
Chen Q, Chen K, Chen ZN et al. Lessons learned from optimizing the Sunway storage system for higher application

I/O performance. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35(1): 47–60 Jan. 2020. DOI

10.1007/s11390-020-9798-5

Lessons Learned from Optimizing the Sunway Storage System for
Higher Application I/O Performance

Qi Chen1, Kang Chen1, Zuo-Ning Chen2, Fellow, CCF, Wei Xue1, Xu Ji1,3, and Bin Yang3,4

1Department of Computer Science and Technology, Beijing National Research Center for Information Science and
Technology (BNRist), Tsinghua University, Beijing 100084, China

2Chinese Academy of Engineering, Beijing 100088, China
3National Supercomputing Center in Wuxi, Wuxi 214100, China
4School of Software, Shandong University, Jinan 250101, China

E-mail: chenq17@mails.tsinghua.edu.cn; chenkang@tsinghua.edu.cn; chenzuoning@vip.163.com
E-mail: xuewei@tsinghua.edu.cn; sov.matrixac@gmail.com; bin.yang@mail.sdu.edu.cn

Received July 30, 2019; revised November 28, 2019.

Abstract It is hard for applications to make full utilization of the peak bandwidth of the storage system in high-

performance computers because of I/O interferences, storage resource misallocations and complex long I/O paths. We

performed several studies to bridge this gap in the Sunway storage system, which serves the supercomputer Sunway Tai-

huLight. To locate these issues and connections between them, an end-to-end performance monitoring and diagnosis tool

was developed to understand I/O behaviors of applications and the system. With the help of the tool, we were about to

find out the root causes of such performance barriers at the I/O forwarding layer and the parallel file system layer. An

application-aware I/O forwarding allocation framework was used to address the I/O interferences and resource misallocations

at the I/O forwarding layer. A performance-aware data placement mechanism was proposed to mitigate the impact of I/O

interferences and performance variations of storage devices in the PFS. Together, applications obtained much better I/O

performance. During the process, we also proposed a lightweight storage stack to shorten the I/O path of applications with

N-N I/O pattern. This paper summarizes these studies and presents the lessons learned from the process.

Keywords high performance computing, I/O interference, parallel file system, performance optimization, resource mis-

allocation

1 Introduction

Sunway TaihuLight (TaihuLight) 1○ was built to

accelerate scientific research. It has 40 960 260-core

SW26010 processors, with a peak performance of 125.43

FLOPS. The Sunway storage system provides global

storage service for TaihuLight via the file system inter-

face. It uses an I/O forwarding architecture [1–3] shown

in Fig.1 (details in Section 2).

The Sunway storage system uses the Lustre file

Sunway
Computing Nodes

Data Processing
Nodes

I/O Forwarding Service

Parallel File System Service

LWFS LWFS

Parallel File System Client

Fig.1. Sunway storage architecture.

Regular Paper

Special Section on Selected I/O Technologies for High-Performance Computing and Data Analytics

This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000504, the
Natural Science Foundation of China under Grant Nos. 61433008, 61373145, and 61572280, and China Postdoctoral Science Foundation
under Grant No. 2018M630162.

1○https://www.top500.org/system/178764, Nov. 2019.

©Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020

http://dx.doi.org/10.1007/s11390-020-9798-5

48 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

system [4] as the backend parallel file system (PFS),

which has an overall capacity of 10 PB and a peak band-

width of 220 GB/s. Together with I/O forwarding ser-

vices, the whole system supports over 40 000 comput-

ing nodes and data processing nodes. The storage sys-

tem provides a POSIX compatible interface to ease the

application development and to support legacy codes.

During the daily use, the storage system supports the

concurrent running of over 100 applications.

In such a complex system, applications can easily

perceive low I/O performance compared with the peak

performance of the PFS. For example, without tuning,

ShenTu [5], a large-scale graph computing engine, ob-

tained at most 20 GB/s throughput from one dedicated

storage partition containing 140 storage nodes with an

I/O bandwidth of 100 GB/s.

To find the root causes, a performance monitoring

and diagnosis system, Beacon [6], was developed to un-

derstand I/O behaviors of applications and the sys-

tem. With the help of this tool, we found that I/O

interferences [7, 8] and resource misallocations, which

may happen at both the I/O forwarding layer and the

backend PFS layer, hindered applications from getting

high I/O performance from the storage system.

The I/O interferences came from the sharing nature

of the I/O forwarding services and the backend PFS.

