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Abstract With the convergence of high-performance computing (HPC), big data and artificial intelligence (AI), the

HPC community is pushing for “triple use” systems to expedite scientific discoveries. However, supporting these converged

applications on HPC systems presents formidable challenges in terms of storage and data management due to the explosive

growth of scientific data and the fundamental differences in I/O characteristics among HPC, big data and AI workloads.

In this paper, we discuss the driving force behind the converging trend, highlight three data management challenges,

and summarize our efforts in addressing these data management challenges on a typical HPC system at the parallel file

system, data management middleware, and user application levels. As HPC systems are approaching the border of exascale

computing, this paper sheds light on how to enable application-driven data management as a preliminary step toward the

deep convergence of exascale computing ecosystems, big data, and AI.
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1 Introduction

As the high-performance computing (HPC) com-

munity moves toward the exascale, big data and ar-

tificial intelligence (AI) are being hailed as the fourth

paradigm of science and have gained widespread suc-

cess in many fields, including astronomical image

processing [1], weather prediction [2] and biological data

analysis [3]. Driven by applications and algorithms,

HPC, big data and AI are converging to expedite sci-

entific discoveries. On the one hand, scientists demand

converged applications to obtain new insights into vari-

ous scientific domains. The fusion of HPC and big data

emanates high-performance data analytics (HPDA) to

extract values from massive scientific datasets via ex-

treme data analytics at scale [4]. The fusion of HPC

and AI emanates AI-enhanced HPC, which aims to im-

prove traditional HPC models by optimizing the para-

meter selections or training an AI model as an al-

ternative component [5]. On the other hand, classical

HPC algorithms shared by big data and AI are the in-

ternal impetus for convergence. For example, dense

linear algebra [6] and backtrack and branch-and-bound

algorithms [7] are commonly used in all three scenar-

ios. Since these algorithms have been highly optimized

in HPC systems, supporting higher-level big data and

AI applications on HPC systems could lead to superior

performance improvements.

Nevertheless, system architectures are designed to

best support the typical workloads running on clus-

ters. Traditional HPC systems aim to provide the maxi-

mum computational density and local bandwidth with

a given power/cost constraint for compute-intensive

workloads. In aspects of storage and I/O, parallel file

systems (PFSs, e.g., Lustre [8]) are prevalent to sup-

port HPC applications, which are characterized by high

bandwidth and burst I/O requests, larger volumes of

outputs relative to inputs, and well-structured data
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commonly stored in self-descriptive data formats (e.g.,

HDF5 1○ and NetCDF [9]). In contrast, big data appli-

cations are supported by distributed file systems (e.g.,

HDFS [10]) and characterized by larger volumes of in-

puts relative to outputs. Most files are modified by

appending new data rather than overwriting existing

data, and data are typically unstructured or semistruc-

tured. The storage and I/O features of AI applications

are similar to those of big data applications.

The largely different I/O characteristics among

HPC, big data and AI workloads lead to considerable

complexity of the converged applications. Moreover,

massive heterogeneous scientific data, close cooperation

between geo-distributed HPC clusters [11], and diverse

storage systems (e.g., Lustre, HDFS, and MongoDB 2○)

that suit different scenarios add complexity to data

management, causing PFSs to experience serious chal-

lenges in supporting converged applications.

First, the dramatically increased data volume and

the complexity of the converged applications exacerbate

the I/O bottleneck. Whereas computing infrastructure

innovation is driven by Moore’s law, I/O and storage

have lagged far behind computing. For example, com-

pute core concurrencies of exascale machines are ex-

pected to increase approximately 4 000 times compared

with early PFlops machines, but storage performance in

the same time period is predicted to improve only 100

times [12]. This imbalanced development between com-

puting and storage leads to the I/O bottleneck that

limits system utility and applicability. Because con-

verged applications couple simulations, data analytics,

and learning workloads to process TB- or even PB-

scale datasets [13, 14], the complex data access patterns

and frequent data sharing requirements between cou-

pled modules present serious challenges in I/O perfor-

mance.

Second, HPC systems require adaptive or intelli-

gent data management optimizations to accommodate

diverse application requirements. The convergence of

HPC, big data and AI has introduced variety in aspects

of I/O patterns, data types, and storage systems. How-

ever, the existing one-fits-all data management strat-

egy fails to realize the hidden benefits of HPC sys-

tems. As an example, many modern HPC systems

generally contain multiple storage tiers to improve the

I/O performance, such as the shared burst buffer in the

Cori system [15] and the node-local SSD in the Summit

system 3○. Although different data placement strate-

gies could lead to widely varying I/O performance, the

one-fits-all strategy that uses the top storage tier (e.g.,

SSD tier) as the performance tier and uses a lower sto-

rage tier (e.g., HDD tier) as the capacity tier might

lead to an inefficient use of the hierarchical storage ar-

chitecture because of load imbalance [16] and resource

contention [17].

Third, there is an increasing need for unified data

management mechanisms to support the analysis, pro-

cessing, and storage of massive heterogeneous scientific

data. In HPC systems, most scientific datasets are

managed by PFSs [18]. As scientific data are rapidly

increasing in data size and variety, PFS alone is diffi-

cult for matching the diverse use cases, such as query

processing [19] and efficient data reduction [20–22]. Pro-

viding a unified data management mechanism that not

only enriches the utility of PFSs but also reconciles the

divergence of different data models is vital to acceler-

ate scientific discoveries. However, such unified data

management is extremely challenging and has a wide

range of issues, including distributed and scalable meta-

data management, unified data access interface across

different storage systems, efficient index and data lo-

cating services at the granularity of both a file and a

record, and the management of diverse global names-

paces stemming from geo-distributed HPC clusters.

In this paper, we summarize our efforts in solving

these data management challenges to support the con-

verged applications on the Tianhe-2 system [23], which

has captured the number one spot on the TOP500 list 4○

6 times. Specifically, we look back at the initial design

of the hybrid hierarchy file system (H2FS) [24] and dis-

cuss how we optimize metadata management and small

file management to embrace converged workloads. We

also propose a spectrum of data management optimiza-

tions to fit the hierarchical storage architecture and di-

verse application demands. Together with application-

specific optimizations, converged applications are able

to run efficiently on the Tianhe-2 system.

