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Abstract Heterogeneous information network (HIN)-structured data provide an effective model for practical purposes in
real world. Network embedding is fundamental for supporting the network-based analysis and prediction tasks. Methods
of network embedding that are currently popular normally fail to effectively preserve the semantics of HIN. In this study,
we propose AGA2Vec, a generative adversarial model for HIN embedding that uses attention mechanisms and meta-paths.
To capture the semantic information from multi-typed entities and relations in HIN, we develop a weighted meta-path
strategy to preserve the proximity of HIN. We then use an autoencoder and a generative adversarial model to obtain
robust representations of HIN. The results of experiments on several real-world datasets show that the proposed approach
outperforms state-of-the-art approaches for HIN embedding.

Keywords

1 Introduction

Network embedding focuses on the learning of a low-
dimensional representation that reflects the core infor-
mation of a network. It is used in several network-
based applications, such as visualization, node classi-
fication, and link prediction and recommendation!*.
Current methods of network embedding often incor-
porate structural information to embed homogeneous
networks. However, large-scale heterogeneous informa-
tion network (HIN), including social network, academic
network and biomedical network, is becoming ubiqui-
tous in the real world. The various types of nodes and
edges carry rich semantics other than basic structural
information. Prevalent methods of network embedding
are limited to learning the representation of HIN be-
cause they cannot preserve network semantics. HIN-

heterogeneous information network, network embedding, attention mechanism, generative adversarial network

based applications often use meta-paths to overcome
the lack of semantics?. Meta-path!® is a recently pro-
posed proximity model in HIN that consists of different
paths between nodes. Inspired by this, several methods
of HIN embedding have been proposed. They use meta-
paths to preserve semantic and structural information
in the process of HIN embedding?—¢l.

Although the above approaches to HIN embedding
perform well on a number of tasks, they suffer from the
following drawbacks.

1) Insensitivity to Semantics of Meta-Paths. To ob-
tain stable and robust HIN embedding, the semantics
of multiple meta-paths must be integrated[1’5’7]. Dur-
ing this integration, as the significance of various meta-
paths can be relatively different, their weights need to
be carefully decided. For example, if we consider the
collaboration between two authors of an article, they
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may be very tightly tied to their paper and loosely
tied to the conferences at which they present. How-
ever, considering the general relationship between the
authors, they may have relatively stronger ties to the
conferences in which both have presented. A question
then arises: which types of relations should we use
to capture the proximity between two authors? Diffe-
rent meta-paths lead to different author-connection net-
works, which may lead to different proximity for embed-
ding results. Prevalent methods usually treat different
meta-paths equally. This is not reasonable for most
large-scale heterogeneous information networks.

2) Lack of Additional Constraints for HIN Embed-
ding. Recent work on HIN embedding is effective in
semantic and structural preservation by using different
well-designed objectives. However, it suffers from inad-
equate constraints on the distribution of embedding!®!.
Considering the method in [9] as an example, it calcu-
lates the truncated proximity of HIN by using meta-
paths, and obtains the prior joint probability p(v;,v;)
between nodes v; and v;. To learn the low-dimensional
representation u; (or u;) of node v; (or v;), the method
simply minimizes the distance between these proba-
bility distributions p(v;,v;) and p(u;, u;). This implies
that p(u,, u;) can be very irregular, and can lead to dif-
ficulty in generating new samples, or can even render
this unfeasible.

To overcome these challenges, we propose a novel
model based on attention mechanisms!*® and genera-
tive adversarial networks'!! to embed HIN into a low-
dimensional vector space, called AGA2Vec. Specifi-
cally, AGA2Vec contains the following two main em-
bedding mechanisms.

1) Integrated Semantics for Embedding. It is the
first mechanism that aims to dynamically capture the
weights of different meta-paths and to preserve the
proximity of HIN via meta-path propagation. HIN-
based methods usually achieve user-guided semantics.
With user-guidance, a model will be able to learn
the most appropriate meta-paths or their weighted
However, current methods of net-
work embedding often use the unsupervised or semi-
supervised models, and some studies that add the user-
guided semantics into the training are challenging. To

combinations(!2!.

solve this problem, we use attention mechanisms to
learn the weights of different meta-paths in the training
process, which is inspired by the recent progress of the
attention mechanism for machine translation%,