I/O requests from different applications are received by

the I/O forwarding services and then forwarded to the

backend PFS. The requests are finally handled by the

PFS. The competition for resources in the I/O forward-

ing layer and also the competition for storage devices

in the PFS had led to I/O interferences and increased

the request latencies. This made the I/O performance

unbalanced. Some processes may lag behind other pro-

cesses in the same application due to such imbalance.

Because HPC applications usually run in a bulk syn-

chronous parallel (BSP) model [9], the slowest process

dragged down the overall progress of the application.

Resource misallocations have different reflections at

different layers. Similar to other I/O forwarding sys-

tems, TaihuLight used a static I/O forwarding strat-

egy, in which each I/O forwarding node served a fixed

set of computing nodes. In such a configuration, larger-

scale computing nodes had more I/O forwarding nodes.

However, the requirement of computing resource and

I/O resource in a job may not be proportional. The

static I/O forwarding strategy easily made large-scale

applications with less I/O requirement configured with

a large number of I/O forwarding nodes while small-

scale data-intensive applications configured with few

ones. The misallocation hindered some applications

from fully utilizing the performance of the backend PFS

and while others wasted the forwarding resources [10].

Resource misallocations at the PFS layer were derived

from performance anomalies and variances of storage

devices [11, 12]. Even if storage devices have had simi-

lar performance after their fresh installation, they be-

have differently after years of usage. However, most

of the current parallel file systems seldom handle these

anomalies and variations. The anomalies and varia-

tions made data distribution deviated from its origi-

nal design assumption and easily led to performance

imbalance [13, 14].

To mitigate the impact of above issues on appli-

cation I/O performance, we, cooperating with the sto-

rage system designers, developers and maintainers, per-

formed some optimizations in the Sunway storage stack.

Among them, the automatic application-ware I/O for-

warding framework [10] was developed to address I/O in-

terferences and resource misallocations at the forward-

ing layer. A performance-aware data placement strat-

egy has been designed to mitigate the impact of I/O

interferences and device performance variations in the

PFS. It is worth mentioning that most of our optimiza-

tions were transparent to applications and application

developers. During the process of optimizing the sys-

tem, we also found some constraints of the PFS to sup-

port N -N I/O pattern. A project was started to over-

come these constraints without breaking the POSIX in-

terface of computing nodes.

Although the studies were performed in Tai-

huLight, these issues also exist in other HPC

platforms [7, 8, 13, 15, 16]. Our experience is useful for

those communities to design and implement an efficient

storage stack to address these issues. This paper intro-

duces our studies and presents lessons learned from the

process.

The paper is organized as follows. The Sunway sto-

rage system architecture is discussed in Section 2 as

well as the design considerations leading to this archi-

tecture. We discuss our end-to-end performance moni-

toring and diagnosis system in Section 3. Our solutions

to bridge the performance gap and the lessons from

them are presented in Section 4 (application-aware dy-

namic forwarding), Section 5 (performance-aware data

placement), and Section 6 (remote node-local storage

system) respectively followed by discussions in Section 7

and conclusions in Section 8.

Qi Chen et al.: Optimization of the Sunway Storage System 49

2 Sunway Storage System Architecture

2.1 I/O Forwarding Design

Providing a POSIX-compatible interface is the de-

sign principle of the Sunway storage system. However,

using Lustre native clients to implement this function

in TaihuLight is not reasonable and impractical. The

reasons are as follows.

Memory Consumption. In Lustre, the metadata

server (MDS) and the object storage server (OSS)

should cache the states of connected clients. Besides,

the MDS also caches the objects that are opened on

clients. With over 40 000 clients, MDS and OSS will

consume a massive amount of memory. This increases

the possibility of triggering out-of-memory failures (also

reported by the spider storage system running 26 000

Lustre native clients [17]). Correspondingly, clients also

keep the connection states to OSSes and MDS in mem-

ory. With 128 OSSes and 383 OSTs (object storage tar-

get), even without running any file system operation,

each client requires over 500 MB of memory. Com-

puting nodes in TaihuLight use many-core architecture

(260 cores). Most of the memory should be reserved for

applications and the relatively large memory consump-

tion of Lustre clients is therefore not acceptable.

Server Overload. With too many clients accessing

MDS concurrently, a large number of I/O requests will

be queued. It can easily lead to network congestions

and increase the possibility of request timeouts. This

slows down the operations and even hangs the whole

system. Another constraint comes from Lustre’s dis-

tributed lock, which is the primary method to ensure

global consistency. Frequent lock requests and revoca-

tions limit the performance of the system if clients share

data, such as in the N -1 I/O pattern [18, 19].

