj, anliu, zhixuli}@suda.edu.cn; db.hongzhi@gmail.com
E-mail: zhaol@suda.edu.cn

Received December 14, 2018; revised September 12, 2019.

Abstract With the popularity of storing large data graph in cloud, the emergence of subgraph pattern matching on a

remote cloud has been inspired. Typically, subgraph pattern matching is defined in terms of subgraph isomorphism, which

is an NP-complete problem and sometimes too strict to find useful matches in certain applications. And how to protect the

privacy of data graphs in subgraph pattern matching without undermining matching results is an important concern. Thus,

we propose a novel framework to achieve the privacy-preserving subgraph pattern matching in cloud. In order to protect

the structural privacy in data graphs, we firstly develop a k-automorphism model based method. Additionally, we use a

cost-model based label generalization method to protect label privacy in both data graphs and pattern graphs. During the

generation of the k-automorphic graph, a large number of noise edges or vertices might be introduced to the original data

graph. Thus, we use the outsourced graph, which is only a subset of a k-automorphic graph, to answer the subgraph pattern

matching. The efficiency of the pattern matching process can be greatly improved in this way. Extensive experiments on

real-world datasets demonstrate the high efficiency of our framework.

Keywords subgraph pattern matching, k-automorphism, label generalization

1 Introduction

Usually we can use a graph to represent objects and

their relationships. The increasing number of applica-

tions making use of graph data in recent years, such

as disease transmission[1,2], communication patterns[3],

and social networks[4−7], has promoted the develop-

ment of graph data management, especially subgraph

pattern matching. Subgraph pattern matching is tradi-

tionally defined in terms of subgraph isomorphism[8,9],

which is an NP-complete problem[10]. It is often too

strict to catch sensitive matches, as it requires matches

to have the same topology with data graphs. The

problem will hinder its applicability in some certain

applications like social networks and crime detection.

The family of graph simulation models provide a prac-

tical alternative to subgraph isomorphism by relax-

ing its matching conditions[11,12]. Our work focuses

on multiple subgraph pattern matching models includ-

ing strong simulation[13], strict simulation[14], and tight

simulation[15]. These models are revisions of graph

simulation, which impose more flexible constraints on

topology in data graphs and retain cubic-time comple-

xity.

Example 1. Consider a real-life social network

shown in Fig.1. Each vertex in graph G represents

an entity, such as a human resources person (HRi),

a development manager (DMi), and a project manager

(PMi). Each directed edge in G indicates one recom-

mendation relationship, e.g., edge HR1 → PM1 repre-

Regular Paper

A preliminary version of the paper was published in the Proceedings of DASFAA 2018.

This work is supported by the National Natural Science Foundation of China under Grant No. 61572335, and the Natural Science
Foundation of Jiangsu Province of China under Grant No. BK20151223.

∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China

1186 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

<Name: Alice>
<Gender: Female>
<State: California>

<Name: Bob>
<Gender: Male>
<State: Washington>

DM

PM

HR

<Name: Tom>
<Gender: Male>
<School: Cornel>

<Name: Ruby>
<Gender: Female>
<School: Harvard>

<Name: Millie>
<Gender: Female>
<School: Harvard>

<Name: Ablett>
<Gender: Male>
<School: Columbia>

<Name: Jack>
<Gender: Male>
<School: Columbia>

<Name: Rose>
<Gender: Female>
<School: Harvard>

<Name: Lucy>
<Gender: Female>
<State: Illinois>

<Name: Adrian>
<Gender: Male>
<State: Illinois>

<Name: Daniel>
<Gender: Male>
<State: Illinois>

<Name: David>
<Gender: Male>
<State: Washington>

<School: Cornel>

<State: California>

G

HR
HR

PMDMDMPM

PM DM PM PM
DM PM

<State: Illinois>

(b)(a)

Fig.1. (a) Pattern graph Q and (b) original data graph G.

sents HR1 recommends PM1. Each entity has some at-

tributes like “name”, “gender”, “state”, and “school”.

As shown in Fig.1, a headhunter wants to employ

development manger DM to help project manger PM .

A qualified candidate must live in Illinois and at the

same time, he/she must recommend the PM and be

recommended by the HR and the PM . The head-

hunter issues a subgraph pattern matching of Q over

G, as shown in Fig.1. When subgraph isomorphism

is taken, no match can be found. When it comes to

strong simulation, we can find the subgraph G1 is an

appropriate match to pattern Q, since there exists a

path (DM1, PM2, PM1) from DM1 to PM1. Obvi-

ously, compared with subgraph isomorphism which im-

poses a very strict constraint on the topology of the

matched graphs, strong simulation provides a more flex-

ible constraint.

We can clearly find from example 1 that subgraph

isomorphism returns the strictest matches for subgraph

pattern matching in terms of topology and the problem

is of high computation cost. In order to lower its time

complexity, variants of the subgraph pattern matching

models have been proposed[10,11,13−16].

Although storing large-data graphs in cloud can

greatly save storage cost, it brings another inevitable

challenge, i.e., how to process users’ queries without

compromising sensitive information in cloud[17]. The

sensitive information in our work focuses on personal

information like names, occupations and social secu-

rity number[18]. We cannot make sure that the cloud

platform is completely credible in many real scenar-

ios; therefore the sensitive information in graphs may

be disclosed. The main privacy leakage problem is the

“identity disclosure” problem[19,20]. Assuming a graph

G containing sensitive information is uploaded to the

cloud platform, when an adversary can locate target

t as a vertex v in G with a high probability, we say

the entity t’s identity is disclosed[19]. A naive anony-

mous approach is to remove all identifiable personal

information from a data graph before uploading it to

cloud. However, even though the data graph is up-

loaded without any sensitive information, it is still pos-

sible for an adversary to locate the target through struc-

tural attacks[20−23]. For example, if an attacker knows

the structure (such as degree) around the target t, it

is of a high probability that he/she can locate a vertex

v according to the target t. All sensitive information

associated with v will be compromised as a result. This

is called structural attack[18,24,25]. Many methods have

been proposed to protect the privacy of data graphs

from multiple structural attacks. One typical approach

is k-automorphism, which uses the symmetry of the

published data graph[18]. For each vertex v in a k-

automorphic graph, there are at least k−1 structurally

equivalent counterparts. An adversary cannot distin-

guish v from other k − 1 symmetric vertices, because

there is no structural difference between them.

Uploading the original graph G to cloud directly

will cause privacy leakage. To address the problem,

we propose a basic solution which can protect the pri-

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1187

vacy of both data graphs and pattern graphs during

the matching process. In this solution, we propose a

k-automorphism model based method to protect struc-

tural privacy in data graphs. In order to protect the la-

bel privacy in both data graphs and pattern graphs, we

apply a label generalization technique[17], where each

vertex in the k-automorphic graph and pattern graph

is replaced by a label group.

However, the basic solution suffers from the fol-

lowing limitation. During the generation of a k-

automorphic graph, it may generate a large number of

noise edges, which will result in more expensive storage

cost and much larger communication overhead. Thus,

we add some optimizations into the basic framework to

achieve a more efficient framework. Firstly, we only up-

load the outsourced graph (the definition of outsourced

graph is given in Subsection 4.2), which is only a subset

of the k-automorphic graph, to cloud. Secondly, we re-

design a cost-model based label generalization method

which has been proved to greatly improve the efficiency

of the pattern matching process in our experiments.

Contributions. Our work provides an efficient

framework for multiple subgraph pattern matching

models in cloud. In this paper, the cloud always offers

correct computations without cheating, but it is curi-

ous about the information of the data graph. The main

contributions of our work are summarized as follows.

• We propose an efficient framework to provide mul-

tiple subgraph pattern matching services while preserv-

ing private information in both data graphs and pattern

graphs in public cloud.

• In order to reduce the search space in pattern

matching process, we re-design a cost-model based la-

bel generalization method to select effective vertex la-

bel combinations for anonymizing labels in both data

graphs and pattern graphs.

• We conduct extensive experiments on several real-

world datasets to study the efficiency of our framework.

The rest of the paper is organized as follows. Sec-

tion 2 narrates the related work. Section 3 gives the

problem formulation. Section 4 describes the main solu-

tion. Section 5 reports the experimental analysis. Sec-

tion 6 concludes the paper.

2 Related Work

Privacy Preserving. The question of how to pub-

lish information on graphs in a privacy-preserving way

has been of interest for a number of years[21,26−28].

