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Abstract Storage backends of parallel compute clusters are still based mostly on magnetic disks, while newer and faster

storage technologies such as flash-based SSDs or non-volatile random access memory (NVRAM) are deployed within compute

nodes. Including these new storage technologies into scientific workflows is unfortunately today a mostly manual task, and

most scientists therefore do not take advantage of the faster storage media. One approach to systematically include node-

local SSDs or NVRAMs into scientific workflows is to deploy ad hoc file systems over a set of compute nodes, which serve

as temporary storage systems for single applications or longer-running campaigns. This paper presents results from the

Dagstuhl Seminar 17202 “Challenges and Opportunities of User-Level File Systems for HPC” and discusses application

scenarios as well as design strategies for ad hoc file systems using node-local storage media. The discussion includes open

research questions, such as how to couple ad hoc file systems with the batch scheduling environment and how to schedule

stage-in and stage-out processes of data between the storage backend and the ad hoc file systems. Also presented are

strategies to build ad hoc file systems by using reusable components for networking and how to improve storage device

compatibility. Various interfaces and semantics are presented, for example those used by the three ad hoc file systems

BeeOND, GekkoFS, and BurstFS. Their presentation covers a range from file systems running in production to cutting-edge

research focusing on reaching the performance limits of the underlying devices.

Keywords parallel architectures, distributed file system, high-performance computing, burst buffer, POSIX (portable

operating system interface)
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1 Introduction

For decades, magnetic disks have served as the sto-

rage backbone of high-performance computing (HPC)

clusters, and their physical properties have significantly

influenced the design of parallel file systems. Magnetic

disks are composed of rotating platters and a mechan-

ical arm positioning the read and write heads on the

platter tracks. The bandwidth of magnetic disks is

limited by the disk rotation speed and access latency

(the seek time of the disk arm) [1]. Sequential accesses

to magnetic disks can easily achieve sustained transfer

rates of more than 200 MByte/s, and thus thousands

of disks accessed in parallel can read or write at speeds

of more than 1 TByte/s.

In contrast to the high throughput achievable with

sequential accesses to magnetic disks, random accesses

to a single disk reduce disk transfer rates to less than

1% of peak performance. Random access patterns ex-

ecuted by a single application on a storage system can

easily lead to a denial of service to the complete HPC

system [2]. Applications that perform huge amounts of

random accesses can be highly problematic for HPC

clusters and parallel file systems that are optimized for

sequential read and write access patterns, which occur,

for example, during the stage-in of data at application

start-up or during checkpointing [3].

The mechanical composition of magnetic disks also

leads to a high failure rate compared with that of pure

semiconductor components. As a result, magnetic disks

are used mostly for maintenance-friendly, dedicated sto-

rage clusters that are physically separated from the

compute nodes. In this configuration, failing disks can

easily be replaced when compared with configurations

with disks attached to compute nodes, where there is

generally no easy manual disk access. Unfortunately,

the dedicated storage cluster configuration hinders the

scalability of the storage backend with respect to an

increased compute node count.

The challenges and limitations associated with mag-

netic disks have led to the introduction of new sto-

rage technologies into HPC systems, including non-

volatile random-access memory (NVRAM) devices such

as flash-based solid state drives (SSDs), as new sto-

rage tiers in addition to the parallel file system (PFS).

SSDs are fully semiconductor-based and can benefit

from decreasing process technologies. Today, a single

non-volatile memory express (NVMe) SSD can deliver

an order of magnitude higher bandwidth than that of a

magnetic disk with little difference in the performance

between random and sequential access patterns. Addi-

tionally, the reliability of SSDs is higher than that of

magnetic disks. The replacement rates of SSDs in the

field are much smaller than those of magnetic disks [4]

and depend mostly on the amount of data written to

the SSD [5]. Different bit error rate characteristics dur-

ing the lifetime of an SSD also enable administrators to

identify the likelihood that a device will fail and there-

fore to proactively exchange it [6].

The use of SSDs is already widespread in most new

HPC systems and they can be used as metadata storage

for parallel file systems [7], in-system burst buffers [8],

and node-local storage. The bandwidth of node-local

SSDs typically exceeds the peak bandwidth of the at-

tached parallel file system, while the maximum num-

ber of I/O operations (IOPS) can even be more than

10 000x higher than that of the parallel file system (see

Table 1).

Several efforts have been made to explore best meth-

ods for using node-local SSDs, including as an addi-

tional caching layer for parallel file systems [9] or as file

systems run over node-local SSDs, with a larger num-

ber of these file systems being implemented at the user

level [10, 11].

This paper focuses on ad hoc file systems that aim

to efficiently use temporarily available storage on either

node-local SSDs or global burst buffers. While existing

parallel file systems can be in principle built on top of

node-local SSDs or global burst buffers, it is important

to adhere to the following definitions to be useful in the

context of ad hoc file systems for HPC.

• Ad hoc file systems can be deployed on HPC clus-

ters for lifetimes as small as the runtime of a single job

to use node-local SSDs or external burst buffers. It is

Table 1. SSD Usage in Different Sized Cluster Environments

Node Capacity Node Bandwidth Node Count Cluster Capacity Cluster Bandwidth

(GB) (MB/s) (TB) (GB/s)

MOGON II 400 500 1 868 ≈ 747 934

Summit 1 600 6 000 4 608 7 300 ≈ 27 648

MareNostrum 4 240 320 3 456 ≈ 829 1 106

Theta 128 > 2 150 4 392 562 > 9 307
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therefore important that the deployment overhead of

the ad hoc file systems is low compared with the appli-

cation runtime.

• Ad hoc file systems provide a global namespace for

all nodes being linked to the ad hoc file system, while

the semantics of the file system can be optimized for the

application scenario, enabling optimized parallel access

schemes.

• Ad hoc file systems interact with the backend sto-

rage system using data staging, and most ad hoc file

systems have been and will be implemented completely

in user space, while they also may contain a kernel com-

ponent.

User-level file systems are an attractive implementa-

tion option for ad hoc file systems because it is relatively

easy to swap in new, specialized implementations for

use by applications on a case-by-case basis, as opposed

to the current mainstream approach of using general-

purpose, system-level file systems, which may not be

optimized for specific HPC workloads and must be in-

stalled by administrators. In contrast, user-level file

systems can be tailored for specific HPC workloads for

high performance and can be used by applications with-

out administrator intervention.

Although the benefits of hierarchical storage have

been adequately demonstrated, critical questions re-

main for supporting hierarchical storage systems in-

cluding ad hoc file systems.

• How should we manage data movement through

a storage hierarchy for best performance and resilience

of data?

• Are user-level file systems fast enough to be used

in HPC systems? And how should we present hierarchi-

cal storage systems to user applications, such that they

are easy to use and that application code is portable

across systems?

• How do the particular I/O use cases mandate the

way we manage data?

• Is it possible to reuse components like building

blocks when designing user-level file systems?

The Dagstuhl Seminar 17202 “Challenges and Op-

portunities of User-Level File Systems for HPC”

brought together experts in I/O performance, file sys-

tems, and storage and collectively explored the space of

current and future problems and solutions for I/O on

hierarchical storage systems [12].

This paper provides a summary of the Dagstuhl

seminar and puts the results into the context of the re-

lated work. The paper therefore starts in Section 2 with

use cases and continues in Section 3 with a presentation

of reusable components as basic building blocks of ad

hoc file systems that can simplify the implememtation

of ad hoc file systems. Section 4 analyzes different im-

plementation choices to present the ad hoc file system

to the client application. Section 5 discusses existing ad

hoc file systems and their approaches. Ad hoc file sys-

tems also require changes to the HPC infrastructure. It

is for example in many cases necessary to synchronize

data between the backend file system and the ad hoc file

system. This staging process is discussed in Section 6.

Section 7 provides a summary of our conclusions.