Client Cache Paradox. Lustre heavily relies on

client caches to improve I/O performance. However,

file system cache in computing nodes brings few ben-

efits in TaihuLight. HPC applications often read data

once and cache it in the process virtual memory space,

which makes the cache in filesystem client less effective.

In addition, caching write data in computing nodes may

violate the principle of checkpoint/restart semantics, in

which, intermediate results are stored in the PFS for fu-

ture job restarting in case of node failures. If data in the

write cache of failed nodes do not have a chance to be

flushed to the storage system, the checkpointing dataset

will not be integrated and cannot be used by job restart-

ing. Considering that TaihuLight has over 40 000 com-

puting nodes, the mean time between failures (MTBF)

of the computing system is relatively short. Caching

the dirty data in computing nodes increases the risk of

checkpoint data disintegration.

Based on the above considerations, the Sunway sto-

rage system abandoned the client cache and reduced the

client number connecting to the PFS servers by using

the I/O forwarding architecture, shown in Fig.1.

LWFS (lightweight file system) is used to perform

the function of I/O forwarding. It consists of two

parts, the LWFS-Client running on the computing

node and the LWFSD running on the I/O forward-

ing node. LWFS-Client was implemented using the

FUSE library 2○ to keep POSIX compatibility. There

is no data cache in LWFS-Client due to the reason

discussed above. LWFSD talks to the Lustre file sys-

tem using Lustre client. LWFSD caches metadata and

data to find ways of optimization, such as combining

small data. LDLM (Lustre Distributed Lock Manager)

is used to guarantee cache consistency among LWFSD

services. Each LWFSD uses a fixed number of workers

(each CPU core runs one worker) to access the backend

PFS to avoid overwhelming PFS with too many I/O

requests.

Although no data caching in LWFS-client limited

the performance of single computing nodes (the I/O

bandwidth of one client is about 80 MB/s–100 MB/s),

POSIX-compatible semantics alleviated much of the

burden on application developers. Besides, the rela-

tively low I/O performance of each client is not a prob-

lem because of the large number of computing nodes

(over 40 000 nodes). The aggregated performance ex-

ceeds the total bandwidth of the PFS.

2.2 Consolidating I/O Forwarding Service
with PFS Service

Another distinguishing and interesting design deci-

sion in the Sunway storage system is to run the I/O for-

warding service (LWFSD) and the PFS service (OSS)

on the same physical server. I/O forwarding services

usually run on dedicated servers in HPC [1–3]. How-

ever, using dedicated servers for I/O forwarding nodes

increases the number of servers and the scale of the

storage network. We made the following observation 3○

in TaihuLight: CPU is not the performance bottleneck

2○https://github.com/libfuse/libfuse, Nov. 2019.
3○In TaihuLight, each storage node has three LDISKFS based OSDs (object storage devices). The OSD uses disk array with

hardware RAID. In this configuration, backend OSD has little pressure on CPU. However, in the configuration using ZFS based OSD
with software RAID or having a large number of OSD on each node, this observation may be not applicable and need some evaluations.

50 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

for I/O forwarding and PFS service even when they run

simultaneously on the same server.

The observation was verified by using a 10-node

Lustre cluster comparing the results with separat-

ing and consolidating services. IOR (Interleaved or

Random) [20], which is a widely used benchmark to eva-

luate the parallel I/O performance of a PFS, was used

to generate the workload twice as the peak I/O that

each forwarding service needs to serve in TaihuLight.

Fig.2 shows the CPU load and device performance of a

single storage node during the test.

The CPU is not fully utilized (about 15% idle)

when consolidating the I/O forwarding service with the

PFS service (Fig.2(b)). When they are separated, it is

about 40% idle for CPU usage even with a heavy load

(Fig.2(a)). In both cases, the disk performance of the

server did not distinguish much (Fig.2(c) and Fig.2(d)).

And the total bandwidth of the test cluster is also

similar: 38 500.74 MB/s for write and 18 394.96 MB/s

for read in the consolidated mode vs 36 775.26 MB/s

for write and 19237.42 MB/s for read in the separated

mode. Thus, in Sunway storage system, we consoli-

dated the I/O forwarding service with the PFS service.

This saved the cost of the whole system, and also gave

us some opportunities to shorten the I/O path of ap-

plications with N -N I/O pattern, which is presented in

Section 6.

However, this consolidation introduced an unex-

pected problem of deadlock under heavy workloads.