2) Enhanced Regularization for Embedding. That

is another way to focus on learning the robust repre-
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sentations of nodes via generative adversarial networks
(GANs)!M. Specifically, we design a generator via the
semantic-based autoencoder that tries to simulate the
potential interrelations of nodes and constructs the rep-
resentations for these nodes. We use a discriminator to
determine whether a sample originates from the real
distribution or the low-dimensional representations of
the network. Enhanced regularization effectively re-
duces the amount of information that may be lost in
the decoding, enabling the model to learn a stable and
HIN embedding
is capable of capturing both local and global seman-
tic information in the embedding vectors. Note that
each dimension of the embedding vectors is a distri-
bution over entities, and is able to preserve the user-
guided semantics. Overall, to incorporate the advan-
tage of attention-based weight learning and adversar-
ial regularization, we propose AGA2Vec that makes
good use of the virtues of multiple meta-paths that can
describe the semantic relationship and extract feature
information between entities to capture semantic and
structural information in vector spaces. We compare

robust representation of the data.

AGA2Vec with several state-of-the-art approaches on
both empirical and synthetic datasets, and obtain im-
provements that demonstrate the usefulness of our ap-
proach for HIN embedding. AGA2Vec incorporates the
attention mechanisms and generative adversarial learn-
ing simultaneously in the studies of HIN embedding.
The main contributions of our paper can be summa-
rized as follows.

e We show that the weights of meta-paths in an
HIN can influence the performance of HIN embedding,
and propose an attention-based approach to learn the
weights in the embedding process. It is flexible for
weighted meta-path proximity.

e We leverage adversarial mechanisms to impose a
prior distribution on the embedding space, and to learn
stable and robust HIN embedding.

e We extensively prove our model through various
heterogeneous network mining tasks on three datasets
and a case study. The results show the effectiveness and
robust improvements in comparison with other state-of-
the-art methods.

2 Related Work
2.1 HIN Embedding

Several methods of network embedding have been
recently developed from different perspectives!!3].
ever, many such studies have focused only on

How-
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learning node vectors in homogeneous information
networks!14-17,

claimed that their approaches can capture the embed-

Moreover, while all these researchers

ded structures of information networks, those models
tend to consider only aggregated information among
nodes or limited types of relationsl®. For example,
GraphGAN! captures the nearby neighborhood of
each node by breadth-first search (BFS). BHONEM!I!®!
sets a binary higher-order method based on domain
knowledge and designs an objective function by neu-
ral networks.

Although general network embedding methods can
be applied by treating every node in the networks as
the same type, developing more dedicated methods for
modelling the heterogeneous types of nodes and rela-
tions in a unified manner is still an interesting and chal-
lenging problem¥. Through several studies!*:4~6:19.20]
on HIN embedding have been proposed, some only fo-
cus on the limited-types of meta-paths of nodes. For
example, SHINE®! and HNE[9:21] Jearn the representa-
tions of nodes by capturing one-hop neighborhood rela-

(4.5.7.22] tand to pre-

tions between nodes. Some models
serve the different meta-paths between nodes, but ig-
nore the weights of different meta-paths. Only HINE!!
tries to normalize weights of multi-typed meta-paths
and captures different semantics between nodes. How-
ever, it relies heavily on user-guidance to determine
a user-given meta-path set and the frequency of each
meta-path for embedding. Moreover, some parts of
its objective function include calculating the frequency
normalized weight, and this negatively affects the time
complexity. The attention mechanism provides a new
approach to solving the weight problem, which focuses
on the most pertinent information for global informa-
tion. Recent work[®324 uses node- or semantic-level
attention to embed the HIN. However, [23, 24] need to
embed each meta-path before attention and the specific
task. Meta—graph[%] is currently the most powerful ap-
proach to measuring the proximity in HIN. [26] advo-
cates a metagraph concept to capture richer structural
contexts and semantics between distant nodes, and uses
metagraph to guide the generation of random walks and
to learn latent embeddings of multi-typed HIN nodes.
[27] combines the meta-graph and the meta-path to
obtain node embedding, but they ignore the comple-
xity of matrix factorization in HINI. However, current
relevance work based on meta-graph only considers the
complex structural information and takes the problem
of computation complexity. In the HIN relevance tasks,
we select the meta-path or meta-graph as a tool accord-

ing to our demand analysis.