2 Use Cases for Ad Hoc File Systems

While parallel file systems such as Lustre, GPFS,

or BeeGFS have already been serving as reliable back-

bones for HPC clusters for more than two decades, a

need for changes in the HPC storage architecture arose

with the arrival of data-intensive applications in HPC.

These applications shift the bottleneck from being com-

pute intensive, and thus being restricted by the per-

formance of the CPUs, to being bound by the quan-

tity of data, its complexity, and the speed at which it

changes [13].

Node-local SSDs and burst buffers have been intro-

duced into the HPC storage hierarchy to support the

new application requirements. This hierarchy level can

be used by ad hoc file systems to share data and to pro-

vide better performance than that provided by general-

purpose storage backends. Ad hoc file systems can be

tailored for specific application semantics and can be

applied, for example, in the following use cases.

Big Data Workloads. Data processing and analysis

have always been important applications for smaller

and mid-sized HPC clusters. Researchers, for ex-

ample from high-energy physics, astronomy, or bioin-

formatics, have developed community-specific work-

flow and processing environments that often have been

adapted to the specific properties of HPC backend sto-

rage systems [14–17]. Using HPC backend storage as

primary file systems, however, unfortunately also re-

stricted these big data applications to the drawbacks

of centralized storage, for example that bandwidths

and IOPS are shared between all concurrently run-

ning applications. Big data processing is nevertheless

not restricted to HPC. Also, cloud-specific big data

environments such as Hadoop or Spark [18, 19] as well

as scalable NoSQL databases such as MongoDB or

Cassandra [20, 21] attracted researchers to adapt their

applications to new and more easily programmmed
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environments [22, 23]. Thus, unified environments are

needed in order to process both HPC and big data work-

loads, where the converged environment should keep

the promises and benefits of both approaches [24–26]. Ad

hoc file systems can help couple locality with a global

namespace, while additionally providing the random ac-

cess rates of node-local SSDs. Nevertheless, in this case

the ad hoc file systems must also support long-running

campaigns, so that data staging between the backend

storage and the backend parallel file system can be re-

duced to a minimum (see also Section 6).

Bulk-Synchronous Applications. Bulk-synchronous

applications are the dominant workload seen on to-

day’s HPC systems. Here, applications run in a loosely

synchronized fashion, generally synchronizing on major

timestep boundaries. At these boundaries, the applica-

tions perform collective communication and I/O ope-

rations, for example output or visualization dumps and

checkpoint/restart. In the general case, the I/O ope-

rations per process are independent and written either

to per-process files or to process-isolated offsets in a

shared file. Additionally, read and write operations oc-

cur in bulk phases, without concurrent interleaving of

reads and writes.

These behaviors can easily be supported by ad hoc

file systems that can provide higher performance than

general-purpose file systems. In the shared file case, the

ad hoc file system can create a shared namespace across

disjoint storage devices, enabling applications with this

behavior to use fast storage tiers. Also, because we

know that the processes will not read and write con-

currently and that each process will write to its own

isolated offsets, the ad hoc file system does not need to

implement locking around write operations and hence

can greatly improve performance.

Checkpoint/Restart. HPC applications can survive

failures by regularly saving their global state in check-

points, which are often stored in the backend para-

llel file systems. The application can, in case of a

failure, restart from the last checkpoint. Especially

long-running applications benefit from the ability to

restart failed simulation runs. However, the time

to take a single application checkpoint increases lin-

early with the size of the application, and the overall

checkpointing overhead increases with the checkpoint

frequency. Previous studies have shown that up to

65% of applications’ runtimes were spent in perform-

ing checkpoints [27, 28], and studies indicate that up to

80% of HPC I/O traffic is induced by checkpoints [29].

Many HPC backend storage systems have been de-

signed according to the peak demands of their check-

pointing load. The node-internal SSDs often have a

higher peak performance than the backend file sys-

tem, and the number of node-internal SSDs availa-

ble for a checkpoint linearly scales with the job’s size.

Several approaches for using node-internal storage as

the checkpoint target have been developed, for exam-

ple by integrating them into the MPI-IO protocol [30]

or by offering dedicated checkpointing libraries [31].

These can be combined with strategies to reduce the

checkpoint size, for example by using compression or

deduplication [32, 33].

These approaches are partly bound to the usage of

MPI or the availability of libraries. An interesting al-

ternative is the use of dedicated ad hoc checkpointing

file systems, which can store the checkpoint either in

main memory or on node-local SSDs and which then

can asynchronously flush (some of the) checkpoints to

persistent storage [3]. The asynchronous nature of flush-

ing the checkpoints in a background process even allows

first storing the checkpoint locally and later moving

the data to storage that cannot be affected by a local

failure [30]. One can even overcome network latencies

and store a checkpoint at memory speed [3].

Machine and Deep Learning Workloads. The de-

sired input data sizes of machine and deep learning

workloads are increasing rapidly. The reason is that the

use of small dataset sizes can fail to produce adequately

generalized models that can recognize real-world vari-

ations in input, such as poses, positions, and scales in

images. The typical I/O workload for learning applica-

tions is that random samples from the full dataset are

read repeatedly from the backend store during train-

ing. These random reads from a parallel file system

can be a bottleneck, especially for learning frameworks

being run on GPU clusters with very high computa-

tional throughput. For smaller datasets, the parallel

file system cache, or perhaps node-local storage such as

an SSD, can hold the entire dataset, and performance

is not an issue. Larger datasets, however, may not fit in

the file system cache or node-local storage, and the per-

formance of the learning workload can suffer because of

the I/O bottleneck [34].

Learning workloads can benefit from ad hoc file sys-

tems. One such ad hoc file system could distribute the

very large datasets across the memory or storage on

other compute nodes of a job and serve the randomly

requested input to each process as needed. Another file

system implementation could prefetch the randomly se-
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lected portions of the dataset from the parallel file sys-

tem to the compute nodes if the dataset cannot fit in

node-local storage. In both cases, the learning work-

load would see vast improvements in I/O performance

resulting in better training throughput.

Producer-Consumer Workloads. Several variations

of producer-consumer workloads on HPC systems ex-

ist. Perhaps the most canonical of these is found in

climate model codes, for example in the Energy Ex-

ascale Earth System Modeling E3SM [35], where diffe-

rent physical components are modeled in individual ex-

ecutables (e.g., land, ocean, atmosphere, or ice). The

individual component executables consume data files as

input and produce output files that can be in turn con-

sumed by another component executable. A common

workflow for these models is to run them concurrently

and have the components produce and consume files to

compute the overall simulation.

Another emerging example of producer-consumer

workloads for HPC is data analytics [36]. Here, tradi-

tional HPC simulations produce simulation output that

is read in and analyzed by processes in the same al-

location, for example coupled simulation and machine

learning tasks for climate analytics [37]. The analysis

could be done in situ, as a library linked into the appli-

cation or an executable running on the same compute

node, or simply coscheduled in the allocation on sep-

arate compute nodes. The analysis processes can per-

form tasks such as feature extraction or machine learn-

ing.

In both these producer-consumer workloads, the

workflow can benefit from ad hoc file systems that are

able to facilitate the sharing of data between the compo-

nents in the job without resorting to using the parallel

file system. The ad hoc file system can keep the data on

fast, local storage and manage moving the bytes as ap-

propriate for best performance with respect to the pro-

ducer and consumer components. For example, writing

bytes to the local storage of the producer will result

in best performance from the producer’s perspective.

When it is time for the consumer to read the bytes,

however, the file system could move the file contents to

the compute node where the consumer is running, for

best read performance.

3 Reusable Components

Ad hoc file system implementations can be special-

ized for a variety of use cases (Section 2) and interfaces

(Section 4). Despite this specialization, however, each

ad hoc file system will encounter a common set of un-

derlying technical challenges posed by HPC platforms

and HPC application workloads. These challenges in-

clude the following:

• HPC network fabric compatibility;

• storage device compatibility;

• maximizing concurrency;

• minimizing resource consumption.