As shown in Fig.3, each server hosts one client and one

0 500

100

75

50

25

0

Time (s)

U
ti
li
z
a
ti
o
n
 (

%
)

3000

2000

1000

0

B
a
n
d
w

id
th

 (
M

B
/
s)

3000

2000

1000

0

B
a
n
d
w

id
th

 (
M

B
/
s)

100

75

50

25

0

U
ti
li
z
a
ti
o
n
 (

%
)

1000

User
iowait
Idle

(a)

0 500
Time (s)

1000

(b)

0 500
Time (s)

1000

(c)

0

Read
Write

500
Time (s)

1000

(d)

Fig.2. CPU load responding to high I/O workload on one storage node.

Client

OST

Client

OST

Server A Server B

Fig.3. Deadlock between servers.

OSS. If both servers run out of their memory, each client

needs to flush the data to the other OSS located in the

remote server. Since OSS needs to allocate the mem-

ory to receive the new incoming data, the system gets

stuck because there is no memory available. The whole

PFS may hang in such a scenario. We solved this prob-

lem by memory isolation using the hypervisor KVM

(Kernel Virtual Machine) 4○. OSS runs in the host ope-

rating system while I/O forwarding service (LWFSD

and PFS client) runs in the guest operating system with

4○https://www.linux-kvm.org/page/Main Page, Nov. 2019.

Qi Chen et al.: Optimization of the Sunway Storage System 51

pre-allocated memory pinned to the physical memory

(never used by the host operating system). Thanks

to the InfiniBand virtualization, the virtual I/O for-

warding can provide I/O bandwidth of about 2.5 GB/s,

which is almost the same as a physical I/O forwarding

service can provide.

3 End-to-End Monitoring of Storage

Performance Metrics

Finding out the connection between performance

anomalies of the storage system and applications is

the first step to optimize the system. Achieving this

goal requires a comprehensive understanding of I/O be-

haviours of applications and the whole system. How-

ever, in a large-scale system with thousands of applica-

tions, it is not an easy task.

Applications running on HPC are from many diffe-

rent research areas and use various I/O libraries. It is

impractical for the administrators to analyze I/O pat-

tern of each application. Due to code complexity, co-

working from different organizations, or the legacy code

used, even the users may be not clear about their appli-

cation I/O patterns. Thus, the storage system needs an

automatic method to extract and detect I/O patterns

of the applications running on it.

Learning about the I/O patterns of applications is

not enough. The I/O interferences and resource mis-

allocations, presented in Section 1, are important fac-

tors that limit application I/O performance. Without

building the correlation of the full storage stack and

the running jobs, these factors are difficult to dig out.

Thus, an end-to-end performance analysis tool is also

needed to bridge the understanding gap between the

I/O behaviors of applications and the storage system.

Some performance monitoring and analyzing tools

was implemented to help to understand the I/O

behaviors [21, 22]. However, these tools can only solve

one of the requirements that we mentioned above. To

bridge the gap, the lightweight end-to-end I/O perfor-

mance monitoring and diagnosis system Beacon [6] has

been developed. Beacon performs a multiple level per-

formance profiling. It transparently captures I/O work-

flows during job execution by instrumenting the I/O

path between clients and servers in LWFS and collect-

ing I/O performance metrics from the backend PFS.

These data are compressed across multiple layers and

then stored in a distributed database. Based on the

collected data, Beacon can do end-to-end per-job I/O

workflow analyses, I/O interference analyses among

jobs and storage performance bottleneck findings. Since

its deployment, Beacon has helped many developers to

optimize their application I/O patterns. It also found

many system-level performance issues, such as PFS

client cache thrashing, performance anomalies and I/O

interferences at both the I/O forwarding layer and the

PFS layer. Beacon gave us the insightful knowledge to

optimize the storage system.

During the development of Beacon, collection and

correlation of a large volume of data are challenging,

which are summarized as follows.

Lesson 1. Controlling the data volume is the key

to a successful multiple level performance profiling sys-

tem. Small data volume makes the analysis inaccurate,

but large volume impairs application I/O performance.

Data deduplication and compression are helpful for this

issue. In Beacon, similar data items in each layer are

deduplicated, and data across different layers are com-

pressed to reduce the total size.

Lesson 2. The POSIX interface allows little infor-

mation of applications passed into the storage stack.

Without this information, it is difficult to correlate the

performance data of one job across multiple layers when

many jobs concurrently run in the system. Thus, sto-

rage systems should provide some mechanisms to bridge

the gap. We are considering extending POSIX API to

pass application hints (such as job identifier) to the sto-

rage system and tag them in every I/O request to ease

the classification of I/O requests.