2.2 Generative Adversarial Networks

Recent advances in generative adversarial networks
(GANs)M have shown that they are a powerful frame-
work to learn complex data distributions.
idea can be formulated as a minimax-game, in which
the generator aims to match data samples from some
prior distributions to the data space, while the discrim-
inator is dedicated to distinguishing fake samples from

The core

the real datal8l. GANs have been successfully applied to
computer vision, such as in image classification(28! and

(29.30]  However, few attempts have

image generation
been made to apply GANs to representation learning
owing to a lack of explicit structure for inference. By
projecting samples in the original data space back into
the space of latent features, EBGAN, BiGAN and ALI
can learn robust representations in many applications,
such as image classification and document retrievall®.
DCGANSs can learn expressive image representations
from both the generator and the discriminator net-
Some mod-
els use the adversarial learning process to regularize
the representations. One successful practice is the use
of the GraphGANI4! and ANEP!, both of which can
learn powerful representations from network data with-
out any supervision. However, these methods are not
directly suitable for learning HIN representations be-
cause of a lack of semantic preservation.

works based on convolutional layers3!.

3 Problem Definition and Notations

In this section, we formally introduce the prelimi-
nary concepts, and define the problem of HIN embed-
ding.

Definition 1. An HIN is defined as a typed graph
G = (V,E,¢,9,w), where V is the set of nodes, E C
V x V s the set of edges in V, ¢ : V. — O and
Y E — R are the type-mapping functions for nodes
and edges, respectively, and w is the set of weights in
E. Each object v € V belongs to a node type ¢p(v) € O,
and each edge e € E belongs to an edge type (e) € R.
When |O] + |R| > 1, the network is called an HIN; oth-
erwise, it is a homogeneous information network. Fig.1
tllustrates a toy HIN.

Definition 2. In an HIN, two nodes can be interre-
lated via different semantic paths called meta-paths?,
which are defined as follows.
quence of node types ai,ag,- - ,a, and/or edge types
sTn—1, P = Q1 i> a l> N7 L> 71)1

Meta-path p s a se-

1,72,
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an. When Yi = 1,---i,--,n,a; = ¢(v;) and r; =
Y(vi, vit1), an instance of the meta-path is a path | that
passes through nodes vy,va, -+, Up.

Topic Author Venue

Mention

///
\ //’ 4
’
> ’
e N 4
- Nz
>
~ 20N
~ N
~
! o

Fig.1. Toy heterogeneous cite network schema with three types
of objects: topics, authors, and venues.

Example 1. Owing to the heterogeneity in an HIN,
the meta-path consists of various edge types that may
not fully align with one another. Different meta-paths
lead to different author relation graphs, which in turn
may lead to different underlying semantics. In Fig.2(a),
authors are connected through topics and form two
facets: a1, ag, ag and a4, as; in Fig.2(b), authors are
connected through venues and form two different facets:
a1, as, ay and as, az, as. By contrast, in Fig.2(c), a
connection graph combining both meta-paths generates
one semantic: ag, as.

\ l
\
+ N/
\ 7
R -
v/
~ -

(a) (b)

Fig.2. Example author-relations networks under different meta-
paths. (a) ATA. (b) AVA. (c) ATA + AVA.

Definition 3. A meta-path based proximity ma-
triz captures various transition probabilities in an HIN.
Given an example of meta-path p, Ac RLV‘XM
adjacency matrixz of HIN used to preserve the first-order
prozimityl*® of the network. We can define the tran-
sition matriz A € R‘plelv‘
is the probability of a transition from mode v; to node
v; within one or t steps in the meta-path p. A based
on different meta-paths can preserve k-order proximity

5 an

, where each element A;

between nodes v; and v;.
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Ezxample 2. For the toy HIN in Fig.1, we choose a
meta-path “ATA” and nodes “ai”, “as”, “az” and “t;”
as an example. The “ATA”-based matrices Aand A
are formulated as follows.

a1a2a3t1
- ap [0 0 0 1
AATAZ an 0 0 01 s
az| 0 0 0 1
t1\1 1 10
ar az az ty
ar [0 1/31/3 0
Apra= az | 1/3 0 1/3 0

as | 1/31/3 0 0
t \1/31/31/3 0

Definition 4. Given HIN G and a meta-path p,
HIN embeddding aims to learn a function f, : V — R4
that projects each node v € V to a low-dimensional
space, where the dimension d < |V|. The problem of
embedding learning from all meta-paths in HIN involves
learning of the corresponding function f = @, m,f,-
Note that for different node types, the corresponding f,
might have different dimensions by definition. The de-
termination of quality weights ™ for meta-paths is cru-
cial for a particular HIN embedding.

4 Proposed Model

To address the problem of embedding learning from
meta-paths in HIN, we propose a flexible framework
to distinguish the semantic information regarding each
meta-path.
overview of the proposed AGA2Vec, and then formulate
our method of HIN embedding using an attention-based

In this section, we first provide a brief

generative adversarial model.