Reusable building block components can help ad-

dress these challenges while improving file system

developer productivity, reducing software maintenance

cost, and enhancing portability. In this section, we

highlight each of these challenges and survey the state

of the art in reusable components to address them.

3.1 HPC Network Fabric Compatibility

Ad hoc file systems that operate “in-system” must,

by definition, interact with the system’s HPC net-

work fabric. HPC networks are characterized by low

latency (to accommodate tightly coupled computa-

tions), RDMA access (to minimize CPU impact on

data transfers), and low message loss (because the

environment tends to be static and homogeneous).

No single standard for HPC network hardware exists

that meets these requirements, however. Many of the

world’s most powerful computers use different network

technologies [38–40], each with its own distinct API and

optimization strategy. Data services must therefore em-

ploy network abstraction layers to ensure portability.

TCP/IP sockets are the most widely-used and most

portable network abstraction model, but they lack the

specialized features needed to accommodate the la-

tency, RDMA, and message loss characteristics of a

dedicated HPC network. The Message Passing Inter-

face (MPI) provides a network abstraction and pro-

gramming model that is directly tailored to HPC

environments [41]. However, MPI was designed for

application-level use and is not readily applicable to

system services in practice [42]. More generalized HPC

network fabric abstractions such as OFI/libfabric [43],

UCX [44], and Portals [45] are not tied to MPI semantics

or programming models and are thus more appropri-

ate foundational building blocks for ad hoc file system

implementations.

Remote procedure call frameworks can be used in

conjunction with network abstractions to further ease

the task of constructing ad hoc file system services.

Examples in general-purpose distributed computing in-
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clude gRPC 1○ and Apache Thrift 2○, while examples in

HPC include Mercury [46] and Nessie [47]. RPC frame-

works implement common client/server functionality

such as request/response matching, protocol encod-

ing, service handler invocation, and programmatic API

bindings.

3.2 Storage Device Compatibility

Storage devices are the second crucial resource that

ad hoc file systems must manage. Parallel and dis-

tributed file systems have long utilized local file sys-

tems such as EXT4 and XFS as the abstraction point

between distributed service daemons and local storage

resources. Local file system abstractions are still a valid

and highly portable design choice, but the emergence of

new storage device technologies has prompted renewed

exploration of alternative interfaces (see also Section 4).

Persistent memory devices in particular have more

in common with dynamic memory than they do with

rotating magnetic media and can thus be accessed more

efficiently through direct user-space load/store ope-

rations than through indirect kernel-space block device

and page cache operations. This property has led to

the creation of storage abstractions such as the Persis-

tent Memory Developers Kit (PMDK) 3○ that provide

simple transactional storage primitives atop memory-

mapped devices rather than block devices.

Faster block device interfaces can also benefit from

lower-latency access paths. For example, the Storage

Performance Development Kit (SPDK) 4○ provides an

alternative interface to NVMe devices that relies on

user-space poll-driven device drivers to minimize la-

tency. PMDK and SPDK are intended for use with

two different storage technologies, but they share the

common goal of minimizing access cost for devices that

do not conform to the design assumptions and perfor-

mance characteristics of legacy hard drives.

3.3 Maximizing Concurrency

The following are three major drivers of concurrency

in ad hoc file system services:

• request arrival rate from parallel applications;

• availability of multicore processors on service

nodes;

• storage resources that require parallel request is-

sue to maximize bandwidth.

Balancing these factors while limiting implementa-

tion complexity is a daunting task. Several techniques

and strategies are available to help, however. Ser-

vices can leverage an asynchronous event-driven model

using frameworks such as Seastar 5○ or libraries such

as libevent 6○ or libev 7○, and storage device concur-

rency can be achieved by offloading operations to asyn-

chronous APIs such as the POSIX asynchronous I/O

interface or the SPDK framework described in subsec-

tion 3.2.

Multithreading can also be used to manage concur-

rency without adopting an event-driven programming

model. Conventional POSIX threads are functionally

effective but introduce excessive overhead when con-

currency exceeds the number of compute cores available

on a system. User-level threads seek to find a middle

ground between the efficiency of event-driven frame-

works and the programmability of POSIX threads. Ex-

amples of modern user-level threading packages include

Qthreads [48], MassiveThreads [49], and Argobots [50].

Argobots is particularly amenable to distributed ser-

vice development because it supports customized sched-

ulers and flexible mappings of work units to compute

resources.

3.4 Minimizing Resource Consumption

The term “ad hoc file system” implies that the file

system does not necessarily have dedicated resources

but is instead provisioned on-demand within an existing

system. An ad hoc file system must therefore be able to

coexist with other services or even application processes

without dominating available resources or causing ex-

cessive jitter. Common resource consumption pitfalls

include the following:

• memory consumption;

• busy polling of network resources;

• CPU or NUMA contention.

No single component solves these challenges; they

1○https://grpc.io/, Nov. 2019.
2○https://thrift.apache.org/, Nov. 2019.
3○https://pmem.io/pmdk/, Nov. 2019.
4○https://spdk.io/, Nov. 2019.
5○http://seastar.io/, Nov. 2019.
6○https://libevent.org/, Nov. 2019.
7○http://software.schmorp.de/pkg/libev.html, Nov. 2019.
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are more readily addressed by design patterns that ac-

count for the capabilities of HPC hardware resources.

For example, non-volatile memory can be combined

with RDMA-capable networks (either in user space or

via kernel drivers) to limit memory consumption by

transferring data directly between network and sto-

rage without intermediate buffering. RPC frameworks

and network abstraction layers can use adaptive polling

strategies to limit network and CPU use when services

are idle. CPU affinity and NUMA control can prevent

colocated services and applications from contending for

CPU and memory resources. These design patterns can

be used in any ad hoc file system implementation.

3.5 Mochi Project

Mochi [51] seeks to combine many of the compo-

nents and best practices described in this subsection

into a coherent environment to accelerate data service

development. This type of environment also enables

utility libraries to span components in order to imple-

ment complementary best practices. This is exemplified

by the Margo [52] and abt-io [50] libraries that integrate

reusable RPC and file I/O functionality into the Ar-

gobots threading framework.

Regardless of development environment and run-

time system, however, the core principles of reusable

components and design patterns can be applied to ac-

celerate the development of ad hoc file systems and al-

low their creators to spend more time on data service

innovation.

4 Interfacing Ad Hoc File Systems

Since the arrival of parallel file systems over two

decades ago, file systems have continued to become in-

creasingly more complex, spanning intricate logic over

million of lines of code [53] with the goal of offering a

general-purpose solution for all applications (see Sec-

tion 2). In order to allow for a familiar and portable

interface that most applications can agree and rely on,

such general-purpose file systems follow a set of rules

in the POSIX family of standards that define the syn-

tax and semantics of the I/O interface, also known as

POSIX I/O. As a result, the POSIX I/O interface is

deeply embedded within the operating system and com-

mon to users and applications, usually accessed via the

GNU C library (glibc). Note that these application-

oriented interfaces should not be confused with other

interfaces such as block I/O, object-oriented I/O, and

file-based I/O, which are defined for lower-level storage

media access.

The I/O interface can be implemented at the user

level or the kernel level. As shown in Fig.1, kernel-

based file systems such as EXT4 may work entirely

within the kernel, or they can utilize an additional user-

space implementation where application I/O calls are

redirected to, for example, FUSE. The kernel-based ap-

File System
Application

GNU C Library (glibc)

Preload Library I/O Library

Custom File System

Virtual File System (VFS)

XFS EXT4 FS Module

Storage

Std. Interface

Custom

User-Space

Kernel

Fig.1. Techniques to interface file systems with their components.
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proach works by registering the file system to the vir-

tual file system (VFS), which can be accessed by stan-

dard libraries. Exclusive user-space file systems, on the

other hand, can also operate without a kernel compo-

nent, providing their own implementation by preloading

a library through the LD PRELOAD environment variable,

which intercepts defined I/O calls and redirects them

to the user-space file system. These types of file sys-

tems are becoming increasingly popular (including in ad

hoc file systems) because of their advantages for code

development, porting, debugging, maintenance, and of-

ten performance.