4 Application-Aware Dynamic I/O

Forwarding

The I/O forwarding nodes are gateways to the back-

end PFS. The number and the performance of I/O for-

warding nodes that a job uses limit the overall perfor-

mance it can get from the backend PFS [2]. TaihuLight

originally used a static I/O forwarding, in which a for-

warding node serves a fixed set of computing nodes.

This method has several problems.

Firstly, I/O requests from different jobs easily col-

lided on the I/O forwarding nodes. The I/O interfer-

ences reduced the performance of the forwarding nodes.

This was mainly caused by the threading model of

LWFSD. LWFSD used a fixed number of worker threads

to handle I/O requests and gave metadata operations a

higher priority. This model helped to reduce the pres-

sure to the PFS and the latency of metadata operations.

But it also had some side effects: high priority requests

(metadata operations) starved the low priority requests

(read/write operations); high latency requests (requests

52 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

with larger and slower I/O) may block all the other re-

quests. In the actual use, the slowdown can reach about

10 times [10].

Secondly, in the static mapping, application I/O re-

quirement cannot be always matched with the capacity

of the forwarding resources, and as a result, applications

cannot make full utilization of the PFS performance.

After investigating some outstanding applications, we

found that some jobs running on a large number of com-

puting nodes with many I/O forwarding nodes serving

them used 1-1 I/O pattern to write to or read from

the storage system, while the I/O performance of many

small-scale I/O-intensive jobs with N -N I/O pattern

was limited by fewer I/O forwarding nodes [6].

Aware of these limitations, we divided the I/O for-

warding nodes into two groups. The first group con-

tained about 80 nodes used as static I/O forwarding

nodes. Each I/O forwarding node serves 512 comput-

ing nodes. The other group contained about 200 nodes,

which were reserved for I/O-intensive jobs. To use the

reserved I/O forwarding resources, users propose I/O

requirements to the administrators, and, if approved,

the corresponding resources are allocated from the re-

served group.

However, such seemingly reasonable principle

worked unexpectedly in practice. The reserved 200 for-

warding nodes were rarely used, and most applications

still used the default mapping of I/O forwarding nodes.

The reason was that most of the users cannot estimate

how many I/O forwarding resources they should apply.

Or even, they did not put much attention to the sto-

rage system usage until the I/O performance severely

constrained the runtime of the applications.

To address the above problems, the application-

aware dynamic forwarding resource allocation

(DFRA) [10] was developed. The mechanism automat-

ically evaluates the I/O requirements of one job when

restarted and allocates corresponding I/O forwarding

resources to avoid under- or over-utilization of I/O

forwarding resources and the I/O interferences from

other jobs. To achieve the goal, it first extracts the

I/O patterns and performance metrics from historical

runs using Beacon mentioned in Section 3. Then, it

calculates the requirement of the forwarding resources

and generates resource allocation hints on the current

system usage. At last, the hints are passed to the job

scheduler to do the remapping. The above process is

transparent to applications and users. After being de-

ployed in TaihuLight, it improved the I/O performance

of some applications by up to 18.9x and saved over 200

million core-hours in 11 months.

Two lessons were learned from this optimization

process that, we believe, are useful for the design and

implementation of the I/O forwarding architecture.

Lesson 3. The static I/O forwarding strategy is sim-

ple to deploy and very efficient when the I/O load is bal-

anced. But it is vulnerable to I/O interferences and in-

efficient I/O patterns, such as N -1 and 1-1 I/O pattern.

Modern HPC system always concurrently runs many

jobs with different I/O patterns. Thus, it is desired to

develop to an automatic and dynamic I/O forwarding

resource allocation mechanism to match the true I/O

requirement with the I/O forwarding resources. And

then, end-to-end performance monitoring and analysis

tools, such as Beacon, are required and helpful.

Lesson 4. Interferences from different types, sizes

and priorities of I/O requests decrease the total per-

formance of the I/O forwarding node. I/O forwarding

mechanism should adopt efficient methods to mitigate

this problem. For this purpose, the system can avoid

different jobs using the same I/O forwarding nodes, just

like we did in DFRA. Besides, I/O handling routine

can be elaborately designed to avoid I/O interferences.

For example, worker threads in the LWFSD using syn-

chronous mode to process I/O requests easily make long

latency I/O requests block other requests and starve

the backend PFS. To mitigate this problem, the I/O

handling routine can be divided into more stages and

reconstructed with some asynchronous mechanisms.

5 Performance-Aware Data Placement

I/O interferences and resource misallocations at the

PFS layer are also the critical factors that limit the

application I/O performance.

The I/O interferences are mainly from different I/O

patterns of concurrently running jobs. Fig.4 illustrates

the I/O interference between two concurrent jobs.