4.1 Overview of Framework

As shown in Fig.3, AGA2Vec consists of three com-
ponents: an attention-based meta-path decider, an
autoencoder-based generator, and an adversarial learn-
ing component. Let vector X, be a column in each Ay,
for k =1,2,--- , K, which denotes the k-th meta-path
based semantic and the structural information for node
v;. The attention-based meta-path decider attempts
to preserve the full information. The vector X; is the
original representation of the node v;, which consists of
all X;.. We place X; into an autoencoder, a standard
autoencoder consisting of encoder and decoder layers.
The encoder projects node X; into a latent vector Yj,
and the decoder reconstructs the data points of each
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Fig.3. Architecture and dataflow of AGA2Vec. AGA2Vec includes an attention-based decider, an autoencoder-based generator and a
discriminator. Nodes marked in red, orange, purple, blue and brown represent the different types of nodes. Green dots represent the

embedding vector.

input as a vector )/(\Z Then, the adversarial learning
component regularizes the generated Y; by matching
the aggregated posterior, which helps enhance the ro-
bustness of representation Y;.

4.2 Attention-Based Meta-Path Decider

To integrate meta-path information objectively and
to preserve the semantics between nodes, we learn the
quality weight for each meta-path by using the atten-
For
node v;, X; is defined as the weighted summation of

tion mechanism and the matrix multiplication.

every vector X, k = 1,2,---, K, corresponding to
the meta-path index for each node. X; is formulated
as follows:

K
X; = Z)\ik - Xk
k=1

For each original vector X;; of node v;, we compute a
quality weight ;i that can be interpreted as the proba-
bility that X is assigned by a node. Intuitively, with
the learned proper weights \;i for each node, AGA2Vec
can obtain the most informative meta-paths. Follow-
ing recently proposed attention-based models for neu-
ral machine translation!’?!, we define the weight of the
k-th meta-path for a node using the softmax function
as follows:

97}0
€
Ak =——, =X, 0MO0oX]
! Zl]"g1 eejk’ & Zk@ © v

X! = iix-k
Kk:l

where X! is the average value of different meta-path
based transition vectors for node v; that can preserve
the global semantic and the structural information.
M e RIVIXIVI is the matrix used to match the rele-
vance between global information X/ and each meta-
path-based transition vector X of node v;, which is
learned as part of the training process. If X;; and X/
have a large dot product, node v; believes that meta-
path k is an informative link, and the weight of meta-
path & for node v; is large.

4.3 Autoencoder-Based Generator

Having obtained the robust node original represen-
tation X; € RIVI, we adopt a deep autoencoder to learn
a low-dimensional node embedding. An autoencoder as
a generator performs an encoding step, followed by a de-
coding step. In the former, a function f(-) is applied to
the original representation X; in the input space and
f() sents X; to a new feature space. An activation
function is typically used in this process to model non-
linearities between the vector spaces. In the decoding
step, a reconstruction function ¢(-) is used to recon-
struct the original input vectors back from the R¢ space.
)/(\i is the reconstructed vector representation. Follow-
ing training, representations of the bottleneck layer Y;
can be considered as a low-dimensional embedding of
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the input node v;.

This autoencoder is trained to minimize the recon-
struction error. Therefore, we reduce the distance be-
tween vectors X,; and )/(\, However, there are a limited
number of links in the real-world networks, which can
lead to network sparsity®?l. As a result, the number of
zero elements in the adjacency matrix A is much greater
than that of the non-zero elements for an input node
v;, which may degrade the reconstruction performance.
Following the work in [32], we choose Binary Cross En-
tropy with a value parameter as the objective function
to render the reconstructed embedding )/(\1 similar to
the target node embedding X;. Then, the unregular-
ized objective function of each instance v; is formulated
as follows:

Ji
V]
= —1/|VY (i log(iy) + (1 — @) log(1 — i),
J

where the value parameter (;; is used to calculate the
weight coefficient of the penalty imposed on each ele-
ment in A. If A;; # 0, (5 = wi; = 1; otherwise, (;; = 0.
To accumulate all nodes, the objective function can be
defined as follows:

V]

J=Y 1. (1)

With this objective function (1), global HIN structures
are preserved by latent representation. However, this
process is insufficient to embed the network by recon-
structing global structures only, as it ignores useful in-
[33]. Given a
pair of nodes v;,v; connected by a specific edge, these
nodes have a higher similarity. Intuitively, the simila-
rity between v; and v; in R?, which denotes the local
structures, is strongly constrained by the information of
the edge. We borrow the idea of Laplacian Eigenmaps
to capture the local HIN structures. Then, (1) can be

formation of the network local structures

rephrased as follows:

vi v
J(0) = ZJ(H% +ZQ‘J‘ 1 X - X 5. (2

The standard autoencoder is a powerful tool with mul-
tiple non-linear functions to learn data embedding.
The unsupervised autoencoder, however, is sensitive to
noisy network data that result in very different codes
for similar inputs because of the lack of constraint for
embedding distribution.