An alternative to the standard I/O interface is pro-

posed by so-called I/O libraries or I/O wrappers, pro-

viding a thinner set of API functions that may ease

deployment and maintenance. Such libraries are not

necessarily backed by a user-space file system and align

access patterns with the capabilities of the underly-

ing PFS (e.g., ADIOS [54]). They can also be used

as an API to a separate user-space file system such as

OrangeFS [55].

In this context, the key-value interface has recently

gained traction. Volos et al. [56] developed a flexible file

system architecture called Aerie that can support user-

level I/O accesses to storage-class memory. Nonethe-

less, a completely non-standardized custom interface

usually requires the modification of applications and

is not suitable in all cases.

In the following, we discuss some of the existing

techniques to implement user-space file systems, and

we highlight the most popular approach when develop-

ing an ad hoc file system in user space.

4.1 User-Space File Systems

User-space file systems that are interfaced via the

traditional standard interface cannot be easily regis-

tered to an operating system compared with kernel-

based file systems. Instead, exclusive user-space file

systems are directly linked to an application at com-

pile time or loaded at runtime, which on UNIX sys-

tems can be achieved by a preloading library. The lat-

ter technique is most popular and has been adopted

by several ad hoc file systems, such as CRUISE [3],

BurstFS [11], GekkoFS [10], and DeltaFS [57]. They all

intercept the application I/O via a set of wrapper func-

tions that are implemented in the form of a user-level

preloading library, albeit not always being fully POSIX-

compliant [10].

In addition to easing development or maintenance

by using such a library, avoiding the kernel when calling

I/O functions can yield significant performance benefits

in terms of I/O throughput and latency. Volos et al. [56]

argued that the existing kernel-based stack of compo-

nents, although well suited for disks, unnecessarily lim-

its the design and implementation of file systems for

faster storage (e.g., storage-class memory). Their Aerie

framework, a POSIX-like file system in user space, has

been implemented with performance similar to or bet-

ter than a kernel implementation.

PMDK bypasses the kernel and builds on Linux’s

DAX features, which allow applications to use persis-

tent memory as memory-mapped files. Therefore, tech-

niques such as LD PRELOAD are attractive choices for ad

hoc file systems, which often utilize flash-based node-

local storage. With more advanced future storage tech-

nologies (e.g., persistent memory), reducing the time

spent within the operating system to increase I/O per-

formance is going to become even more critical.

Because of the ability to intercept any function in

preloading libraries, however, all I/O functions used by

an application must be implemented and reinterpreted

in the user-space file system. Hence, the more com-

plex an application, the more the functions required

in the file system for the application to work, poten-

tially intercepting a large percentage of functions that

are part of glibc, for instance. The system call in-

tercepting library 8○ (syscall intercept), as part of the

pmem project, aims to solve this challenge by providing

a low-level interface for hooking Linux system calls in

user space while still using the established LD PRELOAD

method. This can dramatically reduce the number of

functions that need to be implemented in the user-space

file system because the set of functions is limited to only

system calls, such as sys mknod or sys write.

Other efforts have also explored ways to standard-

ize the interception of POSIX-related I/O calls, in-

cluding libsysio 9○ by Sandia National Laboratories and

Gotcha 10○ by Lawrence Livermore National Laboratory.

Libsysio provides a POSIX-like interface that redi-

rects I/O function calls to file systems and supports

the conventional VFS/vnode architecture for file-based

accesses [58]. Gotcha is a wrapper library that works

8○https://github.com/pmem/syscall intercept, Nov. 2019.
9○https://github.com/hpc/lustre/tree/master/libsysio, Dec. 2019.
10○https://github.com/LLNL/GOTCHA, Nov. 2019.
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similar to LD PRELOAD but operates via a programmable

API.

4.2 FUSE File Systems

The FUSE (Filesystem in Userspace) [59, 60] frame-

work is another popular approach when developing

user-space file systems. It consists of two components,

the FUSE kernel module and the libfuse user-space li-

brary, that support kernel-based and user-level redi-

rection for I/O calls, respectively. The libfuse li-

brary is executed as part of a process that manages

the entire file system at the user level and communi-

cates through the FUSE kernel module with the ker-

nel. Internally, all I/O calls are implemented as call-

backs through the libfuse library, which supports the

communication between the FUSE kernel module and

the user-level file systems [59]. FUSE therefore provides

a traditional file system interface, but it allows users

to quickly implement a file system based on FUSE’s

API by avoiding much of the complexity within the

kernel. As a result, a large number of FUSE-based file

systems have been developed, including ChunkFS [61],

SSHFS [62], FusionFS [63], and GlusterFS [64].

While convenient, FUSE-based user-level file sys-

tems also face several drawbacks inherent to its ar-

chitecture. Since the libfuse library is typically exe-

cuted as a separate user process, the communication

round trip between an application and the FUSE pro-

cess leads to nontrivial performance overhead [60]. To

make the situation worse, an application leveraging the

kernel module for I/O interception will experience even

more overhead due to context switches across the user-

kernel boundary. Furthermore, root permission is re-

quired to mount FUSE file systems, or system admin-

istrators have to give nonprivileged users the ability to

mount FUSE file systems. In HPC environments, users

do not typically own such superuser privileges and can-

not easily mount the desired FUSE file systems without

help from system administrators.

In ad hoc file systems, FUSE’s disadvantages out-

weigh the advantage of convenient development, and it

is therefore rarely used in these file systems.

5 Ad Hoc File System Implementations

The previous two sections have discussed basic

building blocks of ad hoc file systems and how to in-

terface them. This section now puts these components

together and presents three different ad hoc file system

implementations for different use cases.

• BeeGFS-On-Demand, or BeeOND for short, is a

production-quality BeeGFS wrapper that simplifies the

deployment of multiple independent BeeGFS instances

on one cluster to aggregate the performance and capac-

ity of internal SSDs or hard disks. Important aspects

of BeeOND clients are developed as kernel modules.

• GekkoFS has been designed to overcome scala-

bility limitations of the POSIX protocol [10]. It both

slightly relaxes the POSIX semantics and reduces secu-

rity guarantees, while still being able to ensure confi-

dentiality in the setting of ad hoc file systems. Perfor-

mance is achieved by spreading data and metadata as

widely as possible.

• The Burst Buffer File System (BurstFS) uses

techniques such as scalable metadata indexing, colo-

cated I/O delegation, and server-side read clustering

and pipelining to support scalable and efficient aggre-

gation of I/O bandwidth from node-local storage [11].

Clients furthermore write to node-local logs to increase

write performance, providing a different approach from

that of GekkosFS and being suited for different appli-

cations.

All file systems have been developed to create tem-

porary file systems that run for the duration of a com-

pute job. Hence, the ad hoc file systems must be in-

tegrated with a workload manager such as Slurm or

Torque, and the deployment time must be as short as

possible so that the runtime of the compute job is not

negatively affected by the start-up phase of the file sys-

tem.

5.1 BeeGFS and BeeOND

BeeGFS, initially named Fraunhofer Parallel File

System (FhGFS), was started in 2004 as a result of a

project to integrate the Lustre PFS in a video stream-

ing environment and as storage in an existing 64-node

Linux cluster. The initial requirements for the develop-

ment were to distribute metadata, to require no kernel

patches, and to support zero-config clients with the goal

of providing a scalable multithreaded architecture and

dynamic failover for native InfiniBand and Ethernet.