Job A uses N -N I/O pattern, and Job B uses 1-1

I/O pattern. The storage system has only 4 OSTs, and

the round-robin algorithm is used to place objects. Job

A is first started and its data are distributed on the four

nodes, and then B is started after that. In this case, A

and B compete for storage resources on OST00. Each

gets half of the performance. Although the processes

of A on OST01-03 are completed earlier, it has to wait

for the process on OST00 to be completed. This inter-

ference is very common. The statistics of I/O patterns

of applications running in TaihuLight are listed in Ta-

ble 1 [6].

Qi Chen et al.: Optimization of the Sunway Storage System 53

PPP

OST00 OST01 OST02

P PP

Application BApplication A

P

P

Process That Does Not Perform I/O

Process That Performs I/O

OST03

P

Fig.4. Interference of two parallel jobs.

Table 1. I/O Pattern Statistics in TaihuLight

I/O Pattern Avg. Read Avg. Write Job Count

Volume (GB) Volume (GB)

N-N 96.8 120.1 11 073

N-M 36.2 63.2 324

N-1 19.6 19.3 2 382

1-1 33.0 142.3 16 251

From the table, we can see that more than a half

of jobs run in N -1 and 1-1 I/O pattern. When co-

running with jobs using N -N I/O pattern, the I/O in-

terferences mentioned above are unavoidable under the

round-robin allocation.

This problem can be mitigated by well arranging file

layouts of applications. For example, if file layouts in

Fig.4 are arranged as in Fig.5, the total I/O time of A

is kept the same but B can run twice faster. Besides,

one OST node is even free for serving other jobs.

PPP

OST00 OST01 OST02

P PP

Application BApplication A

P

P

Process That Does Not Perform I/O

Process That Performs I/O

OST03

P

Fig.5. Better resource allocation mitigating interferences.

The resource misallocations are derived from per-

formance anomalies and variances of storage devices.

Although homogenous devices are used to build a PFS,

the performance of the devices may differ after the

storage system runs for a long time because of de-

vice aging [23], file system fragmentation [12] and disk

array degradation. However, the popular data place-

ment algorithms, such as the round-robin algorithm or

hashing [24], cannot handle these anomalies and vari-

ances, and easily make file objects misallocated on sto-

rage nodes.

One of our maintained parallel file systems (based

on lustre-1.8.1) encountered such a performance prob-

lem. This system has 240 OSSes, each equipped with

one OST. Before putting into production use, the

performance of each OST was about 800 MB/s, and

the overall bandwidth of the system was more than

180 GB/s. The system had been carrying I/O-intensive

applications for about four to five years. A large num-

ber of disks and array controllers had been replaced due

to failures. During the use of the system, users always

complained that their application I/O performance was

very low. They even tried to spread their data across

all of the servers. But this approach inversely reduced

the performance.

To find the cause for this anomaly, we re-evaluated

the performance of the OSTs. The result is shown in

Fig.6.

0 50

800

600

400

200

0
100

OST Index

P
e
rf

o
rm

a
n
c
e
 (

M
B

/
s)

150 200

Fig.6. OST performance variances.

After a long period of production use, the perfor-

mance of OSTs showed significant variances. The diffe-

rence between the maximum performance and the mini-

mum performance had been about 5 times. The files

located on the slowest OST slowed down the entire I/O

process. Aware of this problem, we added OSTs with

similar performance into one pool, and put files from

the same parallel I/O into the pool. As a result, the

application I/O performance was improved by several

times.

Similar things happened to the application

ShenTu [5], which read 136.9 TB of graph data from the

54 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

PFS using N -N I/O pattern (N = 10 240). As men-

tioned above, the application got 20 GB/s bandwidth

at most before performing the optimization. Beacon

found that some of the storage nodes involved had sig-

nificant performance anomalies when performing I/O.

When the data was migrated from these anomalous

nodes, the I/O bandwidth of the application increased

to about 70 GB/s.

We believed that efficiently controlling file layouts

of different jobs is the key to mitigate the impact of the

I/O interferences and resource misallocations in PFS.

A performance-aware data placement framework was

proposed to ease the process.

The I/O requirement of an application is described

using an abstract of a resource pool. One resource pool

consists of multiple OSTs, each of which has a varia-

ble max perf to denote the maximum performance that

the PFS distributes to it. If one OST is shared by

multiple pools, some QoS mechanisms, such as TBF

(token bucket filter) [25], are used to isolate the ope-

rations (including reads and writes) from different pools

and guarantee each pool getting corresponding perfor-

mance from the OST. One resource pool can only be

used by one running job simultaneously, and the sum

of max perf of OSTs in the pool is the maximum band-

width the job can get.