J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

4.4 Adversarial Learning

The adversarial learning component is employed to
regularize the naive representations from the generator.
An autoencoder comprises an encoder and a decoder,
both of which have their own set of learnable parame-
ters. The encoder is used to obtain a latent code Y;
from the input X,;, where the number of dimensions
of the latent code should be smaller than that of the
input. The decoder takes in this latent code and re-
constructs the original input. Adversarial learning is
employed to solve the problem of instability of the au-
toencoder by imposing an adversarial regularization on
representation of the bottleneck layer of it. And the
distribution of the latent code may then be shaped to
match a desired prior distribution. Adversarial learn-
ing can reduce the amount of information that may be
held in the encoding process, forcing the model to learn
a robust representation for HIN. In general, the gener-
ative adversarial model consists of a generator G(-) and
a discriminator D(-). Our main goal is to force Y; as
the output of the encoder to follow a given prior distri-
bution p(z). We use the encoder as our generator, and
the discriminator to ascertain if the samples are from
a prior distribution or from the output of the encoder.
G(-) and D(-) play the following two-player minimax-
game with a score function V (G, D):

min max V(G, D)
G D
= Ep(2)(log D(-)) + Eq(2)(log(1 = D(-))),  (3)

where p(z) is the distribution of real data samples, and
q(z) is the distributions of the encoded data samples.
In our work, the training of the general conventional
adversarial method in (3) is unstable. According to the
suggestion of improved WGANPB4 | we use the Wasser-
stein distance to define the overall objective function of
adversarial learning. The cost can be defined as follows:

min max V (G, D)
G D
= Epy) (DY) = Eqy) (1 — D(Y2)), (4)

where p(y) is the distribution of the edges, and q¢(y)
is the distributions of unobserved edges generated by
G(-). In detail, D(Y;) is the evaluation function that
calculates the trust score for a given edge e = v;,v;,
and D(Y;) can yield ¢/ = Y3, Y; € G(Y;) ~ po(vjl|vi).
A naive discriminator D(z,y) is a function (e.g, cosine
similarity) used to minimize the distance between the
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real probability distribution and that in the embedded
space. It can be formulated as follows:

rOyY
D(Zay) = COS(Zay) = M7

where z represents the original data and y € R? is their
latent representation of data. In an HIN, considering
the semantics and structures, we define the distance
between the prior probability distribution p(z) and the
resulting probability distribution g(x) as follows:

D() = - Z p1(vi,vj) log g1 (vi, vj5) —
(vi,vj)EE

Z pQ(Uiavj)log QQ(Uiavj)a (5)

(vi,vj)EE

where ¢ (v;,v;) is the transition probability between
the nodes v; and v; in the embedding space. The prior
probability is defined as pi(v;,v;) = wij.  q1(vi,v5)
is defined as qi(vi,vj) = l/e’YiTYJ‘. p2(vi,v5) =
wij) S wij, and ga(vi,vy) = e Y/ IV ¥ Yey,
Directly optimizing the objective function in (5) is
problematic because ¢2(v;,v;) needs to sum up all
nodes of the HIN. To address these problems, we adopt

negative sampling to optimize g¢o(v;,v;). Formally,
log g2(v;, v;) is rewritten as follows:
log ga(vs, v;)
M
= 1ogo(Y;"Y)) + ) By o (0)flos(-Y TV )
m=1

4.5 Model Training

We train our model AGA2Vec in a step-by-step
manner. 1) To train the generator, the encoder and
the decoder are trained simultaneously to minimize the
reconstruction loss as shown in (2). 2) The discrimina-
tor D is trained to effectively distinguish the true input
data z from the false space Y;, where the data are gene-
rated from the sample distribution and by minimizing
3) The final step is to force
the encoder to trick the discriminator by minimizing
another loss function represented by (4). Note that we

the loss function in (2).

connect the output of the encoder as the input to the
discriminator. To avoid over-fitting in the training pro-
cedure, we add the dropout layer to our model.