The file system is built to run on any underlying

POSIX-compliant local file system, providing users the

choice and flexibility if only a specific local file system

is available. BeeGFS is designed to be easily deployed

and maintained while focusing on performance instead

of on features. The client is built as a Linux kernel

module, while other software components were moved

to user space, allowing increased usage flexibility.
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Staying POSIX-compliant in a distributed world

without sacrificing performance throughout the years

is a challenging process, requiring detailed analyses and

careful implementation. Today, BeeGFS has become a

true high-performance distributed file system that in-

cludes a reliable and fast distributed locking algorithm.

After five years of heavy development, BeeGFS was

ready for installation in larger environments, delivering

the highest single-thread performance on the market up

to this day and showing its strengths in N : 1 shared

file I/O cases (see Fig.2).
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Fig.2. BeeGFS’s I/O throughput for increasing server numbers
for 192 client processes on one shared file.

Fig.3 describes BeeGFS’ overall architecture. The

client works as a kernel module with its own caching

strategy, which is kept updated and follows the latest

kernel developments. The metadata server, the sto-

rage server, and the management server are indepen-

dent processes that can be installed on a single server

or in a distributed setting, depending on the needs of

the user.

When a QDR InfiniBand system (with SSDs in each

node) was installed at Fraunhofer in 2012, BeeOND was

born out of the idea to use BeeGFS as an ad hoc file

system on nodes that a user got assigned to by the clus-

ter’s batch system. BeeOND creates an empty, private

distributed file system across all job nodes to separate

challenging I/O patterns from the I/O load of the PFS.

The file system is then started during the prolog pro-

cess of the batch system. Using BeeGFS for this task

was ideal because all server processes are already run-

ning in user-space and do not require further patches

to be installed in advance. One of its first use cases

was a data-sorting routine for seismic data that reads

data from the PFS and uses the SSD storage as an in-

termediate data buffer before the sorted data is written

back to the PFS. BeeGFS supports advanced features

such as data mirroring, because of the high availability

requirements in hyperconverged solutions to store large

datasets economically, for instance.

Today, BeeOND is used around the world as an al-

ternative to expensive burst buffers and allows users

to manage the demanding requirements of deep learn-

ing applications. It inherits all the functionality of

BeeGFS and offers a POSIX-compliant and scalable

distributed file system. The installation at Tsubame 3.0

and the ABCI system in Japan are the most prominent
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Fig.3. Architecture of the BeeGFS file system.
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BeeOND installations and can reach 1 TB/s streaming

throughput. In the future, BeeGFS and BeeOND will

be continuously developed to improve performance and

to satisfy the needs of arising use cases.

5.2 GekkoFS

The basic design idea behind GekkoFS is to dis-

tribute data and metadata among cluster nodes as

evenly as possible [10]. GekkoFS therefore aggressively

uses hashing to distribute data and metadata. Each

file inode is managed by one cluster node, which can

be determined by simply calculating a hash function of

the file path and name and then by taking the result

modulo the number of nodes participating in the file

system.

A client node, for example, creates a new file by

first computing the managing cluster node and then

by running the file create protocol between the client

and the managing node. The serialization inside the

managing node guarantees that an existing file cannot

be created a second time. The protocol ensures that

most metadata operations linearly scale in the number

of participating cluster nodes.

Distributing inode metadata over all cluster nodes

nevertheless also requires a different directory handling.

GekkoFS therefore significantly relaxes the POSIX di-

rectory semantics. Directories are created similar to

files, while the content of a directory is only implicitly

available by collecting distributed inode entries using

broadcast operations. GekkoFS is therefore not suited

for applications that regularly require listing the con-

tent of directories using ls-operations or which rename

directories, since this requires expensive one-to-all and

all-to-one communication patterns and in the second

case also requires updating all distributed inode entries.

Fortunately, studies have shown that these operations

are extremely rare while running a parallel job [65, 66].

GekkoFS provides the same consistency as POSIX

for any file system operation that accesses a specific file.

These include read and write operations as well as any

metadata operation that targets a single file, for exam-

ple, file creation. Nevertheless, similar to PVFS [67],

GekkoFS does not provide a global byte-range lock

mechanism. In this sense, applications are responsi-

ble for ensuring that no conflicts occur, in particular

w.r.t. overlapping file regions, in order to avoid com-

plex locking within the file system.

The GekkoFS architecture shown in Fig.4 consists

of two main components: a client library and a server

process. An application that uses GekkoFS must first

preload the client interposition library that intercepts

all file system operations and forwards them to a server

(GekkoFS daemon), if necessary. The GekkoFS dae-

mon, which runs on each file system node, receives for-

warded file system operations from clients and processes

them, sending a response when finished. The daemons

operate independently and do not communicate with

other server processes on remote nodes, therefore being

effectively unaware of each other.

The client consists of an interception interface that

catches relevant calls to GekkoFS and forwards unre-

lated calls to the node-local file system, a file map that

manages the file descriptors of opened files and direc-

tories, independently of the kernel, and an RPC-based
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Fig.4. GekkoFS architecture.
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communication layer that forwards file system requests

to local/remote GekkoFS daemons.

A GekkoFS daemon’s purpose is to process for-

warded file system operations of clients to store and re-

trieve data and metadata that hashes to a daemon. To

achieve this goal, GekkoFS daemons use a RocksDB [68]

key-value store (KV store) for handling metadata ope-

rations, an I/O persistence layer that reads/writes data

from/to the underlying node-local storage system, and

an RPC-based communication layer that accepts lo-

cal and remote connections to handle file system ope-

rations.

The communication layer uses the Mercury RPC

framework, which allows GekkoFS to be independent

from the network implementation [46]. Mercury is in-

terfaced indirectly through the Margo library, which

provides wrappers to Mercurys API with the goal of

providing a simple multithreaded execution model [52].

It uses the lightweight, low-level threading and task-

ing framework Argobots, which has been developed to

support massive on-node concurrency.

The experiments for the results presented in Fig.5

and Fig.6 have been performed on the MOGON II clus-

ter at the Johannes Gutenberg University Mainz, Ger-

many. The cluster consists of 1 876 nodes in total, with

822 nodes using Intel 2630v4 Intelr Broadwell proces-

sors (two sockets each) and 1 046 nodes using Xeon

Gold 6130 Intelr Skylake processors (two sockets each).

The Intelr Broadwell processors have been used in all

presented experiments. The main memory capacity in-

side the nodes ranges from 64 GiB to 512 GiB, and

the nodes are connected by a 100 Gbit/s Intel Omni-

Path interconnect. The cluster is attached to a 7.5 PiB

Lustre storage backend.
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Fig.5. GekkoFS’s file create performance compared with a Lustre
file system for increasing the number of nodes.

In addition, each node includes an Intelr SATA

SSD DC S3700 Series with 200 GiB or 400 GiB,

which has been used for storing data and metadata of

GekkoFS. All Lustre experiments were performed on a

Lustre scratch file system with 12 object storage targets

(OSTs), 2 object storage servers (OSSs), and 1 meta-

data service (MDS) with a total of 1.2 PiB of storage.

The experiments were run at least five times with each

data point representing the mean of all iterations.
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Fig.6. GekkoFS’s write throughput for increasing the number of
nodes.

Fig.5 compares GekkoFS with Lustre for file creates

for up to 512 nodes on a logarithmic scale. GekkoFS’s

workload was scaled with 100 000 files per process. Lus-

tre’s workload was fixed to 4 million files for all experi-

ments. We fixed the number of files for Lustre’s meta-

data experiments because Lustre was detecting hang-

ing nodes when scaling to too many files. Lustre

experiments were run in two configurations: all pro-

cesses operated in a single directory (single dir), or

each process worked in its own directory (unique dir).

Moreover, Lustres metadata performance was evaluated

while the system was accessible by other applications as

well.

GekkoFS outperforms Lustre by a large margin,

regardless of whether Lustre processes operated in a

single directory or in isolated directories. GekkoFS

achieved around 46 million creates per second, while

each operation was performed synchronously without

any caching mechanisms in place, showing close to lin-

ear scaling. Lustre’s create performance did not scale

beyond approximately 32 nodes and has been ∼1 405x

lower than the create-performance of GekkoFS, demon-

strating the well-known metadata scalability challenges

of general-purpose PFS.