Most previous work focused on protecting data privacy

from structural attacks[21,26,27]. Some of them assume

that the adversary only launches one type of structural

attack[21,26,27]. For example, Liu and Terzi[25] studied

how to protect privacy in published data from degree

attack only. However, an attacker can launch multi-

ple types of structural attacks to identify the target

in practice. Some privacy preserving techniques may

cause the data graph losing of structure information

in the original, which will lead to the infeasibility of

subgraph pattern matching on published graphs or up-

loaded graphs[24]. Thus, Zou et al.[18] proposed the

k-automorphism based framework. Each vertex in a k-

automorphic graph has at least k − 1 counterparts so

that it is hard for an adversary to identify the vertex

from others. The k-automorphism model can protect

privacy of data graph from multiple structural attacks.

It can also significantly preserve the integrity of the

data since the model does not need to delete any ver-

tices or edges from the data graph. Chang et al. pro-

posed a framework which can well protect the privacy

in both data graph and pattern graph[17]. However, the

framework only adapts to subgraph isomorphism and it

is significantly needed to propose a privacy-preserving

framework for more subgraph pattern matching mod-

els.

Differential privacy[29,30] is also an essential and

prevalent model that has been widely explored in recent

decades. However, due to the perturbation introduced

to the data graph, these techniques[28,31,32] only adapt

to finding statistics information of a graph. They are

not feasible in answering subgraph pattern matching

queries exactly. Zhang et al.[33] defined an isomorphic

graph possessing similar statistical properties with the

original graph. However, their work only returns sub-

graph counts instead of matching subgraphs; therefore

we cannot determine the correctness of the query an-

swers.

Graph Simulation. Subgraph pattern matching is

typically defined in terms of subgraph isomorphism[8,9].

Subgraph isomorphism is an NP-complete problem[34]

since it returns the strictest matches for subgraph

pattern matching in terms of topology. Some pre-

vious work focuses on subgraph similarity matching

on large graphs[35,36]. Given a query graph Q and

a data graph G, subgraph similarity matching is to

retrieve all matches of Q in G with the number of

missing edges bounded by a given threshold ε. Also,

the family of graph simulation algorithms has been

considered[10,11,13−16] to lower the complexity of graph

isomorphism. Fan et al.[11] extended simulation by al-

1188 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

lowing bounds on the number of hops in pattern graphs

and further and proposed bounded simulation. Fan et

al. extended it by incorporating regular expressions as

edge constraints on pattern graphs[16]. Both the two

extensions of simulation are in cubic-time.

Nevertheless, the lower complexity comes with the

price that two extentions of simulation do not preserve

the topology of data graphs and yield false matches.

Thus, Ma et al.[13] proposed the notation of strong sim-

ulation by enforcing two additional conditions: the du-

ality to preserve the parent relationships and the local-

ity to eliminate excessive matches. Strong simulation is

capable of capturing the topological structures of pat-

tern and data graphs, and it retains the same cubic-time

complexity of former extensions of graph simulation[10].

However, it is still computationally expensive for very

large data graphs. Thus, Fard et al. introduced a new

model named strict simulation[14], which is more scal-

able and preserves the important properties of strong

simulation. Strict simulation reduces the computation

time of strong simulation by decreasing the size of balls,

but the number of the balls remains the same. More-

over, it is still desirable to shrink the size of the balls in

terms of both computation time and the quality of the

matching results. Therefore Fard et al. proposed tight

simulation[15]. Tight simulation not only decreases the

size of balls in comparison to strict simulation, but also

reduces the number of balls.

Compared with our previous work[37], this paper

provides a privacy-preserving framework for multiple

simulation models. The framework can be applied to

strong simulation, strict simulation and tight simula-

tion and can greatly decrease the running time of the

subgraph pattern matching in cloud.

3 Problem Formulation

In this section, we first present the basic notations

and definitions frequently used in this paper. Then we

give a definition of our problem.

We model a social network as an attributed

graph[17], G = {V (G), E(G), LG(V (G))}, where V (G)

is the set of vertices, E(G) is the set of edges, and

LG(V (G)) is the set of vertex labels. The notational

conventions of this paper are summarized in Table 1.

Definition 1 (Path). A directed path p is a se-

quence of nodes (v1, v2, ..., vn), where i ∈ [1, n− 1] and

(vi, vi+1) is an edge in graph G. The number of edges

in a path p is the length of p, denoted by len(p).

Definition 2 (Distance and Diameter). Consider

two nodes u, v in graph G, the distance from u to v

is the length of the shortest undirected path from u to

v, denoted by dis(u, v). The diameter of the connected

graph G is defined as the longest distance of all pairs

of nodes in G, denoted by dG. More specifically, dG =

max{dis(u, v)} for all nodes u, v in graph G.

Table 1. Notations

Notation Description

dQ Diameter of pattern Q

G Original data graph

G∗ “Undirected” data graph

Gk Data graph released by the k-automorphism model

Go Outsourced data graphóG[v, dQ] Ball with center v and radius dQ

Q Original pattern graph

Qo Anonymous pattern graph of Q

r(Q,G) Set of graph pattern matches of Q over G

dis(u, v) Distance between u and v

For example, the distance between HR and PM in

pattern graph Q in Fig.1 is 1 since HR can directly

arrive PM . The diameter of Q is 1 because the longest

distance of all pairs of nodes in Q is 1.

Definition 3 (Ball). For a node v in graph G, a

ball is a subgraph of G, where v is the center node and

r is the radius, denoted by
⌢

G[v, r]. For all nodes u in
⌢

G[v, r], the shortest distance between u and v should

satisfy dis(u, v) 6 r and edges must exactly appear in

graph G over the same node set.

Considering the pattern Q and the data graph G

in Fig.1, we can figure out that dQ = 1 according to

Definition 2. If we take the vertex DM1 as the center

node and dQ as the radius, then we can obtain the ball
⌢

G[DM1, dQ] (i.e., G1), which is a subgraph of G based

on Definition 3.

Definition 4 (Subgraph Isomorphism). Subgraph

isomorphism is the most traditional model for subgraph

pattern matching. It preserves most restrictive topolog-

ical features of the query graph. Given a pattern graph

Q and a subgraph Gs of data graph G, if there exists a

bijective function f from vertices of Q to the vertices in

Gs such that:

1) for each pattern vertex u in Q, u and f(u) have

same labels and

2) there exists an edge (u, u′) in Q if and only if

(f(u), f(u′)) is an edge in Gs,

then Gs is a match of via Q subgraph isomorphism.

For example, a subgraph of data graph containing

vertices {A1, B1, C1} and edges A1 → B1, B1 → A1

and B1 → C1 in Fig.2 is a subgraph isomorphic match

of the pattern graph in Fig.2.

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1189

A B C

(a)

(b)

C4

A5

A3

A1

A2

A4

C3

C1

C2

B6

B4

B5

B2
B3

B1

Fig.2. Example for different models. (a) Pattern graph. (b)
Data graph.

Definition 5 (Graph Simulation). Given a pattern

graph Q{V (Q), E(Q), LQ(V (Q))} and a data graph

G{V (G), E(G), LG(V (G))}, a binary relation R ⊆

V (Q) × V (G) is a match if

1) for each (u, v) ∈ R, u and v have same labels and

2) for each edge (u, u′) ∈ E(Q), there exists an edge

(v, v′) in E(G) such that (u′, v′) ∈ R.

The matching result is a maximum match set of

vertices. Graph G matches pattern Q via graph simu-

lation, if there exists a total match relation M that for

each u ∈ V (Q), there exists v ∈ V (G) and (u, v) ∈ M .

Definition 6 (Dual Simulation). Graph simulation

only preserves child relationships of each vertex in pat-

tern graph Q. Dual simulation improves the matching

results of graph simulation by taking the parent rela-

tionships into consideration.

Pattern graph Q{V (Q), E(Q), LQ(V (Q))} matches

G{V (G), E(G), LG(V (G))} via dual simulation, if

1) Q matches G via graph simulation with a binary

match relation R ⊆ V (Q) × V (G), and

2) for each edge (u′, u) ∈ E(Q), there exists an edge

(v′, v) in E(G) such that (u′, v′) ∈ R.