Although our previous studies have addressed a

piece of the puzzle, each of them fails to meet all the re-

quirements of converged applications alone. For exam-

ple, while Pream [25] accelerates metadata operations by

preallocating metadata and initializing a proxy server

1○https://www.hdfgroup.org/solutions/hdf5, Jun. 2019.
2○https://www.mongodb.com/white-papers, Feb. 2019.
3○https://www.olcf.ornl.gov/for-users/system-user-guides/summit, May 2019.
4○https://www.top500.org/, Jun. 2019.
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to serve metadata requests, the I/O bottleneck remains

unsolved. Although tiered data management [26] takes

advantage of the hierarchical storage architecture and

workflow data access patterns to optimize the I/O per-

formance, locality-agnostic task placement results in re-

dundant data movement. Compared with our earlier

publications, this paper extends our earlier designs and

proposes complementary optimizations to build a more

comprehensive runtime environment for diverse work-

loads. Our contributions in this paper are summarized

as follows.

• We reveal the differences among HPC, big data,

and AI workloads and detail three data management

challenges when supporting converged applications on

HPC systems.

• We propose file system optimizations in terms

of metadata and small files to enable high-throughput

metadata processing and low-latency file access.

• We propose data management optimizations and

application-specific optimizations to provide better

support for converged applications.

The remainder of this paper is organized as follows.

We discuss some related studies in Section 2 and re-

view the design of H2FS in Section 3. Sections 4–6

present our efforts in solving the aforementioned data

management challenges at the levels of underlying file

system, data management middleware and user appli-

cation, respectively. We conclude the paper and discuss

future work in Section 7.

2 Related Work

With the convergence of HPC, big data and AI, data

management on HPC systems has received increased at-

tention. We detail works related to I/O optimization,

adaptive and intelligent storage optimization, and uni-

fied data management in the following subsections.

2.1 Hardware and Software Consolidated I/O

Optimizations

Hierarchical staging frameworks are increasingly

used in HPC systems to improve the I/O performance.

Hermes [27] is a multi-tiered I/O buffering system that

provides three data placement policies to efficiently uti-

lize all storage tiers. UniviStor [28] provides an inte-

grated storage subsystem with multiple layers of sto-

rage. All data are first written to memory-mapped

log-structured files for performance and then spilled

to lower storage tiers once their size exceeds a prede-

fined threshold. ARCHIE [29] is a hierarchical caching

framework for array data. It utilizes array data ac-

cess patterns to prefetch data, thereby optimizing the

I/O performance. Nevertheless, the potential of hete-

rogeneous devices is restrained by the redundant data

movement caused by locality-agnostic task placement.

In contrast to these studies, we customize data mana-

gement strategies for common data access patterns of

scientific workflows and propose complementary data-

aware task scheduling to make full use of different sto-

rage tiers. Many efforts have been made to provide

better support for the converged applications, such as

integrating PFS and HDFS to prevent repetitive data

movement between different storage systems [30], opti-

mizing shuffle strategies for big data analytics frame-

works to fully utilize HPC systems [31], preventing re-

dundant data access and applying speculative parallel

prefetch operations to optimize the I/O access of a deep

learning framework [32]. Whereas these studies propose

optimizations for a specific framework (e.g., Hadoop 5○

and Caffe [33]), we optimize the underlying PFS in terms

of metadata management and small files to provide

general support for big data and AI scenarios.

2.2 Emerging Adaptive and Intelligent Storage

Optimization

Due to the largely different I/O patterns of diverse

applications, providing a general data management

strategy that suits all scenarios is challenging. One of

the potential solutions is to enable adaptive and intel-

ligent storage optimization [34, 35]. Stacker [36] leverages

hierarchical n-grams models to predict upcoming read

requests and prefetch data from burst buffer to mem-

ory spaces intelligently. To optimize data placement

on a hierarchical storage architecture, OctopusFS [16]

explores the idea of using multiobjective optimization

techniques for making intelligent data management de-

cisions based on the requirements of fault tolerance,

data and load balancing, and throughput maximiza-

tion. Tahoe [37] characterizes memory access patterns

of tasks and uses this information to decide the opti-

mal data placement for multiple tasks. Compared with

these studies, we treat selecting the optimal storage tier

as a multiclassification problem and use machine learn-

ing techniques to make smart data placement strategies

under varied data access patterns and runtime system

statuses.

5○http://hadoop.apache.org/, Aug. 2019.
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2.3 Unified Data Management for Diverse Use

Cases

Several data management systems have been used

to manage massive heterogeneous scientific data, such

as iRODS 6○, SciDB [38] and ArrayUDF [39]. Although

these data management systems provide data locating

services, scientific data must be explicitly imported into

these systems before they can be queried. In contrast,

the index and query module (namely, UniIndex) pre-

sented in this paper prevents data movement cost by

extracting metadata from existing files and applying

an in-situ indexing strategy. To enable record locating

services, FastQuery [40] applies bitmap indexing tech-

niques and provides parallel query frameworks to ac-

celerate data selection on HDF5 and NetCDF data for-

mats. Chiu et al. [41] developed an in-memory version

of FastQuery, which combines distributed shared mem-

ory, spatial data layout reorganization, and location-

aware parallel execution to provide better support for

in-situ processing scenarios. Dong et al. [42] proposed

multidimensional binning and a spatially clustered join

algorithm to enable query processing with less I/O cost

and fast query response. Gu et al. [43] designed a query

interface for a high-level I/O library to allow arbitrary

combinations of range conditions on known variables.

Wu et al. [44] used the idea of the block index to enable

efficient point and small-range queries. However, these

studies store the indexes in a separate index file, which

may lead to potential write contention and extra index

load costs when processing query requests [45]. Com-

pared with these studies, UniIndex allows users to en-

able in-situ indexing and organizes the indexes as key-

value (KV) pairs to accelerate both index building and

query processing.