To ease the resource pool allocation and to ad-

dress the performance variances of storage devices,

OSTs in one resource pool are allowed to have diffe-

rent max perf. This requires a data placement algo-

rithm to distribute files from parallel I/O processes ac-

cording to the max perf of OSTs in a resource pool.

Some QoS data placement algorithms, such as weighted

CRUSH [26], and weighted random allocations 5○ 6○, are

probabilistic algorithms. When used to distribute files

from parallel I/O processes of a job, they cannot assure

that the data distribution is strictly proportional to

the performance of storage devices, especially when the

scales of files are small. This, as a result, may worsen

the performance of parallel I/O. Thus, we proposed a

deterministic data placement algorithm. It records the

load of each OST in the resource pool and selects OSTs

having the lightest load to create files. Because one re-

source pool is only used by one running job, the con-

current I/O requests in a resource pool mainly come

from parallel I/O processes of a job. This simplifies the

quantization of the storage load a lot. Here we use the

number of opened objects on one OST, represented as

open count, to record the load of that node and a ratio

of max perf and open count + 1 to weigh the perfor-

mance that new created file may get 7○. For each file

creation, the algorithm puts the object (or stripe) on

the node that has maximum evaluated weight.

We implemented the algorithm in Lustre-2.10 and

built a Lustre file system with 8 OSSes, each equipped

with one OST, to evaluate the mechanism. We created

a resource pool. The performance of OSTs in the pool is

shown in Table 2. The total bandwidth of the resource

pool is 2 600 MB/s. TBF [25] is used to guarantee each

OST getting the corresponding max perf.

Table 2. Initial Performance of Each OST in the Test

OST Index max perf (MB/s)

1 500

2 300

3 500

4 200

5 300

6 100

7 500

8 200

Firstly, we compared our algorithm with the round-

robin algorithm. In the test, we ran IOR with N -N I/O

pattern on 20 Lustre clients. Each file has one object

(or stripe). Each client ran 8 processes and each process

wrote 1 GB data to the file system with a 1 MB transfer

size. We also hacked the IOR code to record the I/O

time of each parallel I/O process to get the I/O time of

the slowest process on each OST. The object distribu-

tion and the I/O time of the slowest process are shown

in Fig.7 and Fig.8 respectively.

From the results, we can see that the round-robin al-

gorithm distributes the objects evenly across the OSTs,

but the I/O time of processes on different OSTs is

unbalanced because of the performance variations of

OSTs. While our algorithm distributes the objects ac-

cording to the max perf of OSTs, and gets balanced I/O

time of each parallel I/O process.

5○https://jira.whamcloud.com/browse/LU-9, Nov. 2019.
6○https://jira.whamcloud.com/browse/LU-9809, Nov. 2019.
7○When a storage device is overloaded by many concurrent threads, the total performance of it will decrease. We use TBF [25] to

provide performance guarantee of one OST. This algorithm can avoid concurrent threads overloading the storage device by limiting the
requests processing rate. For systems that cannot avoid concurrent threads overloading the storage device, a penalty may be added to
this weight.

Qi Chen et al.: Optimization of the Sunway Storage System 55

1 2 3 4

40

30

20

10

0
5

OST Index

N
u
m

b
e
r

o
f
O

b
je

c
ts

 p
e
r

O
S
T

6 7 8

Performance-Aware Algorithm
Round-Robin Algorithm

Fig.7. Object distribution on each OST.

Next, to show the effectiveness of the algorithm at

different scales of parallel I/O, we tested the algorithm

using different N values (100, 200, 400, 600, 800, 1 000).

We used the same configuration in the previous test,

except that each Lustre client ran 10 IOR processes.

Totally, we used 100 Lustre clients. The object distri-

bution and the I/O time of the slowest process on each

OST are shown in Fig.9.

1 2 3 4

250

200

150

100

50

0
5

OST Index

P
a
ra

ll
e
l
I/

O
 T

im
e
 p

e
r

O
S
T

 (
s)

6 7 8

Performance-Aware Algorithm
Round-Robin Algorithm

Fig.8. I/O time of the slowest process on each OST.