Definition 7 (Strong Simulation[13]). Given a data

graph G = {V (G), E(G), LG(V (G))} and a pattern

graph Q = {V (Q), E(Q), LQ(V (Q))}, if there exists a

node v in Gs of G such that:

1) Q is a match result of Gs via dual simulation

with maximum match relation S and Gs is the match

graph towards match relation S;

2) Gs is contained in
⌢

G[v, dQ], where dQ is the di-

ameter of pattern graph Q,

Q is a subgraph match to G via strong simulation.

Definition 8 (Strict Simulation[14]). Pattern graph

Q = {V (Q), E(Q), LQ(V (Q))} matches data graph

G = {V (G), E(G), LG(V (G))} via strict simulation if

there exists a vertex v ∈ V (G) such that:

1) Gd = {V (Gd), E(Gd), LGd
(V (Gd))} is the match

result of Q over G via dual simulation and v ∈ V (Gd);

2) Q is the dual match result of
⌢

Gd[v, dQ], where
⌢

Gd[v, dQ] is extracted from Gd and dQ is the diameter

of pattern Q;

3) v is contained in the matching result.

Definition 9 (Tight Simulation[15]). Pattern graph

Q = {V (Q), E(Q), LQ(V (Q))} matches data graph

G = {V (G), E(G), LG(V (G))} via tight simulation if

there exist vertices u ∈ Q and u′ ∈ G such that:

1) u′ is the matching vertex of u in dual match re-

lation Rd;

2) u is the center of Q with the highest defined

selectivity;

3) Gd = {V (Gd), E(Gd), LGd
(V (Gd))} is the match

result of Q over G via dual simulation and Q is the dual

match result of
⌢

Gd[u
′, rQ], where

⌢

Gd[u
′, rQ] is extracted

from Gd = {V (Gd), E(Gd), LGd
(V (Gd))} and rQ is

the diameter of pattern Q;

4) u′ is contained in the matching result.

There is an example to show the difference in the

results of different pattern matching models in Fig.2.

In this example, all vertices in the data graph will re-

main in the dual match graph. The subgraph con-

taining vertices {A1, B1, C1} and edges A1 → B1,

B1 → A1 and B1 → C1, will be the matching result

when subgraph isomorphism is taken, since the sub-

graph has the same topology with the pattern in Fig.2.

In strong and strict simulation, a ball with radius 2

will be created for any vertex in the data graph. For

the ball centered at vertex A1, strong simulation results

in a subgraph containing all vertices in the data graph,

while strict simulation results in a subgraph contain-

ing vertices {A1, A2, B1, B2, B3, C1, C2, C3} and edges

between them.

In tight simulation, the center of the pattern is ver-

tex B and it will be picked as the candidate vertex.

Therefore, the ball centered with vertices {B1, B2, B3,

B4, B5, B6} and radius 1 will be the matching can-

didates. Only the ball centered at vertex B1 which

contains vertices {A1, B1, C1} can be a matching result

in tight simulation. Compared with strict simulation,

the matching results of tight simulation are the closest

to subgraph isomorphism, since the matching results

of tight simulation are subgraphs of the corresponding

results of strict simulation and they always contain all

the subgraph isomorphic matches.

Problem Definition. Given a data graph G and a

pattern graph Q, our work is to find all subgraph pat-

tern matches of Q over G without compromising the

1190 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

privacy of graphs through the cloud server. We propose

a framework which can protect both label privacy and

structure privacy in graphs. The framework can apply

to multiple subgraph matching models including strong

simulation, strict simulation, and tight simulation.

Our work aims to protect the privacy of data graph

and pattern graph against cloud. When the cloud

server returns the matching results to the client, the

client has the ability to de-anonymize, filter, and verify

the results.

4 Privacy-Preserving Framework

Our framework mainly consists of three parts, and

they are privacy preserving, subgraph pattern match-

ing, and result processing. In the privacy preserving

process, we consider both structural privacy and label

privacy in data graphs and pattern graphs. Given a

data graph G, we firstly transform the original graph

G to an “undirected” graph G∗. During the process, if

an edge u → v is unidirectional, we will add an edge

v → u. For example, we add an edge PM2 → DM1 for

the edge DM1 → PM2 in Fig.1. Then, we can use the

k-automorphism model to generate graph Gk, where k

= 2 in Fig.3. On the other hand, to protect label pri-

vacy, we apply a cost-model based label generalization

technique[17], where each vertex label in Gk and Q is

replaced by a label group. The mapping between label

groups and vertex labels is given in the label correspon-

dence table (LCT), presented in Fig.3(a).

Since Gk will be very large, we only upload part of

it, i.e., G0 to cloud. Next, the cloud executes subgraph

pattern matching of Q0 over G0 to obtain r(Q0, G0)

and transmits it to the client side. On the basis of k-

automorphic functions Fki
(i = 1, 2, ..., k−1), the client

can firstly compute r(Q0, Gk) according to r(Q0, G0).

Then, it filters out false positives based on the original

data graph G and pattern Q to derive r(Q,G). Note

that we assume the client is the data owner who has ac-

cess to the original graph G for the filtering step. The

entire process of our framework is shown in Fig.4.

4.1 Privacy Preserving

In order to provide a privacy-preserving matching

process, we need to consider two aspects: one is the

structural privacy, and the other is the label privacy.

4.1.1 Structural Privacy

We firstly develop a novel approach based on k-

automorphism model to protect structural privacy in

data graphs. When a directed data graph G is given,

we firstly transform it to an “undirected” graph G∗ by

introducing noise edges. Then we convertG∗ into graph

Gk, where Gk satisfies the k-automorphic graph model.

Definition 10 (k-Automorphic Graph). A

k-automorphic graph Gk is defined as Gk =

{V (Gk), E(Gk)}, where |V (Gk)| is the number of

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

Label
Group Labels

A HR, PM, DM

B Female, Male

C
California, Illinois,

Washington

D
Harvard, Conell,

Columbia

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<School: D>

<State: C>

<State: C>

p4 p5 p6

p2 p3

p1 p7

p8 p9

p10 p11 p12

p1

p2

p3

(b)(a) (c)

Fig.3. k-automorphic graph Gk and anonymous pattern Q0. (a) Label correspondence table (LCT). (b) Graph Gk. (c) Anonymous
pattern Q0.

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1191

Data Graph G

Pattern Graph Q

Anonymous, k-

Automorphic Graph

Anonymous Pattern

Graph Q

Outsourced Graph
G

Cloud

k-Automorphic Model

Label Generalization

Label

Generalization

AVTFilter

Client

Subgraph Pattern

Matching of Q

over G

r↼Q֒ G↽ r↼Q֒ Gk↽ r↼Q֒ G↽

Gk

Fig.4. Privacy-preserving framework.

V (Gk). |V (Gk)| can be divided into k blocks and each

block has ⌈ |V (Gk)|
k

⌉ vertices.

A k-automorphic graph Gk has k blocks and each

block is isomorphic to other blocks. Intuitively, for any

vertex v in a k-automorphic graph Gk, there are k − 1

symmetric vertices. An adversary can hardly distin-

guish v from its structurally equivalent counterparts.

Thus, the structural privacy in data graphs can be well

preserved. According to Definition 10, we can trans-

form G∗ to a k-automorphic graph Gk as follows.

Firstly, we adopt the METIS algorithm[17,38] to par-

tition the graph G∗ into k blocks. We choose the mul-

tilevel k-way partitioning schemes[39]. There are three

main phases in the multilevel k-way partitioning al-

gorithm. They are coarsening phase, initial partition

phase, and uncoarsening phase. As shown in Fig.5,

during the coarsening phase, the size of the graph is

decreased. A k-way partitioning of the smaller graph is

computed during the initial partitioning phase. During

the uncoarsening phase, the partitioning is refined as

it is objected to the larger graphs. In order to guar-

antee that each block has exactly ⌈ |V (Gk)|
k

⌉ vertices,

some noise vertices will be introduced if |V (G∗)| can-

not be divided into k blocks. Finding the optimal block

alignment is an NP-hard problem (even in the case of

no attributes), and it is more complicated while consi-

dering the attributes of vertices. Thus, Zou et al. pro-

posed an efficient method to build the alignment vertex

table (AVT) after the partition[18]. The method will

firstly choose the largest same degree with the same

label in different blocks. Then it will breadth-first tra-

verse different blocks and pair up vertices with the same

label and/or the same (or similar) degrees. For exam-

ple, we divide the graph Gk in Fig.3(b) into two blocks

and build the corresponding AVT, which is presented in

Table 2. Each row in AVT denotes they are symmetric

vertices, such as p1 and p7 in Fig.3(b). Each column

in AVT contains the vertices in one block, such as (p1,

p2, p3, p4, p5, p6) in the first block of Gk. According to

the AVT, we define the k-automorphic function Fk1 , as

shown in Fig.6.