3 Design of H2FS

With increasing data scale, the conventional cen-

trally shared storage architecture suffers from I/O re-

quest contention since a large number of I/O clients

often request the shared I/O resources of one storage

server. In addition, applications with bursty I/O pat-

terns exacerbate the shortcomings [46]. For this rea-

son, the Tianhe-2 system adopts a novel hybrid hierar-

chy storage architecture to support the high scalability

of I/O clients and improve the burst I/O bandwidth.

Specifically, the upper layer is composed of I/O nodes

(IONs), where each of them is equipped with two 1 TB

PCIe SSDs. The bottom layer is composed of storage

servers, including metadata servers (MDSs) and object

storage servers (OSSs). The upper layer is the local

storage that provides sufficient burst performance for

applications. The bottom layer is the shared storage

that enables a large storage capacity. To fit this archi-

tecture and optimize the I/O performance, a user-level

virtualized file system named H2FS was designed and

implemented.

Fig.1 illustrates the architecture of the H2FS file

system. H2FS introduces the data processing unit

(DPU) and hybrid virtual namespace (HVN) to com-

bine the local storage and the shared storage into a

dynamic single namespace. Each DPU tightly couples

an ION with its local storage to provide service for N

computing nodes, where N is determined by deploy-

ment of the system. HVN provides a virtualized storage

space by aggregating several DPUs and shared storage

in a unified single namespace. Each HVN is assigned

to an application instance exclusively and can be cre-

ated/released dynamically. The file data in this unified

namespace can be located in DPUs, shared storage or

duplicated in both, which is determined by the appli-

cation at runtime. For the interface, H2FS keeps the

POSIX interface for compatibility and uses the layout

API, policy API, and HVN management API jointly

for performance optimization.

H2FS benefits both data-intensive applications and

typical HPC applications by providing three predefined

I/O modes: local I/O, global I/O, and hybrid I/O. In

local I/O mode, H2FS uses the local storage layer to

serve all the I/O requests and asynchronously moves

data to the shared storage layer. In global I/O mode,

H2FS directly forwards I/O requests to the shared sto-

rage layer without depositing data into local storage.

Specifically, local storage is completely transparent to

applications for the above two scenarios. In hybrid I/O

mode, H2FS combines the local storage layer and the

shared storage layer into a single namespace. With the

support of the extended layout APIs, data placement

can be explicitly controlled by users. For example, users

are allowed to use the local storage layer as the burst

buffer to stage all the intermediate data generated from

simulation workloads. Subsequent data analysis work-

loads can read data from the local storage layer directly

and write the output to the shared storage layer for per-

sistence.

6○https://irods.org/, Jun. 2019.
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Fig.1. Architecture of H2FS.

4 Further Optimizations to H2FS

H2FS was originally designed for scalable HPC ap-

plications; however, because HPC, big data and AI are

poised to converge, the file system must be optimized

further to adapt to hybrid workloads. In contrast to

traditional HPC applications, big data and AI appli-

cations are more likely to generate and access a large

number of relatively small files. This characteristic im-

poses a serious negative impact on the metadata mana-

gement and access latency of small files. Accordingly,

we further optimize H2FS in terms of metadata mana-

gement and small files to support the convergence of

HPC, big data and AI.

4.1 Optimizations to Metadata Management

Traditional PFSs target compute-intensive work-

loads and use striping for placing data over a multi-

tude of storage servers to provide aggregate I/O band-

width. With the use of a hierarchical storage archi-

tecture and predefined I/O modes, H2FS makes a fur-

ther step to benefit data-intensive workloads that in-

volve large sequential read/write requests. Unfortu-

nately, as with other PFSs, expensive metadata ope-

rations handicap hybrid workloads that require concur-

rent and high-performance metadata operations. One

such scenario is processing a large volume of scien-

tific datasets via big data processing frameworks (e.g.,

Hadoop and Spark 7○), which will generate many tem-

porary files during the shuffle phase. Due to the diskless

architecture of compute nodes, all these temporary files

are staged into the underlying PFS. For each temporary

file, the client (e.g., a map task) sends the file create re-

quest to the metadata servers of the PFS, which in turn

initialize a metadata object and return the result to the

client. With the increasing scale of big data workloads,

the metadata service needs to handle a vast number

of file create requests in a short period. The concur-

rent metadata requests cause the metadata service to

become a serious performance bottleneck.

Accordingly, we propose Pream, a lightweight meta-

data management framework that aims to address this

challenge. Pream targets scenarios of supporting data-

intensive workloads that generate a vast number of tem-

porary files on diskless compute nodes. It uses the pre-

allocation strategy [25, 47] and responds to metadata re-

quests in a proxy manner to provide a high-throughput

7○http://spark.apache.org/, Jun. 2019.
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metadata service. As illustrated in Fig.2, Pream is

mainly composed of the client and the proxy server.

When Pream is initialized, the proxy server sends file

create requests to the metadata servers of the under-

lying PFS in advance and manages these preallocated

file metadata locally to accelerate metadata operations.

The client intercepts metadata requests from user appli-

cations and redirects them to the proxy server. While

newly created temporary files keep residing in PFSs,

open/create requests of temporary files can be handled

by Pream locally without connecting with PFSs. Our

evaluation demonstrates that Pream can outperform

Lustre in many workloads and efficiently reduces the

latency of metadata operations.

4.2 Optimizations to Small Files

Applications that involve a large number of small

files are generally sensitive to access latency. The la-

tency of accessing a small file is mostly introduced by

two important operations: searching a given file in a

directory containing many subfiles/subdirectories and

reading the file from storage media. Accordingly, we

propose using the cuckoo hash [48] and the KV data

structure to accelerate the two operations, respectively.

Traditionally, the subfiles/subdirectories contained

in a directory are indexed by a hierarchical data struc-

ture such as HTree [49] or B+ Tree [50]. However, as the

total number of subfiles/subdirectories in a directory

increases, the hierarchical data structure expands and

has more levels. Searching a file in such a data struc-

ture requires multiple I/O requests issued to storage

media. Specifically, in each level of the tree, the file

system must generate a read request to fetch the node

of the corresponding level and then determine which

node should be fetched from storage media in the next

level. The dependency between two subsequent levels

indicates that the read requests from different levels

cannot be issued in parallel. Consequently, searching

a file in a large directory is likely to experience a long

latency since the multiple read requests must be issued

one by one.