GekkoFS’s data performance is not compared with

the Lustre scratch file system because Lustre’s peak

performance of 12 GByte/s is already reached for 10

nodes for sequential accesses. Moreover, Lustre has

shown to scale linearly for sequential access patterns

in larger deployments with more OSSs and OSTs be-

ing available [69]. Fig.6 shows GekkoFS’s sequential I/O
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throughput in MiB/s for an increasing number of nodes

for different transfer sizes. In addition, each data point

is compared with the peak performance that all aggre-

gated SSDs could deliver for a given node configuration,

visualized as a white rectangle. The results demon-

strate GekkoFS’s close-to-linear scalability, achieving

about 141 GiB/s (∼80% of the aggregated SSD peak

bandwidth) and 204 GiB/s (∼70% of the aggregated

SSD peak bandwidth) for write and read operations

with a transfer size of 64 MiB for 512 nodes. At 512

nodes, this translates to more than 13 million write

IOPS and more than 22 million read IOPS, while the

average latency can be bounded by at most 700 µs for

file system operations with a transfer size of 8 KiB.

5.3 Burst Buffer File System (BurstFS)

BurstFS shares a number of basic design consider-

ations with GekkoFS. It has been designed to have the

same temporary life cycle as a batch-submitted job,

while it uses node-local burst buffers to improve ap-

plications’ read and write performance [11]. The main

distinction between the two ad hoc file systems is that

BurstFS clients always write to local storage in a log-

structured way. This can significantly improve write

performance since no network latency is involved; but

it also requires building a metadata directory to recon-

struct writes coming from multiple clients to one file in

case of N − 1 access file patterns.

When a batch job is allocated over a set of compute

nodes, an instance of BurstFS will be constructed on

the fly across these nodes, using the locally attached

burst buffers, which may consist of memory, SSDs, or

other fast storage devices. These burst buffers enable

very fast log-structured local writes; in other words, all

processes can store their writes to the local logs. Next,

one or more parallel programs launched on a portion of

these nodes can leverage BurstFS to write data to or

read data from the burst buffers.

BurstFS is mounted with a configurable prefix and

transparently intercepts all POSIX functions under

that prefix. Data sharing between different programs

can be accomplished by mounting BurstFS using the

same prefix. Upon the unmount operation from the

last program, all BurstFS instances flush their data for

data persistence (if requested), clean up their resources,

and exit.

BurstFS uses MDHIM as distributed KV store

(KVS) for metadata, along with log-structured writes

for data segments [70]. Fig.7 shows the organization of

data and metadata for BurstFS. Each process stores

its data to the local burst buffer as data logs, which

are organized as data segments. New data are always

appended to the data logs. With such log-structured

writes, all segments from one process are stored to-

gether regardless of their global logical position with

respect to data from other processes.
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Fig.7. Diagram of the distributed key-value store for BurstFS.

When the processes in a parallel program create a

global shared file, a key-value pair (e.g., M1 or M2) is

generated for each segment. A key consists of the file ID

(8-byte hash value) and the logical offset of the segment

in the shared file. The value describes the actual loca-

tion of the segment, including the hosting burst buffer,

the log containing the segment (there can be more than

one log from multiple processes on the same node),

the physical offset in the log, and the length. The

key-value pairs for all the segments then provide the

global layout for the shared file. All KV pairs are con-

sistently hashed and distributed among the key-value

servers (e.g., KVS0 and KVS1). With such an orga-

nization, the metadata storage and services are spread

across multiple key-value servers.

Lazy synchronization provides efficient support for

bursty writes. Each process holds a small memory pool

for metadata KV pairs from write operations, and, at

the end of a configurable interval, KV pairs are periodi-

cally stored to the key-value stores. An fsync operation

can force an explicit synchronization. BurstFS lever-

ages the batch put operation from MDHIM to transfer

these KV pairs together in a few round trips, mini-

mizing the latency incurred by single put operations.

During the synchronization interval, BurstFS searches

for contiguous KV pairs in the memory pool to com-

bine, which can span a bigger range and reduce the

number of data segments. As shown in Fig.7, segments

[2-3) MiB and [3-4) MiB are contiguous and map to the
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same server; therefore their KV pairs are combined into

one.

Read operations involve a metadata look-up for the

distributed data segments. Thus, they search for all KV

pairs whose offsets fall in the requested range. With

batched read requests, BurstFS needs to search for all

KV pairs that are targeted by the read requests in the

batch. However, range queries are not directly sup-

ported by MDHIM and indirectly performing them by

iterating over consecutive KV pairs induces additive

round-trip latencies.

BurstFS therefore includes parallel extensions for

both MDHIM clients and servers [11]. On the client

side, incoming range requests are broken into multiple

small range queries to be sent to each server based on

consistent hashing [71]. Compared with sequential cur-

sor operations, this extension allows a range query to

be broken into many small range queries, one for each

range server. On the server side, for the small range

query within its scope, all KV pairs inside that range

are retrieved through a single sequential scan in the

key-value store.

Scalable read and write services are furthermore

achieved through a mechanism called co-located I/O

delegation. BurstFS launches an I/O proxy process on

each node, a delegator. Delegators are decoupled from

the applications in a batch job and are launched across

all compute nodes. The delegators collectively provide

data services for all applications in the job by offering

a request manager and an I/O service manager. In this

way, a conventional client-server model for I/O services

is transformed into a peer-to-peer model among all del-

egators.

The delegators allow BurstFS to leverage the exist-

ing techniques of batched reads from the client side,

where POSIX commands such as lio listio allow

read requests to be transferred in batches. BurstFS

exploits the visibility of read requests at the server

side for further performance improvements by introduc-

ing a mechanism called server-side read clustering and

pipelining (SSCP) in the I/O service manager. In the

two-level request queue, SSCP first creates several cat-

egories of request sizes, ranging from 32 KiB to 1 MiB

(see Fig.8). Incoming requests are inserted into the

appropriate size category either individually or, if con-

tiguous with other requests, combined with the existing

contiguous requests and then inserted into the suitable

size category. As shown in the figure, two contiguous

requests of 120 KiB and 200 KiB are combined by the

service manager. Within each size category, all requests

are queued based on their arrival time. A combined

request will use the arrival time from its oldest mem-

ber. For best scheduling efficiency, the category with

the largest request size is prioritized for service. Within

the same category, the oldest request will be served first.

BurstFS enforces a threshold on the wait time of each

category (default 5 ms). If any category has not been

serviced longer than this threshold, BurstFS selects the

oldest read request from this category for service.

Two-Level Request Queue

Size Categories

C
o
n
so

li
d
a
te

A
rr

iv
a
l 
T

im
e

1 MiB 512 KiB 256 KiB

768 KiB 278 KiB

320 KiB

320 KiB

Individual and Combined Read Requests

120 KiB 200 KiB

628 KiB

Read

Copy

Transfer

Read SSD Read SSD

Memory Buffer

Xmit Xmit Xmit

Read SSD

32 KiB

...
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Experiments comparing BurstFS with OrangeFS

2.8.8 [55] and the Parallel Log-Structured File System

2.5 (PLFS) [72] have been conducted on the Catalyst

cluster at Lawrence Livermore National Laboratory,

consisting of 384 nodes. Each node is equipped with

two 12-core Intelr Xeonr Ivy Bridge E5-2695v2 pro-

cessors, 128 GB of DRAM, and an 800 GB burst buffer

comprising PCIe SSDs.