Initial Partitioning

C
o
a
rs

e
n
in

g
 P

h
a
se

U
n
c
o
a
rs

e
n
in

g
 P

h
a
se

G0 G0

G1 G1

G2 G2

G3

Fig.5. Various phases of the multilevel k-way partitioning algo-
rithm.

Table 2. Alignment Vertex Table (AVT)

Vertices in B0 Vertices in B1

p1 p7

p2 p9

p3 p8

p4 p12

p5 p11

p6 p10

Secondly, we perform block alignment and edge

copy[18] to obtain the k-automorphic graph Gk. For

example, we can obtain two isomorphic blocks: B0(p1,

p2, p3, p4, p5, p6) and B1(p7, p8, p9, p10, p11, p12) by

adding noise edges (p8, p10) and (p11, p12) via block

alignment in Fig.3. According to the crossing edge (p6,

p7) between two blocks, we add an edge (p1, p10) based

on the edge copy techniques.

1192 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

Fk1(p1) = p7 Fk1(p7) = p1

Fk1(p2) = p9 Fk1(p8) = p3

Fk1(p3) = p8 Fk1(p9) = p2

Fk1(p4) = p12 Fk1(p12) = p4

Fk1(p5) = p11 Fk1(p11) = p5

Fk1(p6) = p10 Fk1(p10) = p6

Fig.6. Automorphic function.

4.1.2 Label Privacy

Since the k-automorphism model based method can

only protect the structural privacy of the original graph

G, we define a cost-model based label generalization

method to protect label privacy in both data graph G

and pattern graph Q. The method considers two fac-

tors: label matching and searching space, while esti-

mating the number of candidates of a vertex u in Q0,

denoted as sim(u).

According to the definition of strong simulation[13],

strict simulation[14], and tight simulation[15], when a

vertex v in graph Gk matches vertex u in pattern Q0, it

must firstly contain u’s label groups. We let |Vg(G
k, i)|

and |Vg(Q
0, i)| denote the set of vertices with the label

group i in Gk and Q0 that are obtained after the label

generalization respectively. Then, we define:

P
g

Gk(i) =
|Vg(G

k, i)|

|V (Gk)|
, P

g

Q0(i) =
|Vg(Q

0, i)|

|V (Q0)|
.

P
g

Gk(i) and P
g

Q0(i) estimate the probability of a ver-

tex in Gk and Q0 having an i-th label group after the

label generalization, respectively. Then, the estimating

number of vertices that can match vertex u in Q0 while

considering label matching can be defined as follows:

L = |V (Gk)|
αX

i=1

P
g

Gk(i)× P
g

Q0(i).

Next we need to consider the searching space of

checking whether each of u’s parent vertices and child

vertices can find matching vertices. We define the

average in-degree Di(G
k) and the average out-degree

Do(G
k) to represent the in-degree and the out-degree

of vertex v (u’s matching vertex) respectively. Sim-

ilarly, Di(Q) and Do(Q) represent the in-degree and

the out-degree of vertex u in Q0 separately. Note

that Do(Q
0) = Do(Q) and Di(Q

0) = Di(Q). There-

fore, the maximum potential searching space of u’s

first child vertex is Do(G
k)

2dQ
, and that of the sec-

ond child vertex is (Do(G
k) − 1)Do(G

k)2dQ−1. Thus,

the total searching space of u’s child vertices can be

estimated as Do(G
k)

2dQ
× (Do(G

k) − 1)Do(G
k)2dQ−1

· · ·(Do(G
k) − Do(Q) + 1)Do(G

k)2dQ−1. We estimate

it as Do(G
k)Do(Q) × Do(G

k)(2dQ−1)Do(Q)

for simplic-

ity, i.e., Do(G
k)Do(Q)+(2dQ−1)Do(Q)

. In the same way,

we can define the searching space of u’s parent ver-

tices asDi(G
k)Di(Q)+(2dQ−1)Di(Q)

. We define sumo and

sumi separately to representDo(G
k)Do(Q)+(2dQ−1)Do(Q)

and Di(G
k)Di(Q)+(2dQ−1)Di(Q)

. Thus, the estimation of

searching space S can be defined as follows:

S =

Do(G

k)

αX

i=1

P
g

Gk(i)P
g

Q0 (i)

!!sumo

×
(Di(G

k)

αX

i=1

P
g

Gk(i)P
g

Q0 (i)

!!sumi

.

The searching space of tight simulation is smaller

than S since the radius of a potential ball is possibly

equal to the radius of Q. Thus in the computation of

searching space in different pattern matching models,

we consider the maximum amount of calculation.

We assume the total labels in original graph G

can be divided into α groups, and each group con-

tains θ different labels without loss of generality. We

define 〈p1, p2, p3, ..., pαθ〉 to form a permutation of

〈1, 2, 3, ..., αθ〉. According to [17], we can obtain that

P
g

Gk(i) 6
Pθ

j=1 PG(pθ(i−1)+j).

Thus, we can define the cost model:

|sim(u)|

= L · S

= |V (Gk)|(
αX

i=1

P
g

Gk(i)P
g

Q0(i))×

(Do(G
k)(

αX
i=1

P
g

Gk(i)P
g

Q0(i)))
sumo ×

(Di(G
k)(

αX
i=1

P
g

Gk(i)P
g

Q0 (i)))
sumi

= |V (Gk)|Do(G
k)

sumo
×Di(G

k)
sumi

×

(
αX

i=1

P
g

Gk(i)P
g

Q0(i))
sumo+sumi+1

6 |V (Gk)|Do(G
k)

sumo
×Di(G

k)
sumi

×

(
αX

i=1

(
θX

j=1

PG(pθ(i−1)+j))

(
θX

j=1

PQ(pθ(i−1)+j)))
sumo+sumi+1. (1)

According to the cost model in (1), an effective per-

mutation of 〈1, 2, 3, ..., αθ〉, i.e., 〈p1, p2, p3, ..., pαθ〉,

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1193

can decrease the cost of the searching space of pattern

graph Q over G. We choose the component that con-

cerns the label combination to define label combination

cost.

cost(L) =
αX

i=1

(
θX

j=1

PG(pθ(i−1)+j))×

(
θX

j=1

PQ(pθ(i−1)+j)). (2)

There is an iterative solution that can explore the

optimal permutation to decrease cost(L) according to

(2). At first, a random label combination is generated.

For example, we define θ = 2 and firstly we combine

California and Harvard in Fig.1 randomly as a label

group A, and Male, Illinois and Cornel as a label group

B. Then, we try to swap two labels in two different

label groups for each iteration randomly. For exam-

ple, we can swap California and Male and compute the

cost(L) according to (2). If cost(L) becomes smaller, we

will keep the swap; otherwise, we will ignore that. We

consider all possible swap sequentially and once there

is no swap that can lead to a smaller cost, the iteration

stops and we obtain the effective combination.

4.2 Subgraph Pattern Matching

Given a data graph G = {V (G), E(G), LG(V (G))}

and a pattern graph Q = {V (Q), E(Q), LQ(V (Q))},

Q is a subgraph match to G via strong simulation, if

there exists a node u in Q and a connected subgraph

Gs of G such that:

1) there exists a match relation R, and for each pair

(u, v) in R:

a) LQ(u) ⊆ LGs
(v);

b) ∀ (u′, u) ∈ E(Q), there exists a path (v′, ..., v) in

E(Gs);

c) ∀ (u, u′) ∈ E(Q), there exists a path (v, ..., v′) in

E(Gs);

2) Gs is contained in the ball
⌢

G[v, dQ], where dQ is

the diameter of pattern Q.

Strict simulation is a novel modification of strong

simulation which not only improves its performance but

also maintains a better quality of results because of its

revised definition of locality[14]. Compared with strong

simulation, strict simulation creates balls from the dual

result match graph rather than from the original graph.

For strict simulation, the match relation of dual simu-

lation is computed first, and then a ball
⌢

G[v, dQ] is cre-

ated for each vertex contained in the dual match set.

The members of the ball are selected regardless of their

relationship in pairs of dual match set.