5 Experiments

In this section, we first introduce the datasets and
methods of comparison used in our experiments. We
then evaluate the proposed embedding methods on
three empirical datasets. We also discuss the exper-
imental results and investigate sensitivity across the
hyper-parameters.

5.1 Data and Evaluation Measures

We use the following three publicly available empir-
ical heterogeneous information network datasets.

e DBLP®D. 1t is the network used most frequently
in the study of HINs. It has four node types: Paper,
Author, Conference, Term, and four edge types: autho-
rOf, publishedIn, containsTerm, and cites.

° BlogC’atalog@. It is the network of blogs, includ-
ing blogger, blogs, and categories of blogs. There are
two relations: blogger-follow-blogger and the blogger
interest categories.

e TRE®. Tt is a medicine dataset integrating herbs,

symptoms, diseases, and their relations from traditional
Chinese medicine texts.
Of these methods, HIN-based methods need to specify
the meta-paths to be used. We present these meta-
paths in Table 1. Following [35], we only select short
meta-paths for the four steps because long meta-paths
are likely to introduce noisy semantics. We use diffe-
rent metrics to evaluate the different tasks. For cluster-
ing, we use normalized mutual information (NMI)['? to
evaluate the performance. For the link prediction, we
use mean average precision (MAP)[B? to evaluate the
performance. For the case study and the parameter
sensitivity, we use precision@k!33! to evaluate perfor-
mance.

Table 1. Selected Meta-Paths for Three Datasets in Trainning

Dataset Meta-Paths

DBLP AP, APA, AVA, APAPA, APVPA, APTPA,
VPAPV, VPTPV

BlogCatalog UU, UG, UGU, GUG

TRE HS, HD, DS, HSH, HDH, DSD, HSDSH

5.2 Baselines

We consider the following baselines to verify the
effectiveness and the robustness of the proposed
AGA2Vec:

G)https://dblp.uni—trier.de/xml/7 Oct. 2019.

@http://socialcomputing.asu.edu/datasets/BlogCatalog3, Oct. 2019.

@https://www.aminer.cn/tcmrelextr, Oct. 2019.
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36]. an approach to network embed-

e Deepwalkl
ding that converts the graph structure to linear se-
quences through fixed length random walks and learns
sequences with skip-gram;

e LINESl: an approach to network embedding that
maintains the first and the second order proximities be-
tween the nodes;

e SemNE!%): an order sensitive network embedding
method that integrates node order information and an-
notation data;

o Adversarial NE®!:

tural properties of the network and contributing to

aiming to capture the struc-

learning robust representations by matching the poste-
rior distribution of the latent representations with given
priors;

e HINEM: an HIN embedding approach to learning
the semantic representations of nodes via the Markov
random field and LDA;

o HIN2Vechl: a typical meta-path based HIN em-
bedding model that carries out multiple prediction
training tasks jointly based on a target set of relations
to learn the latent vectors of nodes and meta-paths.

Note that we set the parameters for the baselines to
get the best results in experiments.
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5.3 Node Clustering

For the node clustering task, we first learn node
embedding, and then execute the K-means clustering
algorithm based on the embedding. The results of clus-
tering on the DBLP, BlogCatalog and TRE datasets
are presented in Table 2. The results show that all
the embedding methods performed well on BlogCata-
log but comparatively worse on the other two datasets.
On all datasets, DeepWalk, LINE and SemNE achieved
similar results. Of all methods of homogeneous network
embedding (Deepwalk, LINE, SemNE, and Adversarial
NE), Adversarial NE significantly improved the perfor-
mance because of its adversarial learning. On DBLP
and TRE, HINE and HIN2Vec yielded similarly bet-
ter performances. Overall, we can see that AGA2Vec
outperformed all the other methods in the task of clus-
tering. AGA2Vec achieved an approximately 35.8%
improvement. This indicates that the weight of the
meta-path used in embedding makes models easy to
overfit on HIN. We also conduct specific comparisons
371 “data mining”,
“machine learning”, and “computer vision”, we quan-
titatively calculate the NMI of nodes being clustered
for each cluster. As shown in Fig.4(a), our model gene-

for clustering. Given the clusters!