In the experiments, OrangeFS instantiated server

instances across all the compute nodes allocated to a

job to manage all node-local SSDs. PLFS is designed

to accelerate N–1 writes by transforming random, dis-

persed N–1 writes into sequential N–N writes in a log-

structured manner. Data written by each process is

stored on the backend PFS as a log file. In the experi-

ments, OrangeFS over node-local SSDs has been used

as the PLFS backend. In PLFS with burst buffer sup-

port, processes store their metalinks on the backend

PFS, which point to the real location of their log files

in the burst buffers. Within the experiments, each pro-

cess wrote to its node-local SSD, and the location was

recorded on the center-wide Lustre parallel file system.

Fig.9 compares the write bandwidth with the PLFS

burst buffer (PLFS-BB), PLFS, and OrangeFS. Sixteen
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processes are placed on each node, each writing 64 MB

data following an N–1 strided pattern. Both BurstFS

and PLFS-BB scale linearly with process count. The

reason is that processes in both systems write locally

and the write bandwidth of each node-local SSD is sat-

urated. OrangeFS and PLFS also scale linearly, while

their bandwidths increase at a much slower rate. The

reason is that both PLFS and OrangeFS stripe their

files across multiple nodes, which can cause degraded

bandwidth due to contention when different processes

write to the same node. On average, BurstFS delivers

3.5x the performance of OrangeFS and 1.6x the perfor-

mance of PLFS.
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Fig. 9. Comparison of BurstFS with PLFS and OrangeFS for
N − 1 segmented writes.

PLFS initially delivers a higher bandwidth than

BurstFS at small process counts. PLFS internally

transforms the N–1 writes into N–N writes. However,

when fsync is called to force these N–N files to be

written to the backend file system, OrangeFS does not

completely flush the files to the SSDs before fsync re-

turns.

In order to evaluate the support for data sharing

among different programs in a batch job, read tests with

IOR were conducted. A varying number of processes

read a shared file written by another set of processes

from a Tile-IO program. Processes in both MPI pro-

grams were launched in the same job. Each node hosted

16 Tile-IO processes and 16 IOR processes. Once Tile-

IO processes completed writing on the shared file, this

file was read back by IOR processes using the N–1 seg-

mented read pattern. The same transfer sizes were used

for IOR and Tile-IO. Since the read pattern did not

match the initial write pattern of Tile-IO, each process

needed to read from multiple logs on remote nodes. The

size of each tile was fixed to 128 MiB, and the number

of tiles along the y axis to 4, while the number of tiles

along the x axis was increased with the number of read-

ing processes.

Fig.10 compares the read bandwidth of BurstFS

with those of PLFS and OrangeFS. Both PLFS and Or-

angeFS are vulnerable to small transfer size (32 KiB).

BurstFS maintains high bandwidth because of locally

combining small requests and server-side read cluster-

ing and pipelining. On average, when reading data pro-

duced by Tile-IO, BurstFS delivers 2.3x and 2.5x the

performance of OrangeFS and PLFS, respectively.

16 32

BurstFS
OrangeFS
PLFS

64R
e
a
d
 B

a
n
d
w

id
th

 (
G

iB
/
s)

64

32

16

8

4

2

1

128

Number of Processes

256 512 1024

Fig.10. IOR read bandwidth on a shared file written by Tile-IO.

6 Feeding Ad Hoc File Systems: Data Staging

Ad hoc file systems can significantly speed up indi-

vidual data accesses for an application when compared

with a backend PFS, given that they allow exploiting

faster node-local storage hardware such as NVRAM,

and also since they provide application-specific data

distributions and access semantics that can improve ap-

plication I/O latency and/or bandwidth. Nonetheless,

for ad hoc file systems to be useful, input data must

be transferred (or “staged”) into the file systems be-

fore running the targeted application and output data

must be staged out after the application terminates.

Since ad hoc file systems are ephemeral in nature, such

data staging is typically done from/to the backend PFS.

This section discusses requirements for coupling a batch

scheduler, the backend PFS, and the ad hoc file system

during stage-in and stage-out activities. Additionally,

it discusses the potentially positive and negative inter-

actions between concurrent jobs on a system while these

stage-in and stage-out activities occur.

Data-intensive workloads are challenging for I/O

subsystems because they present substantially larger

I/O requirements than those of traditional compute-

bound workloads [11, 73, 74]. Thus, even if modern HPC

clusters can run multiple concurrent applications on

top of millions of cores, severe I/O performance degra-

dation is often observed because of cross-application

interference [75, 76], a phenomenon that originates due

to competing accesses to the supercomputer’s shared
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resources. Nevertheless, the inclusion of fast node-

local storage in compute nodes (see Table 1) enables

the creation of a high-performance distributed stag-

ing layer where applications can efficiently store and

retrieve data in isolation from each other which, if

done correctly, can help reduce cross-application inter-

ference. Ad hoc file systems can become very useful in

this scenario, both as enforcers of this isolation and as

mediators for applications to transparently access this

staging layer. Compared with traditional approaches,

where applications directly access the PFS at their con-

venience, such a staging architecture has the advan-

tage that arbitrary application I/O workloads would

be substituted by system-controlled stage-in/stage-out

I/O workloads, which could be scheduled to minimize

interference between concurrent staging phases. More-

over, from the point of view of the PFS, global ap-

plication I/O would be transformed from a stream of

unrelated, random data accesses to a well-defined series

of sequential read/write phases, which are better suited

to be optimized.

Nonetheless, despite these benefits to HPC I/O per-

formance, the presence of this node-local staging layer

further increases the complexity of managing the sto-

rage hierarchy. When the hierarchy of the HPC storage

system consists mainly of the parallel file system and

archival storage, users of HPC clusters can easily man-

age the data movements required by their applications

explicitly, either in the application code itself or in the

scripts controlling their batch jobs. Explicitly manag-

ing data transfers between storage tiers, however, is not

optimal since end users lack the required real-time in-

formation about the state of the cluster to decide the

best moment to execute a transfer of data. Moreover,

given the increasing complexity of current HPC sto-

rage architectures—which may include as many layers

as node-local storage, storage on I/O nodes, parallel

file systems, campaign storage, and archival storage

(see Fig.11)—explicit transfer management forces users

(i.e., scientists and researchers) to spend time learning

the best way to use these technologies in their appli-

cations, an effort that would be better spent on their

scientific problems. This means that opportunities for

global I/O optimization are being missed by not com-

municating application data flows to the HPC services

in charge of resource allocation and, as such, any archi-

tecture that does not expose information about the sto-

rage tiers to applications, and relies solely on the hard-

ware and OS to transparently manage the I/O stack will

lead to sub-optimal performance. Although with the

advent of shared burst buffers [8], vendors are provid-

ing APIs for transferring data to/from the parallel file

system into/out of burst buffers (e.g., Cray DataWarp

API [77] and IBM BBAPI [78]), such APIs 1) do not

yet schedule PFS I/Os by taking into account cross-

application interference [79], and 2) do not yet concern

themselves with node-local storage.
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Fig.11. Growing complexity of the storage hierarchy of modern
HPC systems, raising the need for research in order to understand
how data and programming models expose and interact with this
hierarchy.

Addressing these challenges and utilizing this new

data-driven staging architecture effectively require de-

veloping new interfaces and APIs that allow end users

to convey application data flow requirements (e.g., ex-

pected data lifetime, type of access, or visibility to re-

lated applications) to the services responsible for man-

aging the HPC infrastructure. For instance, conveying

data flow dependencies between jobs can help utilize

the storage stack more effectively: if Job A generates

output data that is going to be fed as input to Job B, a

data-aware job scheduler could reuse Job A’s compute

nodes for Job B and keep data in NVRAM. Unfortu-

nately, today’s users have no way to either express these

dependencies or to influence the job-scheduling process

so that Job A’s output data is kept in local storage until

Job B starts. Worse yet, given that the I/O stack re-

mains essentially a black box for today’s job schedulers,

Job A’s output data could be staged out to the cluster’s

parallel file system and, at some point in the near fu-

ture, staged back into a new set of compute nodes for

Job B, which might end up including some of the orig-

inal nodes allocated to Job A.