To reduce the latency of searching files in

large directories, we propose keeping the sub-

files/subdirectories belonging to a parent directory in

a flat data structure, such as a hash table [51, 52], where

the entire hash table can be fetched from storage me-

dia via exactly only one read request. The inspiration

behind our new proposal is that the latency of a large

I/O request is mostly shorter than the sum of laten-

cies of multiple small I/O requests since the prevalent

storage devices, such as SSDs, are prone to provide

higher bandwidth, while the access latency is hard to

reduce due to the complex software stack. We propose

fetching the entire parent directory from storage devices
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Fig.2. Architecture of Pream.
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through only one large read request and then perform-

ing an in-memory search, rather than searching a sub-

file/subdirectory from an on-disk data structure that

will inevitably introduce multiple small read requests.

Consequently, our method is likely to achieve lower la-

tency in searching a subfile/subdirectory in a parent

directory, which is important for accessing a small file.

Furthermore, it is possible that the distribution of items

in a traditional hash table is unbalanced. To handle this

situation, we adopt the cuckoo hash, which employs

multiple hash functions to map each item to multiple

buckets. When inserting an item into the hash table

and the target bucket determined by one hash function

is full, the item can be directed to another bucket us-

ing the next candidate hash function. In this way, the

items will be evenly distributed in all buckets.

Another optimization to small files is that we de-

sign a KV store to organize data on disks. Traditional

file systems mostly organize data on disks via indirect

addressing. The multiple levels of indirect addressing

also introduce additional read requests when fetching

file data from disks. Taking the Ext4 file system [53] as

an example, if the disk is formatted into 1 KB blocks, a

file larger than 12 KB requires the first level of indirect

addressing; accordingly, fetching the file data from disk

requires at least two read requests. Furthermore, a file

larger than 256 KB requires a second level of indirect

addressing, and fetching the file data from a disk re-

quires at least three read requests. For the same reason

analyzed above, the multiple read requests will signifi-

cantly increase the latency of accessing a small file. In

this work, we develop a KV store to organize small files

on disks, where the key is the inode number of a file and

the value with varied length contains the file content.

Specifically, the backend storage device is managed by

the proposed KV store directly. It segments the disk

space into multiple zones, where each of them consists

of many fix-sized blocks (e.g., 8 KB–64 MB). Since each

block holds the value of a specific key, the proposed KV

store guarantees that a small file can be fetched from

disk by only one read request via the GET operation.

In conclusion, we optimize the performance of small

files in two aspects, i.e., the metadata and file content.

Both optimizations share the same principle, i.e., fetch-

ing a small file from disk by one large read request,

rather than by multiple small requests, helps to remark-

ably reduce the access latency.

5 Data Management Optimizations

We propose a data management middleware to pro-

vide better support for converged applications on HPC

systems. Currently, this middleware contains the fol-

lowing components:

• tiered data management: manage data on hierar-

chical storage architecture and customize data mana-

gement strategies to fit workflow data access patterns;

• data-aware task scheduling: cooperate with re-

source management software to bring computations to

the data;

• indexing and query processing: enhance data lo-

cating services at the granularity of both a file and a

record;

• intelligent storage optimization: learn the data ac-

cess patterns between components of converged appli-

cations, and use the learned model to make intelligent

data management decisions.

5.1 Tiered Data Management

Storage hierarchies are becoming deeper on modern

HPC systems, as the emerging memory-based staging

solutions use the memory space of compute nodes to

stage intermediate data. However, the burden of mak-

ing data management decisions among different storage

tiers is left to users since the memory storage tier is

managed by the I/O library or in-memory file system

separately. To provide unified management of different

storage tiers, we propose a tiered data management sys-

tem (TDMS). As illustrated in Fig.3, TDMS acts as a

shared file system and provides both the POSIX inter-

face and encapsulated API that allows applications to

stage data on heterogeneous storage devices. It em-

ploys a master-slave architecture, where the master is

primarily responsible for managing the global metadata

of the system. Each worker stores data as blocks in

various available storage tiers, including local memory,

local SSD of ION and the shared storage layer.

To make full use of heterogeneous storage devices,

TDMS customizes different data management strate-

gies for common workflow data access patterns, which

are categorized into pipeline, scatter, gather, multicast

and reduce patterns [54, 55]. These customized strategies

focus on data placement on different storage tiers, in-

cluding the horizontal data distribution strategy (which

worker to store the data), vertical data distribution

strategy (which storage tier to use), the block size of

files, and cross-tier load balance strategy. Considering
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the performance diversity of different storage architec-

tures and the variety of scientific workflows, TDMS

also provides extended APIs that allow users to cus-

tomize their own data management decisions for user-

defined data access patterns. More details about the

customized data management strategies can be found

in our previous work [26].

5.2 Data-Aware Task Scheduling

When supporting converged applications on HPC

systems, a task scheduling strategy should bring com-

putations to the data rather than bring data to the

computations. Nevertheless, the default task schedul-

ing scheme in HPC resource management systems (e.g.,

Slurm [56]) is data locality agnostic since each compute

node has the same distance to the underlying PFS.

With the use of a hierarchical storage architecture, in-

termediate data generated from converged applications

can be cached in compute nodes. The data locality-

agnostic scheduling in these use cases, however, would

result in a substantial amount of network traffic since

data-dependent read tasks may be launched on different

nodes from the write tasks.

For this reason, we propose data-aware task schedul-

ing (DATS) to take advantage of data locality and to

bring computations to the data. The key idea of DATS

is to add data locality labels for each task dynamically

and rank available resources based on these labels. The

more the data that a compute node holds, the higher

the priority that it has. The following task will be

scheduled to the node that holds the most required

data. As illustrated in Fig.4, DATS can be summa-

rized in the following steps.
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• Step 1. Extract data dependencies from the job

script (e.g., workflow description file in scientific work-

flows) and obtain the input file list of each pending

task.