Strict simulation decreases the size of the balls to re-

duce the computation time of strong simulation, while

tight simulation[15] not only decreases the size of balls,

but also reduces the number of balls. In the reprocess-

ing of tight simulation, a single vertex u ∈ Q, is chosen

as candidate match to the center of a potential ball in

the data graph G. The radius of a potential ball is de-

fined as the longest distance between u and any other

vertex in Q. In the phase of ball creation, only those

vertices in the data graph which are contained in the

dual match set of u would be selected as the center of

balls.

After obtaining an anonymous k-automorphic graph

Gk, a basic solution is to upload Gk to cloud directly.

However, Gk is larger than the original graph G since

Gk contains a large number of noise edges. Therefore,

we only upload the outsourced graph, which is only a

subset of Gk, denoted as G0, to the cloud platform.

The definition of G0 is given below.

Definition 11 (Outsourced Graph). An outsourced

graph is defined as G0 = {V (G0), E(G0), LG0(V (G0))}

where 1) V (G0) is the set of vertices in the first block

of Gk (i.e., block B0), denoted as V (B0), together with

their neighbors within 2dQ-hops, denoted as V (N2dQ
);

2) E(G0) is the set of edges that connect vertices within

V (B0) and vertices between V (B0) and V (N2dQ
); 3)

LG0(V (G0)) is the set of vertex labels in graph G0.

According to Definition 11, we can generate an out-

sourced graph G0 based on the graph Gk and upload

it to cloud. For example, an outsourced graph G0 (as

shown in Fig.7) can be generated based on graph Gk

in Fig.3. Although G0 is a part of Gk, we can easily

recover Gk based on G0 together with k-automorphic

functions Fki
(i = 1, 2, ..., k − 1).

When a pattern Q is given at a client side, we first

generalize its vertex labels by the label generalization

technique introduced in Subsection 4.1.2 to form Q0

and submit Q0 to cloud. According to the match-

ing process of strong simulation, strict simulation, and

tight simulation, we define |V (G0)| contains the ver-

tices in the first block B0 of the k-automorphic graph

Gk and the vertices within their 2dQ-hops neighbors.

Since each match iteration aims to find the maximum

perfect subgraph match and each subgraph match is

involved in a ball
⌢

G[w, dQ] (w is an arbitrary vertex

in G0), the operation can guarantee that all subgraph

matches could be found.

1194 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

p

p p

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

p

p p

pp

p

pp

Fig.7. Outsourced graph G0 for Gk.

An algorithm for the subgraph pattern matching is

designed as Algorithm 1. At first, a MatchSet would

contains all dual match sets (line 2 in Algorithm 1). For

each match in MatchSet, if it satisfies the simulation

conditions (strong simulation, strict simulation, or tight

simulation), the graph Gs constructed for match would

be added to the results r(Q0, G0). Else, match would

be removed from MatchSet (lines 3–8 in Algorithm 1).

Algorithm 1. Subgraph Pattern Match

Input: Q0 and G0

Output: r(Q0, G0)

1 r(Q0, G0) := ∅;

2 Make a MatchSet of the dual simulation results;

3 for match ∈ MatchSet do

4 if match satisfies the simulation conditions then

5 Gs := construct match graph for match;

6 r(Q0, G0) := r(Q0, G0) ∪ Gs;

7 else

8 Remove match from MatchSet;

9 return r(Q0, G0)

4.3 Result Processing

When G0 and Q0 are uploaded, the cloud executes

subgraph pattern matching via strong simulation, strict

simulation, or tight simulation to obtain the matching

result r(Q0, G0) and transmits it to client. There are

two steps for the client side to process the result.

Firstly, the client computes r(Q0, Gk) based on

r(Q0, G0) together with k-automorphic functions Fki

(i = 1, 2, ..., k− 1) (lines 1–3 in Algorithm 2). For each

subgraph Gs in r(Q0, G0), we can compute Fki
(Gs)

(i = 1, 2, ..., k − 1) and add them to r(Q0, Gk). Then,

we obtain the final r(Q0, Gk) by adding r(Q0, G0) (line

4 in Algorithm 2).

Secondly, the client needs to filter out the false

matches in r(Q0, Gk) according to the original data

graph G and pattern Q. For each matching subgraph

Gs in r(Q0, Gk), if there exist vertices that are not con-

tained in graph G or whose labels cannot match those

of the corresponding vertices in the original pattern

Q (we have anonymized the vertex labels in pattern

Q via a label generalization method), then we remove

them from Gs (lines 7–11 in Algorithm 2). Note that

we have introduced noise edges when generating “undi-

rected” graph G∗ and k-automorphic graph Gk, if Gs

contains edges that do not exist in the original graph

G, then we remove them from Gs (lines 12–14 in Al-

gorithm 2). When all the noise vertices or edges and

unmatch vertices are filtered out from Gs, we need to

consider whether Gs is a candidate. We define that if

there exists a subgraph which is a match (meeting the

requirements of strong simulation, strict simulation or

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1195

tight simulation) to pattern Q in Gs, it is a right posi-

tive and we need to add it to r(Q,G) (lines 15 and 16

in Algorithm 2).

Algorithm 2. Result Processing Algorithm

Input: r(Q0, G0) and AVT
Output: r(Q,G)

1 r(Q0, Gk) := ∅;
2 for i := 1 to k − 1 do

3 r(Q0, Gk) := r(Q0, Gk) ∪ Fki
(r(Q0, G0));

4 r(Q0, Gk) := r(Q0, Gk) ∪ r(Q0, G0);
5 r(Q,G) := ∅ ;

6 for each subgraph Gs ∈ r(Q0, Gk) do

7 for each vertex v ∈ V (Gs) do

8 if v 6∈ V (G) then

9 Remove node v from Gs;
10 else if LG(v) does not match the corresponding

vertex on pattern Q then

11 Remove node v from Gs;

12 for each edge e ∈ E(Gs) do

13 if e 6∈ E(G) then

14 Remove edge e from Gs;
15

16 if Gs contains the connected component that
matches to pattern Q then

17 r(Q,G) := r(Q,G) ∪ Gs;
18

19 return r(Q,G)

Complexity Analysis. It takes O(|E| log k) time to

partition the graph into k blocks and O(
Pk

i=1 |E(Pj)|)

time to align blocks where Pj (j = 1, 2, ..., k) indicates

different blocks. The time complexity of edge copy

and constructing AVT is O(|E|) and O(Max(|E(Pj)|+

|V (Pj)|)) respectively. The time complexity of sub-

graph pattern matching and result processing in the

client is both O(|V |(|V |+(|V (Q)|+ |E(Q)|)(|V |+ |E|)))

since the result processing phase needs to check whether

the subgraph is a candidate. We use the adjacency

list to store the graph and the space complexity is

O(|V |+ |E|).

5 Experimental Study

The main concern in subgraph pattern matching is

its time efficiency since the subgraph isomorphism is an

NP-complete problem and researchers have been mak-

ing effort to improve the efficiency of subgraph match-

ing queries. It is particularly important when consi-

dering a privacy-preserving framework for subgraph

pattern matching since the pretreatment of original

data graph will cause many noise edges or vertices.

In this paper, we propose an efficient framework to

achieve privacy-preserving subgraph pattern matching

in cloud; thus the efficiency is the focus of our experi-

mental study.

In our framework, both the label privacy and the

structure privacy can be well protected; thus it can

significantly preserve the sensitive information in the

graph from multiple structural attacks[18,24,25]. Even

if an attacker accesses the graph in cloud illegally at

worst, it is still difficult for him/her to obtain the in-

formation he/she wants to get.

5.1 Datasets and Setup

We evaluate our method in three real-world datasets

in our experiments. The statistics of these datasets are

given in Table 3.

Table 3. Real-World Data Graphs

Dataset |V | |E| Number of Labels

p2p-Gnutella08 6 301 20 777 62

Brightkite edges 58 228 428 156 134

Web-NotreDame 325 729 1 090 108 208

p2p-Gnutella08 1○. p2p-Gnutella08 is a sequence of

snapshots of the Gnutella peer-to-peer file sharing net-

work collected in August 8, 2002. Nodes represent hosts

in the Gnutella network topology and edges represent

connections between the Gnutella hosts.

Brightkite edges 2○. Brightkite edges is the friend-

ship network collected using Brightkite’s public API.

Nodes correspond to users having checked-in Brightkite

and directed edges correspond to relationships among

them.