Thus, we argue that integrating application data

flows with scheduling and resource managers is critical

for effectively using and managing an HPC hierarchi-

cal storage stack powered by ad hoc file systems. The

development and deployment of data-aware scheduling

services that ingest application data flow requirements

and facilitate data movement across storage tiers, can
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improve the coordination between HPC resource man-

agers and the storage stack, resulting in reduced PFS

I/O contention and, in turn, improved job run times

and system efficiency (see Fig.12). While several ser-

vices have been proposed with similar goals [80–83], to

the best of our knowledge no resource scheduling al-

gorithms have yet been proposed that take into ac-

count a job’s dynamic requirements in terms of I/O

(e.g., capacity, latency, and bandwidth) in addition to

the more static computing requirements (e.g., compute

nodes). There are thus plenty of research opportunities

to investigate and develop APIs, infrastructure services

and scheduling algorithms that can include application

data flow needs into resource allocation decisions for

I/O optimization. Provided with this information, and

since many HPC applications exhibit relatively regular

I/O patterns that would run in isolation in an archi-

tecture based on ad hoc file systems, these scheduling

algorithms should be able to coordinate/interleave the

staging phases from/to node-local storage in order to

minimize the I/O contention of the parallel file system.

This kind of algorithms have proved successful in avoid-

ing contention in shared burst buffers and we believe

that they could be extended to node-local storage [84].

Note, however, that major challenges still remain

that are associated with scheduling storage resources

on HPC systems. For example, is it possible to predict

the best moment to start staging data into a compute

node [85]? Would the data scheduler background trans-

fers affect the cluster’s networking subsystem so much

that they impaired normal application execution? How

should elastic workflows be addressed? What should

the scheduling algorithms do when a job crashes while

it is staging in data? Could these algorithms increase

the energy efficiency of the supercomputer?

Besides exploiting user-provided information con-

veyed through APIs and services, a step further con-

sists of taking advantage of self-describing I/O [54, 86–88],

which has become a key aspect in managing large-scale

datasets. By enriching the self-describing nature of

large datasets, and integrating it with data-aware in-

frastructure services, we are not simply moving and

storing large numbers of bytes but rather creating a

vehicle to extract the most possible information as ef-

ficiently as possible. The idea is to promote intelligent

I/O, a mechanism to allow information to be published

and later subscribed to at all scales, for all types of data.

The key to this is the ability to have self-describing data

in streams and to think of data in motion in the same

context as data at rest. We envision an extension to

the publish/subscribe metaphor to include a clerk that

will sit between the publisher and the subscriber and

mediate or orchestrate data streams in a dynamic fash-

ion.

In order to support the emerging analytics, process-

ing, and storage use cases, data cannot be considered

passive, hence directly falling through a chute con-

necting publishers and subscribers. Instead, a service-

oriented architecture must connect them; actors must

be involved to touch, manage, maintain, and abstract

the data and to support inspection tasks such as in code

coupling, in situ analysis, or visualization. These sets

of actions must be managed and orchestrated across the

wide array of resources in a way that enables not just

imperative connections (“Output A must go to Input

B”) but also new models of learning and intelligence in

the system (“Make this data persistent, but watch what

I have been doing to other datasets and preprocess this

data based on that”).

While one can build systems that can be tuned dy-

namically by a human in the loop, intelligent systems

with the capability to automatically tune workflows and

drive them according to data events observed at run-

time will lead the way in the design of modern com-

puting infrastructure. In this case, storage for appli-

cations, which can be in terms of memory, individual

burst buffers, burst buffers put together in an ad hoc file

system, and parallel file systems need data placed and

retrieved with enough contextual meaning that different

codes for these workflows can publish and subscribe to

this data. Thus, self-describing data streams can be at

the core of all these storage systems both for on-line

processing and for eventual postprocessing during the

scientific campaign.

7 Conclusions

Ad hoc file systems enable the usage of node-local

SSDs in many application scenarios. The three pre-

sented file systems BeeOND, GekkoFS, and BurstFS

can show only a small fraction of the possibilities of

such ad hoc file systems. Nevertheless, they start from

a production file system that transfers BeeGFS’s very

high client performance to BeeOND’s dynamic setting,

including distributed SSDs, and range to research file

systems showing possible performance capabilities ei-

ther when using local writes or when spreading meta-

data and data.

The research file systems also show that applica-

tions and usage scenarios have to be partially adapted



André Brinkmann et al.: Ad Hoc File Systems for High-Performance Computing 21

B
u
rs

t 
B

u
ff
er

P
a
ra

ll
el

 F
il
e 

S
y
st

em

Compute nodes run
application processes

 Application processes transfer
data directly from/to BBs/PFS in
an uncoordinated manner 

Burst buffers serve as PFS accelerators,
but do not coordinate application I/O

Resource 
Scheduler

Allocation of compute nodes and other
resources is orchestrated by the resource

scheduler, which is typically I/O oblivious

B
u
rs

t 
B

u
ff
er

P
a
ra

ll
el

 F
il
e 

S
y
st

em

Application processes transfer data
to/from ad hoc file systems, which
leverage node-local storage 

Data transfers across I/O tiers and ad hoc file systems
are orchestrated by a data-aware I/O scheduler which

coordinates with standard HPC resource schedulers

I/O Scheduler

Application data flow requirements provided
by users and self-describing data formats offer

information for optimal transfer scheduling

High-density node-local storage in compute
nodes allows creating heavily optimized,
ad hoc file systems for specific applications

Data 

Flow

Resource 
Scheduler

(b)

(a)

Fig.12. Designing a data-driven HPC cluster is possible by coupling application-aware data staging with the I/O isolation provided
by ad hoc file systems. On traditional HPC clusters applications access backend storage directly causing contention due to uncoordi-
nated I/Os. On a data-driven HPC cluster, application I/O is absorbed by node-local storage and transfers of application input and
output artifacts are coordinated to maximize the performance of backend storage. (a) Cluster with uncoordinated backend access. (b)
Data-driven cluster with coordinated staging.



22 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

to ad hoc file systems. Many commands such as ls -a

or mv are not widespread within parallel applications,

but completely abstaining from them would simplify

the development of ad hoc file systems while at the

same time significantly increasing performance. Code-

signing applications with storage systems can therefore

benefit both sides. The benefit of this codesign can

even be improved if reusable components can be ap-

plied as building blocks to shorten the time to develop

production-ready file systems.

This paper has shown that ad hoc file systems help

use the additional storage layer of node-local SSDs and

NVRAMs. Nevertheless, simply using these file systems

without considering data stage-in and stage-out within

the batch environment makes using them a manual and

error-prone task. It is therefore necessary to extend the

overall HPC framework to make the usage of ad hoc file

systems automatic, still leaving plenty of room for new

research directions in the scheduling domain, on code-

sign, component isolation and performance tuning.
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research team at the Johannes Guten-

berg University Mainz, Mainz. He

started his Ph.D. in 2016 after receiv-

ing his B.Sc. and M.Sc. degrees in

computer science from the Johannes

Gutenberg University Mainz. His

master thesis was in cooperation with IBM Research about

analyzing file create performance in the IBM Spectrum

Scale parallel file system (formerly GPFS). Marc’s research

interests focus on parallel and ad-hoc file systems and

system analytics.


	1 Introduction
	2 Use Cases for Ad Hoc File Systems
	3 Reusable Components
	3.1 HPC Network Fabric Compatibility
	3.2 Storage Device Compatibility
	3.3 Maximizing Concurrency
	3.4 Minimizing Resource Consumption
	3.5 Mochi Project

	4 Interfacing Ad Hoc File Systems
	4.1 User-Space File Systems
	4.2 FUSE File Systems

	5 Ad Hoc File System Implementations
	5.1 BeeGFS and BeeOND
	5.2 GekkoFS
	5.3 Burst Buffer File System (BurstFS)

	6 Feeding Ad Hoc File Systems: Data Staging
	7 Conclusions