• Step 2. Retrieve data locality information of input

files and identify the compute nodes that hold most of

the data.

• Step 3. Tag pending tasks with locality labels that

stand for the hostnames of compute nodes received from

step 2.

• Step 4. Guide the resource management system to

rank available resources and then schedule the pending

task to the resource with the highest score.

5.3 Indexing and Query Processing

As data analysis scenarios continue to increase on

HPC systems, the ability to select a small fraction of

data from a large volume of scientific datasets is vital

for accelerating scientific discoveries. However, PFSs

alone cannot provide efficient data locating services at

the granularity of both a file and a record. User-defined

metadata (UDM), such as event type and resolution

in meteorology scenarios, are commonly used to anno-

tate scientific datasets. Although UDM can be imple-

mented as extended attributes in inode structures [19],

UDM-based queries are not supported by PFSs out of

the box. In addition, the increasing data scale leads

to individual files with millions of records. Although

building indexes based on the records of each file has

been proven to be an efficient way to accelerate record-

level query operations [57], PFSs lack the ability to do

this directly. Consequently, crawling the file system to

locate target files or retrieving all the data belonging to

a specific file to locate target records is inefficient and

costly.

We design an indexing and query processing mod-

ule named UniIndex, which integrates parallel meta-

data extraction, in-situ indexing, lightweight bitmap-

range index structure [58], in-memory cache layer, and

two-level query processing to provide efficient data lo-

cating services. As illustrated in Fig.5, the UniIndex

service can be set up on dedicated compute nodes and

provides both command-line utilities and encapsulated

APIs for interaction. For UDM-based file locating ser-

vices, UniIndex provides a mounting API to attach an

underlying PFS to its own namespace. During the

mounting process, it extracts UDM from existing files

and reconstructs them as KV pairs. For files in HDF5

and NetCDF data formats, all datasets and their corre-

sponding attributes within a file will also be extracted.

For record locating services, UniIndex allows users to

enable in-situ indexing when applications are writing

data to the underlying PFS. Specifically, we propose

the bitmap-range index, which combines the virtues of
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the Bitmap index [57] and MinMax index [59], to provide

an efficient and lightweight index structure.

Applications
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Fig.5. UniIndex architecture overview.

The metadata manager manages the extracted

UDM and the in-situ generated bitmap-range indexes

as KV pairs and maintains multiple in-memory data

structures to accelerate query processing. To survive

unexpected server failures, updates to the in-memory

cache layer should be persisted to the disk. We choose

LevelDB 8○ as the backend database since it is opti-

mized for write-intensive workloads and therefore ac-

celerates the metadata extraction process and in-situ

indexing. Updates to the in-memory cache layer trig-

ger synchronized updates to the LevelDB, which store

the database file on the underlying PFS. To keep the

consistency between external KV pairs and files resid-

ing in the underlying PFS, the UniIndex client service

captures the metadata requests (e.g., open, remove)

from the application and updates the locating metadata

objects asynchronously. By applying the in-memory

cache layer and implementing a parallel query process-

ing framework, the time to build indexes and locate

target files or records can be dramatically reduced.

5.4 Intelligent Storage Optimization

In a hierarchical storage architecture, different data

placement strategies could lead to widely varying I/O

performance due to the largely different latencies,

bandwidths and capacities of heterogeneous storage

devices [16, 17]. In contrast to the one-fits-all strategy,

we believe that both data access patterns and real-

time system status should be taken into consideration

to make the optimal data placement decision. For ex-

ample, if the top storage layer has sufficient space to

stage all the intermediate data during the execution of

converged applications, then choosing the top storage

layer to serve every write request will provide superior

I/O performance. Otherwise, only data that will be im-

mediately accessed by the subsequent task can be writ-

ten into the top storage layer, and other data should be

written to the lower storage layer to prevent resource

contention. Although setting these rules manually may

perform well for some applications, providing a general

solution that can be applied in different storage archi-

tectures and diverse applications is challenging.

The intelligent storage optimization module is de-

signed to leverage machine learning techniques to mine

the relationship between data placement strategies and

I/O performance under various data access patterns

and system statuses and to use the learned model

to choose the optimal storage tier intelligently. We

propose adaptive storage learner (ASL) as an exam-

ple to provide better support for scientific workflows.

We identify 11 parameters that affect the I/O perfor-

mance and collect 3 810 I/O records from 58 workflows

with varying scales and I/O characteristics. A gradi-

ent boosting algorithm with classification and regres-

sion tree (CART) 9○ as base learners is used to train

the prediction model. The final prediction model can

be treated as an ensemble of CART models.

Fig.6 presents the architecture overview of ASL.

ASL acts as a middleware integrated with an existing

data management system that can manage data on a

hierarchical storage architecture. During the workflow

execution, ASL extracts workflow characteristics (e.g.,

control-flow dependencies and data-flow dependencies

between workflow tasks) from the workflow description

file and collects real-time system status (e.g., the perfor-

mance metrics and the remaining capacity of different

storage tiers) dynamically. For each file create request,

ASL constructs variables related to the workflow char-

acteristics and system status and uses the prediction

model to intelligently choose the target storage tier.

As in the case of new workflows, ASL can also predict

the result since none of the input variables depend on

historical information.

8○https://github.com/google/leveldb, Oct. 2019.
9○https://github.com/catboost/catboost, Sept. 2019.
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6 Application Optimizations

In addition to file system and data management op-

timizations, we leverage application-specific optimiza-

tions to accelerate diverse workloads, including tradi-

tional HPC applications, typical big data applications,

and compounding workflow applications.

6.1 Experimental Setup

We ran the evaluated applications on the Tianhe-

2 System, which consists of 16 000 compute nodes.

Each compute node is equipped with two 2.20 GHz

Intelr Xeonr E5-2600 processors and 64 GB of DRAM.

All these nodes are connected using a dedicated TH

Express-2 network switch [23], the customized internal

high-speed interconnect of the Tianhe-2 system. The

storage subsystem contains 256 IONs and 64 storage

servers with a total capacity of 12.4 PB. Specifically,

each I/O node is configured with two PCIe SSDs that

provide a total capacity of 2 TB. We use H2FS as the

underlying file system during the evaluation.