Web-NotreDame 3○. Web-NotreDame is a web

graph collected in 1999. Nodes represent pages from

University of Notre Dame and directed edges represent

hyperlinks between them.

SETUP. To the best of our knowledge, we are the

first to provide a privacy-preserving framework for mul-

tiple simulation models. The previous work focused

on exact subgraph pattern matching, i.e., subgraph

isomorphism[17], and it is not adapted to other sub-

graph pattern matching models. As a result, we only

compare our improved framework with a basic solution

in our experiments. We compare four methods All Ran,

1○http://snap.stanford.edu/data/p2p-Gnutella08.html, Sept. 2019.
2○http://snap.stanford.edu/data/loc-Brightkite.html, Sept. 2019.
3○http://snap.stanford.edu/data/web-NotreDame.html, Sept. 2019.

1196 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

All Eff, Part Ran, and Part Eff, where All Ran applies

the random label generalization method and uploads

Gk to cloud; All Eff applies the cost-model based label

generalization method introduced in Subsection 4.1.2

and uploads Gk to cloud; Part Ran applies the same

label generalization approach with All Ran but only

uploads G0 to cloud; Part Eff applies the same label

generalization method with All Eff but uploads G0 to

cloud.

All methods are implemented in C++. We use a

Windows 10 PC with 2.30 GHz Intel Core i5 CPU and

8 GB of memory as the client side. The cloud server is

on a virtualized Linux machine within Microsoft Azure

Cloud with 4 CPU cores and 200 GB main memory.

5.2 Experiments Analysis

We evaluate the cost of our experiments from three

aspects: time cost of generating Gk, time cost of pat-

tern matching, and time cost of result processing in the

client. The time costs of generating Gk and result pro-

cessing have nothing to do with the pattern matching

models. Therefore we only compare time cost of pat-

tern matching via different subgraph pattern matching

models in our experiments.

Time Cost of Generating Gk. We first evaluate the

performance of the proposed framework while gener-

ating graph Gk. We conduct a set of experiments to

observe the effect of the parameter θ and we finally

find that our framework will have a better efficiency

when θ = 2. In these experiments, we set k = 3 and

|E(Q)| = 6. Fig.8 shows the performance of Part Eff

considering strong simulation in p2p-Gnutella08. The

overall running time increases with θ going from 2 to

4 since the time of label generalization phase will be

larger when θ increases (we find similar results in strict

simulation and tight simulation). Thus in these experi-

ments, we define that each label group contains two

labels, i.e., the default value of θ is 2.

2 3

T
im

e
 (

s)

60

50

40

30

20

10

0
4

θ

Fig.8. Overall running time of strong simulation vs θ.

According to Fig.9, the cost-model based label

generalization method and the random label generali-

zation method have similar performance while gener-

ating graph Gk, i.e., the four proposed methods have

similar time cost. The reason is that all of them need

to generate graph Gk firstly despite the ultimately up-

loaded graph is either Gk or G0. We note that the time

cost on the three datasets increases when k varies from

2 to 5. The reason is that when k increases, more and

more noise edges are added to Gk, as shown in Table 4.

Note that each “undirected” edge in Gk represents two

directed edges. We can intuitively see that the number

of noise edges has slight difference when using different

label generalization methods and increases with k.

Time Cost of Pattern Matching. Then we pay at-

tention to the time cost of subgraph pattern matching

in cloud. We compare the running time of strong sim-

ulation, strict simulation and tight simulation. Firstly,

2 3

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

4 5

k

2 3 4 5

k

2 3 4 5

k

(b)(a) (c)

T
im

e
 (

s)

60

50

40

30

20

10

0

T
im

e
 (

s)

300

200

100

0

T
im

e
 (

s)

400

300

200

100

0

Fig.9. Time cost in generating Gk. (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1197

Table 4. Number of Noise Edges in Generating Gk

Dataset Method k = 2 k = 3 k = 4 k = 5

p2p-Gnutella08 All Ran 16 417×2 34 267×2 53 195×2 71 388×2

Part Ran

All Eff 16 309×2 34 309×2 53 195×2 71 443×2

Part Eff

Brightkite edges All Ran 178 278×2 367 859×2 553 810×2 753 265×2

Part Ran

All Eff 178 674×2 368 399×2 554 794×2 752 677×2

Part Eff

Web-NotreDame All Ran 923 266×2 1 829 324×2 2 749 760×2 3 747 812×2

Part Ran

All Eff 923 382×2 1 846 433×2 2 745 792×2 3 767 437×2

Part Eff

we evaluate the time cost of the proposed methods

while varying the number of edges in pattern Q, i.e.,

|E(Q)|. Pattern graphs are generated by randomly ex-

tracting subgraphs from the original data graph G. We

use |E(Q)| to control the size of pattern graphs. In

these experiments, the value of k is set to 3. According

to Fig.10, we can clearly find out that Part Eff per-

forms better than the other three approaches on the

three datasets. The one reason is that Part Eff only up-

loads G0 to cloud. Note that Part Ran and Part Eff are

only different in label generalization. Thus, the results

demonstrate the effectiveness of our cost-based label

generalization method. We find similar results in strict

simulation and tight simulation, as shown in Fig.11 and

Fig.12 respectively. The matching time increases with

|E(Q)| varying from 4 to 10, since the searching space

will become larger for subgraph pattern matching when

|E(Q)| increases.

4 6 8 10

E↼Q↽

(a)

4 6 8 10

E↼Q↽

(b)

4 6 8 10

E↼Q↽

(c)

M
a
tc

h
in

g
 T

im
e
 (

s)

140

120

100

80

60

40

20

0

M
a
tc

h
in

g
 T

im
e
 (

s)

160

140

120

100

80

60

40

20

M
a
tc

h
in

g
 T

im
e
 (

s)

200

180

160

140

120

100

80

60

40

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.10. Matching time vs |E(Q)| of strong simulation (k = 3). (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

4 6 8 10

E↼Q↽

(a)

4 6 8 10
E↼Q↽

(b)

4 6 8 10

E↼Q↽

(c)

M
a
tc

h
in

g
 T

im
e
 (

s)

70

60

50

40

30

20

10

0

M
a
tc

h
in

g
 T

im
e
 (

s)

90

80

70

60

50

40

30

20

10

M
a
tc

h
in

g
 T

im
e
 (

s)

120

100

80

60

40

20

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.11. Matching time vs |E(Q)| of strict simulation (k = 3). (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

1198 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

4 6 8 10

E↼Q↽

(a)

4 6 8 10

E↼Q↽

(b)

4 6 8 10

E↼Q↽

(c)

M
a
tc

h
in

g
 T

im
e
 (

s)

70

60

50

40

30

20

10

0

M
a
tc

h
in

g
 T

im
e
 (

s)

90

80

70

60

50

40

30

20

10

M
a
tc

h
in

g
 T

im
e
 (

s)

100

90

80

70

60

50

40

30

20

10

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.12. Matching time vs |E(Q)| of tight simulation (k = 3). (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

Next, we evaluate the running time of subgraph

pattern matching while varying the parameter k. The

time cost increases with k varying from 2 to 5 in the

three subgraph pattern matching models, as shown in

Fig.13–Fig.15. The method Part Eff, which uses the

cost-model based label generalization method and up-

loads G0 to cloud, has better performance than other

methods in all three datasets. It demonstrates the su-

periority of our cost-model based generalization method

as well.