Table 2. Performance Evaluation (NMI) of Node Clustering of Different Methods

Dataset Deepwalk LINE SemNE Adversarial NE HINE HIN2Vec AGA2Vec
DBLP 0.468 0.384 0.475 0.512 0.547 0.563 0.642
BlogCatalog 0.475 0.481 0.482 0.546 0.562 0.585 0.573
TRE 0.482 0.406 0.432 0.532 0.542 0.577 0.649
8 Deepwalk ! SemNE = HINE mm AGA2Vec 4
= LINE e Adversarial NE HIN2Vec —— Deepwalk
B 0 © —— LINE 4
0.7 © © @ /,,’
-2 B3 moog 3 —— SemNE 7.~
PR e F < —+— Adversarial NE 7
0.6 =] aed — S -0 w0
® i 3 ©wno w @235° —— HINE
< < S T2 n L5 —~
0.5 S @o = ;" i R ---- HIN2Vec
5 5 ] o ¢ 2| —— AGA2Vec
w 0.4 S S Q R=
: L, . s Z
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S 1
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01 =
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Mining Learning Vision 2 3 4 5 6
Clusters Log,, Nodes
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Fig.4. Comparison with baselines for specific clustering on DBLP and scalability testing on the TRE dataset. (a) Specific clustering
performance of AGA2Vec. (b) Scalability comparison with average degree of 10.
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rated the best performance. This indicates that it can
accurately capture the semantics and the structure of
nodes in low-dimensional vector spaces.

5.4 Link Prediction

We compare our methods with the baselines for the
link prediction task, and report the results in terms of
MAP scores. In this task, we want to predict whether
a pair of nodes should have had an edge connecting
them. Link prediction is useful in many domains, such
as in medicine networks where it helps predict drug
interaction at the molecular level. We first randomly
hid a portion of links from the input network. We used
different embedding methods to obtain the low dimen-
sional vector space of the remaining sub-HIN. We chose
the hidden edges between node pairs as positive sam-
ples. We also randomly sampled an equal number of
node pairs not directly connected as negative samples.
The similarity score between nodes in a sampled node
pair was calculated according to their representation
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between the labels and the similarity scores. Table 3
shows the experimental results of the link prediction
task. After hiding 10%, 20%, 40%, 50%, and 60% of
edges in an orderly manner from the original HIN, our
proposed embedding method AGA2Vec outperformed
other state-of-the-art baselines by approximately 6.5%
in DBLP, 9.9% in BlogCatalog and 5.0% in the TRE
dataset, which clearly shows that AGA2Vec is more ro-
bust against parse HIN.

5.5 Case Study

The case study involved herbs recommended for
given symptoms in TRE. The performance of the case
shows that node recommendation can adequately reveal
the quality of the learned representations. We provide
the qualitative results whereby the top-k herbs are cor-
responding to the symptom “anemopyretic cold” from
over thousands of herbs. We also compare the perfor-
mance of AGA2Vec and HINE for this recommenda-
tion. Table 4 shows the top-12 herbs to the symptom

vectors. We used MAP to measure the consistency “anemopyretic cold”, where the label assigned by the
Table 3. Performance Evaluation (MAP) on Link Prediction of Different Methods
Dataset Hiding Ratio (%) Deepwalk LINE SemNE Adversarial NE HINE HIN2Vec AGA2Vec
DBLP 10 0.812 0.801 0.803 0.815 0.832 0.838 0.845
20 0.807 0.794 0.795 0.804 0.830 0.831 0.841
40 0.771 0.783 0.790 0.797 0.824 0.829 0.835
50 0.701 0.712 0.714 0.751 0.769 0.772 0.810
60 0.612 0.623 0.626 0.701 0.712 0.726 0.783
BlogCatalog 10 0.779 0.785 0.792 0.806 0.823 0.831 0.832
20 0.772 0.781 0.787 0.799 0.817 0.828 0.829
40 0.732 0.737 0.729 0.763 0.801 0.804 0.818
50 0.603 0.597 0.612 0.656 0.722 0.726 0.771
60 0.573 0.553 0.581 0.620 0.692 0.702 0.753
TRE 10 0.763 0.761 0.765 0.815 0.846 0.850 0.857
20 0.761 0.757 0.762 0.812 0.843 0.847 0.851
40 0.741 0.732 0.745 0.748 0.757 0.765 0.779
50 0.591 0.597 0.603 0.607 0.621 0.626 0.631
60 0.498 0.501 0.532 0.573 0.594 0.613 0.612
Table 4. Top-k Similar Lists for Symptom “Anemopyretic Cold”
Rank Herb Score Label Herb Score Label
1 Goldenrod 0.10130 1 Mentha haplocalyx 0.3460 1
2 Honeysuckle 0.01640 1 Fructus arctii 0.0670 1
3 Chrysanthemum 0.01320 1 Picria felterrae 0.0662 1
4 Picria felterrae 0.01120 1 Quassia 0.0643 1
5 Quassia 0.00110 1 Herba laggerae 0.0641 1
6 Mentha haplocalyx 0.00640 1 Goldenrod 0.0601 1
7 Fennel 0.00430 0 Forsythia suspensa Vahl 0.0566 1
8 Dried tangerine peel 0.00210 0 Lonicera confusa DC. 0.0563 1
9 Clove 0.00130 0 Honeysuckle 0.0562 1
10 Forsythia suspensa Vah 0.00120 1 Chrysanthemum 0.0550 1
11 Lonicera confusa DC. 0.00104 1 Cicada slough 0.0540 1
12 Fructus arctii 0.00101 1 Folium mori 0.0529 1
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physician was used to determine whether the herb was
suited to this symptom. If correct, the value of the la-
bel was 1. HINE cannot generate a satisfactory top-12
list because it cannot adequately rank the top herbs
for the symptom, and cannot generate three incorrect
herbs. AGA2Vec provides a better list and ranks the
herbs more adequately according to the suitability. In
addition, we report the results of recommendation in
terms of the precision@Fk of our model and other meth-
ods on TRE. We present the performance comparison
of different methods in Fig.5. The results indicate that
the weights of the meta-path are effective in improv-
ing recommendation performance, and the proposed
AGA2Vec can effectively capture HIN semantics in a
more plausible way.