6.2 HPC Application: Grapes

The Global/Regional Assimilation Prediction Sys-

tem (Grapes) [60] is a middle-scale weather forecast sys-

tem that has been developed by the China Meteorolog-

ical Administration since 2001. Grapes, as well as the

other earth science’s simulation software, employs a col-

lected I/O model. The root processor collects all output

data from other processors, stores the data in arrays in

sequence and writes the arrays to disk while other pro-

cessors are waiting. Unfortunately, Grapes must output

data frequently during the simulation. Consequently,

Grapes spends increasingly more time for I/O with in-

creasing parallel scale.

The physics limit of the I/O wall is hard to break

through, but we can find some methods to step around

it if we view the problem from the perspective of the

whole application. The method that we implement to

optimize the I/O problem is splitting the processes into

two different parts, one for the main calculation and the

other only for I/O, to overlap the I/O and calculation

processes. After splitting, we subdivide the calculation

processors into different groups, and each group is as-

signed one I/O processor. Each I/O processor collects

the output data from the processors of its group dur-

ing the output phase, which can effectively reduce the

gather communication cost and call the parallel I/O

after the data arrangement.

As shown in Fig.7, we evaluate the wall clock time

of Grapes under various numbers of computation tasks.

When the number of tasks is less than 768, up to 2 I/O

tasks are used in the optimized version because of the

limited scale. The elapsed time of the original version,

the optimized version with 2 I/O tasks and the opti-

mized version with 24 I/O tasks are presented in three

bars from left to right. The performance of Grapes

increases almost 300% in 3 072 CPU cores after our op-

timization. The optimized version has been used in the

1 km model of the South China High Precision Weather

Forecast System since 2017. It enables the system to

accomplish the six-hour forecast in eight minutes with

5 300 CPU cores.
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Fig.7. Grapes I/O optimization.

6.3 Big Data Workloads

As detailed in Section 4, we improve the H2FS in

terms of metadata management and small files to sup-

port big data applications. To evaluate the efficiency of

our improvement, we resort to genome-wide association

studies (GWAS) [61] to demonstrate that the improved

H2FS is able to provide more optimization options for

users. A typical GWAS job processes the genetic data

of millions of populations, where each population cor-

responds to a file that is several gigabytes. The job

is divided into a large number of individual tasks that

can be executed in parallel. The I/O patterns exhib-

ited among these tasks are shown in Fig.8. Specifically,

each file will be accessed by all these tasks, where each

task demands a segment of data from every file, and

the segments demanded by a given task from different

files share the same offset and length. For this I/O pat-

tern, the parallel tasks introduce serious contention on

all these files and inevitably degrade the overall perfor-

mance.
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Fig.8. The I/O patterns of GWAS.

In our work, we reorganize the data segments in-

volved in each task to produce a more I/O-friendly

workload. Specifically, we divide each file into a

configurable number of segments (e.g., N), where the

i-th segment of each file has the same offset within the

corresponding file. The set of files to be analyzed is

taken as a matrix, where each file corresponds to a

row, and the segments from different files sharing the

same offset constitute a column. Accordingly, we pro-

pose converting the traditional row-based organization

(i.e., the raw data belonging to a given population are

stored as a file) to the column-based organization (i.e.,

the segments from different files sharing the same off-

set are stored as a file). In this way, different tasks

will not access the same file, and the contention will be

significantly alleviated. However, this optimization pre-

sented above is likely to produce a large number (e.g.,

N) of small files, which will introduce challenges into

the metadata management of file systems. Fortunately,

our improved H2FS is capable of handling a large num-

ber of files and can efficiently support this optimization.

To demonstrate the efficiency of our proposal, we

analyze the genetic data of as many as 40 000 popula-

tions. Fifty compute nodes are used during the evalua-

tion. The experimental result is shown in Fig.9. As

shown in this figure, the total time consumed by an

analysis job is increased exponentially with respect to

the increase in populations for the original method (de-

noted by origin), while for our method (denoted by

gwasin), the time just increases linearly.
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Fig.9. Performance of genetic data analysis.
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DenseIO 10○ is a data-intensive application that runs

on top of the Tianhe-2 system. It applies a MapReduce-

like framework to handle word count workloads and

generates many temporary files during its execution.

Depending on the type of words to be counted, the

number of temporary files changes dramatically. Due

to the expensive metadata operations of PFSs, concur-

rent file create requests lead to a serious performance

bottleneck. As we discussed in Subsection 4.1, we pro-

pose Pream to accelerate metadata operations by pre-

allocating file metadata and serving metadata requests

in a proxy manner. Fig.10 illustrates the performance

improvement of DenseIO under various numbers of tem-

porary files. Serving the metadata requests by the un-

derlying PFS is denoted as Original-Version, and serv-

ing the metadata requests by the Pream middleware is

denoted as Pream. We also compare the performance

of Pream with the lustremount strategy [62], where a lo-

cal file system is mounted and backed by an H2FS file.

For 1k temporary files, Pream outperforms Original-

Version with a 5x speedup since the open/create re-

quests of these temporary files can be handled by proxy

servers locally without connecting with the underlying

PFS. The lustremount strategy shows similar perfor-

mance since it aggregates massive temporary files to-

gether and therefore alleviates the metadata bottleneck.

As the number of temporary files increases, Pream

shows a clear performance improvement over the lus-

tremount strategy. This improvement is because the

lustremount strategy creates file metadata as needed

and leads to bursty metadata requests. In comparison,

Pream applies the preallocation strategy and serves the

metadata requests more efficiently.
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Fig.10. Performance of DenseIO workload.

We evaluate the record locating performance of Uni-

Index using the GenBase [63] dataset. The GenBase

dataset is a two-dimensional array that records the

gene expression values of different patients. We com-

pare the performance of UniIndex with that of an ex-

isting tool, FastQuery [40]. Although there are sev-

eral improvements [41, 42] to FastQuery, we choose Fast-

Query as the baseline since it can easily be obtained and

installed. UniIndex applies in-situ indexing and cal-

culates bitmap-range indexes when the GenBase data

generator is writing data to PFS. In comparison, Fast-

Query applies a post-indexing strategy and needs to

read data from disks before building bitmap indexes.