Fig.16(a) and Fig.16(b) show the comparison of

running time of different subgraph pattern match-

ing models while varying the parameter |E(G0)|

and k separately. We perform the experiments on

Brightkite edges. The time increases as |E(Q)| varies

from 4 to 10 in Fig.16(a) and Fig.16(b), and the time

increases with k varying from 2 to 5. Because of the

high cost of ball creation in strong simulation, strong

simulation is slower than strict simulation and tight

simulation in both Fig.16(a) and Fig.16(b). And we

2 3 4 5
k

(a)

2 3 4 5
k

(b)

2 3 4 5

k

(c)

M
a
tc

h
in

g
 T

im
e
 (

s)

120

100

80

60

40

20

0

M
a
tc

h
in

g
 T

im
e
 (

s)

180

160

140

120

100

80

60

40

20

M
a
tc

h
in

g
 T

im
e
 (

s)

200

180

160

140

120

100

80

60

40

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.13. Matching time vs k of strong simulation (|E(Q)| = 6). (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

2 3 4 5

k

2 3 4 5

k

(a) (b) (c)

2 3 4 5

k

M
a
tc

h
in

g
 T

im
e
 (

s)

70

60

50

40

30

20

10

0

M
a
tc

h
in

g
 T

im
e
 (

s)

110

100

90

80

70

60

50

40

30

20

M
a
tc

h
in

g
 T

im
e
 (

s)

110

100

90

80

70

60

50

40

30

20

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.14. Matching time vs k of strict simulation (|E(Q)| = 6). (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1199

2 3 4 5

k

(a)

2 3 4 5

k

(b)

2 3 4 5

k

(c)

M
a
tc

h
in

g
 T

im
e
 (

s)

60

50

40

30

20

10

0

M
a
tc

h
in

g
 T

im
e
 (

s)

100

90

80

70

60

50

40

30

20

10

M
a
tc

h
in

g
 T

im
e
 (

s)

100

90

80

70

60

50

40

30

20

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.15. Matching time vs k of tight simulation (|E(Q)| = 6). (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

4 6 8

Strong Simulation
Strict Simulation
Tight Simulation

Strong Simulation
Strict Simulation
Tight Simulation

10

E↼Q↽

(a)

2 3 4 5
k

(b)

M
a
tc

h
in

g
 T

im
e
 (

s)

100

80

60

40

20

M
a
tc

h
in

g
 T

im
e
 (

s)

100

80

60

40

20

Fig.16. Comparison of matching time with different models.

can clearly find out that tight simulation spends less

running time compared with other pattern matching

models.

Time Cost of Result Processing in the Client. At

last, we evaluate the performance of four methods in-

volving result processing in the client side while varying

parameters k and |E(Q)| respectively. The difference

between different models is small since the result pro-

cessing time with different models is small compared

with matching time. Thus we only present the result

processing time via strong simulation.

According to Fig.17, the result processing time in-

creases with k varying from 2 to 5 for all four meth-

ods, since the client needs to filter out more noise

edges when k becomes larger. Note that both All Ran

and All Eff upload Gk to cloud, the step to obtain

2 3 4 5

k

(a)

2 3 4 5

k

(b)

2 3 4 5

k

(c)

R
e
su

lt
 P

ro
c
e
ss

in
g
 T

im
e
 (

s) 30

25

20

15

10

5 R
e
su

lt
 P

ro
c
e
ss

in
g
 T

im
e
 (

s)

R
e
su

lt
 P

ro
c
e
ss

in
g
 T

im
e
 (

s)30

28

26

24

22

20

18

16

14

80

70

60

50

40

30

20

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.17. Result processing time vs k (|E(Q)| = 6). (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

1200 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

r(Q0, Gk) on the basis of r(Q0, G0) together with Fki

(i = 1, 2, ..., k − 1) can be omitted. Thus, the time

costs of result processing with All Ran and All Eff are

smaller than those of the other two methods. However,

the method Part Eff that uses our cost-model based

label generalization method still performs better than

Part Ran.

The result processing time increases with |E(Q)|

varying from 4 to 10, as shown in Fig.18. The rea-

son lies in that the search space will become larger

for the filtering process when |E(Q)| increases. Sim-

ilarly, the time costs of All Ran and All Eff are smaller

than those of other two methods. However, the gap is

smaller compared with the time cost of pattern match-

ing. As shown in Table 5, Part Eff runs faster than

the other three methods in terms of the overall running

time either in all subgraph pattern matching models.

The overall running time of tight simulation is always

slightly better than that of strict simulation. Note that

the overall running time consists of the subgraph pat-

tern matching time in cloud and the result processing

time in the client side.

6 Conclusions

In this paper, we provided a privacy-preserving

framework for multiple subgraph pattern matching

models including strong simulation, strict simulation,

and tight simulation in public cloud. Without losing

utility, the framework protects structural and label pri-

vacy of both data graphs and pattern graphs. In this

framework, a directed graph is transformed to an “undi-

rected” graph by adding noise edges, so that the k-

automorphism model based method can be applied to

protect structural privacy in data graphs. We also ap-

plied a cost-model based label generalization method to

protect label privacy in both data graphs and pattern

graphs. Due to the k-symmetry in a k-automorphic

graph, we only uploaded the outsourced graph to cloud

to decrease the time cost of subgraph pattern match-

ing in cloud. We conducted our experiments on three

real-world datasets and the results showed that the pro-

posed framework can well preserve the privacy of data

graph and has greater performance in time cost.

4 6 8 10

E↼Q↽

(a)

4 6 8 10

E↼Q↽

(b)

4 6 8 10

E↼Q↽

(c)

R
e
su

lt
 P

ro
c
e
ss

in
g
 T

im
e
 (

s) 30

25

20

15

10

5 R
e
su

lt
 P

ro
c
e
ss

in
g
 T

im
e
 (

s) 32

30

28

26

24

22

20

18

16

14 R
e
su

lt
 P

ro
c
e
ss

in
g
 T

im
e
 (

s) 80

70

60

50

40

30

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

All_Ran
All_Eff
Part_Ran
Part_Eff

Fig.18. Result processing time vs |E(Q)| (k = 3). (a) p2p-Gnutella08. (b) Brightkite edges. (c) Web-NotreDame.

Table 5. Overall Running Time (s) (|E(Q)| = 6 and k = 3)

Method Model p2p-Gnutella08 Brightkite edges Web-NotreDame

Part Eff Strong 40.00 79.02 119.05

Strict 26.69 51.50 81.50

Tight 24.46 47.70 71.70

Part Ran Strong 49.10 91.15 140.22

Strict 32.94 60.70 94.77

Tight 30.72 58.22 84.90

All Eff Strong 56.02 98.93 160.89

Strict 35.47 65.66 100.00

Tight 32.10 64.13 93.88

All Ran Strong 70.12 114.42 181.56

Strict 45.65 80.36 115.39

Tight 45.16 79.48 109.67

Jiu-Ru Gao et al.: Efficient Framework for Multiple Subgraph Pattern Matching Models 1201

References

[1] Lu H, Chang Y. Mining disease transmission networks from

health insurance claims. In Proc. the 2017 International

Conference on Smart Health, June 2017, pp.268-273.

[2] Ray B, Ghedin E, Chunara R. Network inference from mul-

timodal data: A review of approaches from infectious dis-

ease transmission. Journal of Biomedical Informatics, 2016,

64: 44-54.

[3] Balsa E, Pérez-Solà C, Dı́az C. Towards inferring commu-

nication patterns in online social networks. ACM Trans.

Internet Techn., 2017, 17(3): Article No. 32.

[4] Yin H, Zhou X, Cui B, Wang H, Zheng K, Hung N Q V.

Adapting to user interest drift for POI recommendation.

IEEE Trans. Knowl. Data Eng., 2016, 28(10): 2566-2581.

[5] Yin H, Hu Z, Zhou X, Wang H, Zheng K, Hung N Q V,

Sadiq S W. Discovering interpretable geo-social communi-

ties for user behavior prediction. In Proc. the 32nd IEEE

International Conference on Data Engineering, May 2016,

pp.942-953.

[6] Xie M, Yin H, Wang H, Xu F, Chen W, Wang S. Learning

graph-based POI embedding for location-based recommen-

dation. In Proc. the 25th ACM International Conference on

Information and Knowledge Management, October 2016,

pp.15-24.

[7] Yin H, Wang W, Wang H, Chen L, Zhou X. Spatial-aware

hierarchical collaborative deep learning for POI recom-

mendation. IEEE Trans. Knowl. Data Eng., 2017, 29(11):

2537-2551.

[8] Aggarwal C C, Wang H. Managing and Mining Graph Data.

Spring, 2010.

[9] Gallagher B. Matching structure and semantics: A survey

on graph-based pattern matching. In Proc. the 2006 AAAI

Fall Symposium on Capturing and Using Patterns for Ev-

idence Detection, October 2006, pp.45-53.

[10] Henzinger M R, Henzinger T A, Kopke P W. Computing

simulations on finite and infinite graphs. In Proc. the 36th

Annual Symposium on Foundations of Computer Science,

October 1995, pp.453-462.

[11] Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y. Graph pattern

matching: From intractable to polynomial time. Proceed-

ings of the VLDB Endowment, 2010, 3(1): 264-275.

[12] Brynielsson J, Högberg J, Kaati L, Mårtenson C, Svenson

P. Detecting social positions using simulation. In Proc. the

2010 International Conference on Advances in Social Net-

works Analysis and Mining, August 2010, pp.48-55.