5.6 Parameter Sensitivity

We explore the sensitivity of the performance with
respect to the dimensions of latent representations,
suitable meta-path length [, and the trade-off para-
meter « that balances the weight of the first-order
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and the second-order proximities in HIN. We report
precision@k on DBLP.

1.0

0.9

0.8

0.7

0.6

precisionQk

0.5

—— AGA2Vec--- Adversarial NE — LINE

——HINE —SemNE — Deepwalk §
——HIN2Vec

0.4

0.3
100 500 1000 4000 6000 8000

Size of Samples

10000

Fig.5. Herbs recommendation based on symptoms.

Fig.6(a) shows the performance of our proposed
model with different dimensions. The results show

that increasing the number of dimensions improved the
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Fig.6. Effect of parameters: (a) embedding dimension d, (b) meta-path length [, and (c) trade-off parameter c.
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performance. However, when the number of dimen-
sions continuously increased, the performance started
to drop. A large number of dimensions might have
caused noises to degrade the performance. The perfor-
mance of our model, however, dropped slowly because
it took advantage of adversarial learning. To determine
whether the number of dimensions for the latent repre-
sentations needs a large quantity of testing tasks, our
method is not very sensitive to this parameter, which is
good for model application. From Fig.6(b), we observe
that slightly increasing the length can improve per-
formance. However, performance was degraded when
the length became too long. This result validates the
short-path theory[®®, and this indicates that our model
can generally capture more information than HINE. We
then show how the value of « affects the performance
in Fig.6(c). When o = 0, our model only captured
the global information of HIN. And, the larger o # 0,
the more the local information captured by our model.
Fig.6(c) shows that the performance of o = 0.3 was
superior to that of a = 0. It shows that both global
and local information is essential for HIN embedding
methods to preserve the structure of HIN.

5.7 Scalability

In order to illustrate its scalability, we applied
AGA2Vec to learn node representation on all datasets.
We computed the average runtime with increasing sizes
from 100 to 1000000 nodes and the average degree of
10. For each model, the average runtime comprises of
preprocessing for computing transition probabilities for
walk paths and the runtime of node embedding. In
Fig.4(b) we empirically observe that AGA2Vec scales
linearly with the increase in the number of nodes gener-
ating representations for one million nodes in less than
three hours. In order to speed up training the deep
model, we used GAN with negative sampling.

6 Conclusions

This paper proposed a method for HIN embedding
AGA2Vec. We first proposed a novel attention-based
decider to dynamically determine the weights of diffe-
rent meta-paths. We then proposed a naive node em-
bedding model based on the autoencoder, which is a
generator to integrate the meta-path information into
network embedding processes. Finally, we employed ad-
versarial learning to significantly and robustly improve
the results of naive embedding. The results of experi-
ments on clustering, link prediction, and a case study

on empirical datasets demonstrated the effectiveness of
the proposed AGA2Vec.
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