As illustrated in Fig.11, UniIndex shows much better

performance than FastQuery in all cases. For a 144 GB

data size, UniIndex (16 cores) achieves a 37.2x speedup

relative to FastQuery (16 cores). UniIndex outperforms

FastQuery by applying a lightweight bitmap-range in-

dex and overlapping the index computing time with the

data writing time. In comparison, FastQuery takes a

significant amount of time to compute the bitmap in-

dex. Moreover, instead of writing indexes into a sepa-

rate file as FastQuery does, UniIndex implements the

index as KV pairs and reduces the index writing over-

head.
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We also compare the query performance of UniIn-

dex with that of FastQuery and the traverse strategy.

Fig.12 shows the single-core query performance under

varied query selectivity, which controls the percentage

of elements that would be selected from the original

datasets. We fixed the data size of the GenBase dataset

10○https://github.com/hb-lee/DenseIOTest, Sept. 2019.
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to 144 GB. The elapsed time of the traverse strategy

remains stable since it reads the entire dataset despite

the query selectivity. FastQuery performs slightly bet-

ter than UniIndex when the selectivity is set to 1%

and 0.5% because FastQuery can answer the queries

by performing bitwise AND/OR operations on bitmap

indexes. As the selectivity decreases, UniIndex outper-

forms FastQuery since only a few virtual index blocks

are filtered to perform the fine-grained selection. For

0.001% selectivity, UniIndex shows a 1.16x speedup and

190x speedup relative to FastQuery and Traverse, re-

spectively.
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Fig.12. Query performance under varied selectivity.

6.4 AI Workloads

Although deep learning has emerged as a new

technology for analyzing large volumes of scientific

data, training a deep neural network is nontrivial. Such

training involves processing a tremendous amount of

training data iteratively to converge to the desired

network accuracy. To accelerate reading the inputs

and prevent the I/O bottleneck caused by many small

files, raw training samples are often reformatted to

large files (e.g., LMDB database files 11○) before training.

Such preprocessing is extremely time-consuming since

it incurs frequent metadata requests to load raw data

from persistent storage. As an example, the ImageNet

dataset [64] contains more than 1.3 million images, and

each image file is 10 KB–150 KB in size. It takes more

than 12 hours to preprocess the entire dataset on the

H2FS. As scientific data are rapidly increasing in data

size, preprocessing the raw data exposes new bottle-

necks in the I/O system.

As our improved H2FS is optimized in terms of

metadata and small files, there is no need to take special

measures to address the large number of small files. To

demonstrate the effectiveness of small file optimizations

as discussed in Subsection 4.2, we first compare the

throughput of metadata operations using the mdtest

benchmark 12○. A 1 TB PCIe SSD is used as the back-

end storage device of the evaluated metadata server.

Managing metadata objects on top of the Ext-4 file

system with the B+-Tree index structure is denoted as

Original-Version. Managing metadata objects on top

of the proposed KV store with the cuckoo hash index

structure is denoted as Optimized-Version. Fig.13 il-

lustrates the result when a single client is used to per-

form creation, stat and read operations. During the

evaluation, the mdtest benchmark generates 100 000

files where each of them is 1 KB in size. For the

creation and the stat operation, the Optimized-Version

outperforms the Original-Version with a 2.7x and 2.9x

speedup, respectively. This is because all subfiles be-

longing to a parent directory are organized in a flat

data structure and can be located in constant time. For

the read operation, the Optimized-Version shows simi-

lar throughput to the Original-Version since the size of

each file is set to 1 KB, which means it contains only

one block and incurs one read request no matter how

data are organized on the backend storage device.
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Fig.13. Throughput comparison of metadata operations.

11○https://lmdb.readthedocs.io/en/release/, Aug. 2019.
12○https://sourceforge.net/projects/mdtest, Sept. 2019.
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Fig.14 illustrates the performance improvement of

our strategy over three datasets. The Galaxy dataset 13○

contains more than 43 513 astronomy images with a to-

tal size of 1.4 GB. The Amazon reviews dataset 14○ con-

tains the data of 82.8 million reviews with a total size of

14.3 GB. Pre-processing of these datasets on top of the

original H2FS and the optimized H2FS are denoted as

Original-Version and Optimized-Version, respectively.

As the size of the dataset increases, Optimized-Version

shows a more obvious performance improvement. For

the ImageNet dataset, Optimized-Version achieves a

3.5x speedup relative to Original-Version.
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Fig.14. Pre-processing of the raw training data.

6.5 Scientific Workflows

A scientific workflow is the assembly of complex sets

of scientific data processing activities with data depen-

dencies between them [65]. Due to the repetitive nature

of scientific discovery, scientific workflows are increas-

ingly used in HPC environments to manage complex

simulations and analyses. For example, the Montage

workflow [66] is an astronomical image processing work-

flow that assembles the Flexible Image Transport Sys-

tem (FITS) images into custom mosaics of the sky. The

Binary-Tree workflow [67] is a synthetic benchmark that

evaluates the I/O performance of the underlying file

system. While these workflows exhibit complex data

dependencies, frequent data sharing requirements be-

tween loosely coupled tasks become an impediment to

the overall performance.

Targeting scientific workflows, we identify coarse-

grained data access patterns of workflow tasks and

leverage customized data management (CDM) strate-

gies to make full use of the tiered storage architecture

on the Tianhe-2 system. As an example, in the Mon-

tage workflow, the input FITS images are scattered to

available compute nodes (scatter pattern) and are pro-

cessed in a pipeline (pipeline pattern). During the exe-

cution, one of the compute nodes will collect the inter-

mediate data (gather pattern) to determine the back-

ground adjustment parameter and multicast it to other

compute nodes (multicast pattern). Finally, the ad-

justed data will be collected to obtain the final out-

put (gather pattern). For the pipeline pattern, CDM

chooses the local memory of each compute node as the

primary storage tier to minimize the data access time

for subsequent tasks. The generated intermediate files

will be stored in the same node where the task cor-

responding to that stage runs. In comparison, in the

gather pattern, one subsequent task consumes multi-

ple output data of previous tasks. Therefore, CDM

allows users to define a set of compute nodes to col-

lect these output data in all available storage tiers.