[13] Ma S, Cao Y, Fan W, Huai J, Wo T. Strong simula-

tion: Capturing topology in graph pattern matching. ACM

Trans. Database Syst., 2014, 39(1): Article No. 4.

[14] Fard A, Nisar M U, Ramaswamy L, Miller J A, Saltz M.

A distributed vertex-centric approach for pattern matching

in massive graphs. In Proc. the 2013 IEEE International

Conference on Big Data, October 2013, pp.403-411.

[15] Fard A, Nisar M U, Miller J A, Ramaswamy L. Distributed

and scalable graph pattern matching: Models and algo-

rithms. International Journal of Big Data, 2014, 1(1): 1-14.

[16] Fan W, Li J, Ma S, Tang N, Wu Y. Adding regular expres-

sions to graph reachability and pattern queries. In Proc. the

27th International Conference on Data Engineering, April

2011, pp.39-50.

[17] Chang Z, Zou L, Li F. Privacy preserving subgraph match-

ing on large graphs in cloud. In Proc. the 2016 International

Conference on Management of Data, June 2016, pp.199-

213.

[18] Zou L, Chen L, Özsu M T. K-automorphism: A general

framework for privacy preserving network publication. Pro-

ceedings of the VLDB Endowment, 2009, 2(1): 946-957.

[19] Tai C, Tseng P, Yu P S, Chen M. Identity protection in se-

quential releases of dynamic networks. IEEE Trans. Knowl.

Data Eng., 2014, 26(3): 635-651.

[20] Liu K, Terzi E. Towards identity anonymization on graphs.

In Proc. the ACM SIGMOD International Conference on

Management of Data, June 2008, pp.93-106.

[21] Zhou B, Pei J. Preserving privacy in social networks

against neighborhood attacks. In Proc. the 24th Interna-

tional Conference on Data Engineering, April 2008, pp.506-

515.

[22] Li J, Xiong J, Wang X. The structure and evolution of large

cascades in online social networks. In Proc. the 4th Interna-

tional Conference on Computational Social Networks, Au-

gust 2015, pp. 273-284.

[23] Hay M, Miklau G, Jensen D et al. Resisting structural re-

identification in anonymized social networks. VLDB, 2010,

19(6): 797-823.

[24] Cheng J, Fu A W, Liu J. K-isomorphism: Privacy preserv-

ing network publication against structural attacks. In Proc.

the ACM SIGMOD International Conference on Mana-

gement of Data, June 2010, pp. 459-470.

[25] Wu W, Xiao Y, Wang W et al. K-symmetry model for iden-

tity anonymization in social networks. In Proc. the 13th In-

ternational Conference on Extending Database Technology,

March 2010, pp.111-122.

[26] Liu K, Terzi E. Towards identity anonymization on graphs.

In Proc. the ACM SIGMOD International Conference on

Management of Data, June 2008, pp.93-106.

[27] Tai C H, Yu P S, Yang D H, Chen M S. Privacy preserv-

ing social network publication against friendship attacks.

In Proc. the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, August 2011,

pp.1262-1270.

[28] Chen S, Zhou S. Recursive mechanism: Towards node

differential privacy and unrestricted joins. In Proc. the

ACM SIGMOD International Conference on Management

of Data, June 2013, pp.653-664.

[29] Zhu T, Li G, Zhou W, Yu P S. Differentially private data

publishing and analysis: A survey. IEEE Trans. Knowl.

Data Eng., 2017, 29(8): 1619-1638.

[30] Qian Q, Li Z, Zhao P et al. Publishing graph node strength

histogram with edge differential privacy. In Proc. the 23rd

International Conference Database Systems for Advanced

Applications, May 2018, pp.75-91.

[31] Sala A, Zhao X, Wilson C et al. Sharing graphs using dif-

ferentially private graph models. In Proc. the 11th ACM

SIGCOMM Internet Measurement Conference, November

2011, pp.81-98.

[32] Chen R, Fung B C, Yu P S et al. Correlated network data

publication via differential privacy. VLDB, 2014, 23(4):

653-676.

1202 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

[33] Zhang J, Cormode G, Procopiuc C M et al. Private release

of graph statistics using ladder functions. In Proc. the 2015

ACM SIGMOD International Conference on Management

of Data, May 2015, pp.731-745.

[34] Ullmann J R. An algorithm for subgraph isomorphism. J.

ACM, 1976, 23(1): 31-42.

[35] Yuan Y, Wang G, Chen L et al. Efficient subgraph simila-

rity search on large probabilistic graph databases. VLDB,

2012, 5(9): 800-811.

[36] Yuan Y, Wang G, Xu J Y et al. Efficient distributed sub-

graph similarity matching. VLDB, 2015, 24(3): 369-394.

[37] Gao J, Xu J, Liu G et al. A privacy-preserving frame-

work for subgraph pattern matching in cloud. In Proc. the

23rd International Conference on Database Systems for

Advanced Applications, May 2018, pp.307-322.

[38] Karypis G, Kumar V. Analysis of multilevel graph parti-

tioning. In Proc. the 1995 ACM/IEEE Conference on Su-

percomputing, December 1995.

[39] Karypis G, Kumar V. Multilevel k-way partitioning scheme

for irregular graphs. Journal of Parallel and Distributed

computing, 1998, 48(1): 96-129.

Jiu-Ru Gao received her B.S. degree

in computer science and technology

from Changshu Institute of Technology,

Changshu, in 2016. She is currently a

M.S. candidate in Soochow University,

Suzhou. Her research interests include

data mining, data analysis and graph

computing.

Wei Chen is a lecturer at the School

of Computer Science and Technology,

Soochow University, Suzhou. He got

his Ph.D. and M.S. degrees in com-

puter science and technology from

the Soochow University, Suzhou. His

research interests include data mining

and spatial-temporal database. text

Jia-Jie Xu is an associate profes-

sor at the School of Computer Science

and Technology, Soochow University,

Suzhou. He got his Ph.D. and M.S. de-

grees in computer science from the Swin-

burne University of Technology, Victo-

ria, and the University of Queensland,

Brisbane, in 2011 and 2006 respectively.

Before joining Soochow University in 2013, he worked as

an assistant professor in the Institute of Software, Chinese

Academy of Sciences, Beijing. His research interests mainly

include spatio-temporal database systems, big data analy-

tics and workflow systems.

An Liu is a professor in the Depart-

ment of Computer Science and Techno-

logy at Soochow University, Suzhou. He

received his Ph.D. degree in computer

science from both City University of

Hong Kong (CityU), Hong Kong, and

University of Science and Technology

of China (USTC), Hefei, in 2009. His

research interests include spatial databases, crowdsourc-

ing, recommender systems, data security and privacy, and

cloud/service computing.

Zhi-Xu Li is an associate profes-

sor in the School of Computer Science

and Technology at Soochow University,

Suzhou. He worked as a research fel-

low at King Abdullah University of Sci-

ence and Technology, Thuwal. He re-

ceived his Ph.D. degree in computer sci-

ence from the University of Queensland,

Brisbane, in 2013, and his B.S. and M.S. degrees in com-

puter science from Renmin University of China, Beijing, in

2006 and 2009 respectively. His research interests include

data cleaning, big data applications, information extraction

and retrieval, machine learning, deep learning, knowledge

graph and crowdsourcing.

Hongzhi Yin received his Ph.D. de-

gree in computer science from Peking

University, Beijing, in 2014. His re-

search interests include recommender

system, user profiling, topic models,

deep learning, social media mining, and

location-based services. He has pub-

lished more than 30 papers in the most

prestigious journals and conferences such as SIGMOD,

KDD, VLDB, ICDE, the IEEE Transactions on Knowledge

and Data Engineering, the ACM Transactions on Informa-

tion Systems, the ACM Transactions on Intelligent Systems

and Technology, and the ACM Transactions on Knowledge

Discovery from Data. In addition, he has one monograph

published by Springer. He is an ARC DECRA Fellow with

the University of Queensland, Brisbane.

Lei Zhao is a professor in the School

of Computer Science and Technology at

Soochow University, Suzhou. He re-

ceived his Ph.D. degree in computer sci-

ence from Soochow University, Suzhou,

in 2006. His research focuses on graph

databases, social media analysis, query

outsourcing, parallel and distributed

computing. His recent research is to analyze large graph

database in an effective, efficient, and secure way.