When the subsequent gather or reduce tasks are sched-

uled on these nodes, they can obtain all the required

data without retrieving data from distributed compute

nodes. The DATS module is responsible for bringing

computations close to data without user involvement.

To provide better support for scientific workflows, we

implemented DATS in HTCondor 15○, a commonly used

resource management system that is coupled with work-

flow management systems. Once DATS is enabled,

data-dependent tasks are scheduled to compute nodes

that hold the input data automatically.

Fig.15 and Fig.16 present the performance improve-

ments in the Montage workflow and the Binary-Tree

workflow when CDM and DATS are enabled, respec-

tively. Thirty-two compute nodes are used during the

evaluation. We allocate 20 GB DRAM of each com-

pute node to constitute the memory storage tier when

CDM is enabled. For the Montage workflow, we fix

the scale of the input data to 10 × 10 degrees and

break down the I/O time of each phase. CDM+DATS

provides a 1.6x speedup in overall performance com-

pared with the original-version base case. Specifically,

mImgtbl and mAdd enjoy the most benefits of pattern-

specific optimizations and show 3.7x speedups in data

13○https://galaxyproject.org/data-libraries, Sept. 2019.
14○http://jmcauley.ucsd.edu/data/amazon, Aug. 2019.
15○https://research.cs.wisc.edu/htcondor/index.html, Aug. 2019.
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100 200 300 400

Original-Version
CDM
CDM+DATS

3000

2500

2000

1500

1000

500

0

Data Size (GB)

O
v
e
ra

ll
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s)

500 600 700 800

Fig.16. Performance of Binary-Tree workflow.

reading since all data are precollected in one node un-

der the gather data access pattern. The mProject,

mDiffFit and mBackground phases also show obvious

I/O speedups because of the efficient data sharing pro-

vided by the pipeline data management optimizations.

For the Binary-Tree workflow, we vary the data scales

from 100 GB to 800 GB. Compared with the original-

version base case, CDM provides better performance

by utilizing the tiered storage architecture for efficient

data sharing. Although CDM optimizations alleviate

the data transfer between memory and disks, the data

transfer cost between compute nodes still exists. With

DATS optimization, dependent tasks can be scheduled

to the worker node where the input data are located.

Clearly, CDM+DATS performs further optimization

and achieves a 1.54x speedup over the original version

for 800 GB data size.

In addition to CDM and DATS, we also enable the

ASL to intelligently choose the optimal storage tier

for scientific workflows, as discussed in Subsection 5.4.

Fig.17 presents the results of the GenBase workflow [63]

under various data scales. Specifically, for 80k× 80k in-

put data scales, 120 GB of raw data are processed and

will generate more than 400 GB of intermediate data.

Choosing the memory storage tier and the SSD storage

tier manually to stage all intermediate data are denoted

asMemory-strategy and SSD-strategy, respectively. En-

abling ASL to intelligently make data placement deci-

sions is denoted as ASL-strategy. When the data size is

smaller than 40k× 40k, Memory-strategy performs bet-

ter than SSD-strategy since the memory storage layer

has sufficient space to stage all the intermediate data.

As data size continues to increase, Memory-strategy mi-

grates data from the memory tier to the SSD tier to

make room for the newly created file. The resource

contention between regular write requests and backend

data migration requests leads to performance degrada-

tion. Since the SSD tier has sufficient space to stage all

intermediate data during our evaluations, the resource

contention problem does not occur in SSD-strategy. In

contrast to these strategies, ASL-strategy combines in-

formation including the available space of each storage

layer, the input size of the current task, and the dis-

tance of dependent task to choose the optimal storage

tier for each intermediate file. By leveraging the work-

flow characteristics and preventing resource contention,

ASL-strategy shows the best performance in all cases.

20kΤ20k

900

800

700

600

500

400

300

200

100

0
40kΤ40k 60kΤ60k

Data Size

Memory-Strategy

SSD-Strategy

ASL-Strategy

O
v
e
ra

ll
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s)

80kΤ80k

Fig.17. Performance of GenBase workflow.



Yu-Tong Lu et al.: Design and Implementation of the Tianhe-2 Data Storage and Management System 43

7 Conclusions

The explosive growth in scientific data and new ap-

plication requirements are driving the need for con-

verged data management at the intersection of HPC,

big data and AI. In this paper, we highlighted three

data management challenges in supporting converged

applications on HPC systems, including the exacer-

bated I/O bottleneck, the emerging adaptive and in-

telligent storage optimizations, and the unified mana-

gement of massive heterogeneous scientific data. Cen-

tering around the objective of accommodating the re-

quirements of converged applications, we summarized

our experience in addressing these challenges on the

Tianhe-2 system. At the file system level, we opti-

mized H2FS further in terms of metadata management

and small files to provide better support for concur-

rent metadata requests and small file scenarios. At the

data management middleware level, we proposed tiered

data management, DATS, indexing and query process-

ing, and an intelligent storage optimization module to

enhance data management services for PFS. At the user

application level, application-specific optimizations are

adopted to expedite the execution, including overlap-

ping the I/O and the calculation, reorganizing data

structures, and identifying workflow data access pat-

terns.

Although we have explored some solutions to adapt

to the ever-changing application demands, many un-

precedented challenges still remain to be researched.

These challenges include the followings:

• innovative storage architecture that can best uti-

lize the emerging non-volatile storage devices (e.g., Intel

Optane DC Persistent Memory 16○);

• high-performance, scalable, and fault-tolerant

PFS for next-generation exascale system;

• data-centric programming models that are able

to express massive parallelism, data locality, and re-

silience.

In the future, we will focus on these challenges and

devote our efforts to establishing a prosperous ecosys-

tem for exascale computing.
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