0O
b
je

ct
 N

u
m

b
er

 p
er

 O
S
T

1 2 3

36
32
28
24
20
16
12
8
4
0

O
b
je

ct
 N

u
m

b
er

 p
er

 O
S
T

64
56
48
40
32
24
16
8
0

O
b
je

ct
 N

u
m

b
er

 p
er

 O
S
T 200

175

150

125

100

75

50

25

0

O
b
je

ct
 N

u
m

b
er

 p
er

 O
S
T

320
280
240
200
160
120
80
40
0

O
b
je

ct
 N

u
m

b
er

 p
er

 O
S
T 135

120
105
90
75
60
45
30
15
0

O
b
je

ct
 N

u
m

b
er

 p
er

 O
S
T 270

240
210
180
150
120
90
60
30
0

4 5

OST Index

6

Object Distribution on OST (Left)
Parallel I/O Time on OST (Right)

Object Distribution on OST (Left)
Parallel I/O Time on OST (Right)

Object Distribution on OST (Left)
Parallel I/O Time on OST (Right)

Object Distribution on OST (Left)
Parallel I/O Time on OST (Right)

Object Distribution on OST (Left)
Parallel I/O Time on OST (Right)

Object Distribution on OST (Left)
Parallel I/O Time on OST (Right)

7 8

P
a
ra

ll
el

 I
/
O

 T
im

e
(s

)

9 0 1 2 3 4 5

OST Index

6 7 8 9

50

40

30

20

10

0 P
a
ra

ll
el

 I
/
O

 T
im

e
(s

)

100

80

60

40

20

0

P
a
ra

ll
el

 I
/
O

 T
im

e
(s

)

P
a
ra

ll
el

 I
/
O

 T
im

e
(s

)

300

250

200

150

100

50

0

P
a
ra

ll
el

 I
/
O

 T
im

e
(s

)

P
a
ra

ll
el

 I
/
O

 T
im

e
(s

)

500

400

300

200

100

0

(b)(a)

0 1 2 3 4 5

OST Index

6 7 8 9 0 1 2 3 4 5

OST Index

6 7 8 9

(d)(c)

0 1 2 3 4 5

OST Index

6 7 8 9 0 1 2 3 4 5

OST Index

6 7 8 9

(f)(e)

200

150

100

50

0

400

300

200

100

0

Fig.9. Object placement and parallel I/O time on each OST. (a) N = 100. (b) N = 200. (c) N = 400. (d) N = 600. (e) N = 800. (f)
N = 1000.

56 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

The object distribution of the parallel I/O is pro-

portional to the max perf of each OST. Accordingly,

the average I/O performance of each parallel I/O pro-

cess is similar on the OSTs, which, as a result, reduced

the total application parallel I/O time. We also see

that when N = 100, the I/O time on OST 6 is about

10 seconds less than that on the slowest OST. That is

because 100 objects cannot be strictly distributed to

OSTs with no remainder, and as a result, the I/O load

on OST 6 is slightly lighter than that on OST 1, 3, 5,

8.

We recorded the total bandwidth of IOR in each test

in Table 3. The application almost got the maximum

bandwidth of the resource pool.

Table 3. Total Bandwidth of IOR with Different N Values

N Bandwidth (MB/s)

100 2 473

200 2 534

400 2 563

600 2 545

800 2 555

1 000 2 552

Lesson 5. Performance should be taken as a quanti-

tative factor similar to the disk space or the number

of servers in the PFS design. When allocating sto-

rage resources, the system can limit the amount of disk

space usage or the number of data servers that files

can be distributed to. However, most systems do not

provide performance guarantee. This makes the PFS

unable to cope with I/O interferences and performance

variances. To address this problem, the resource pool

with performance-ware data placement algorithm, men-

tioned above, is a feasible method. The abstract of the

resource pool can easily be integrated with literary QoS

methods. The algorithm can balance the performance

of parallel I/O from one job even at small scale.

6 Remote Node-Local Storage System

In HPC, the N -N I/O pattern is usually used to

improve application I/O performance [18, 27]. It is also

the recommended method for write-intensive applica-

tions in TaihuLight. In this pattern, each process of

the running job periodically flushes its data to the

storage system in one or several directories using pri-

vate file mode. The writing of each process can be

bandwidth-dominated, in which each process stages out

large chunks of data (several MB or GB) to the storage

system, or IOPS (input/output operations per second)

dominated, in which each process frequently opens the

file, writes small size of data (several B or KB) and

finally closes it.

In the I/O forwarding architecture similar to the

Sunway storage system, Lustre may hinder the bare

performance of storage devices. The reasons are as fol-

lows.

Metadata Bottleneck. Lustre uses a centralized

metadata server to handle metadata operations. The

metadata server in Lustre-2.5, which is used in Taihu-

Light, provided about 15k IOPS. However, forN -N I/O

pattern, there are often tens of thousands and even hun-

dreds of thousands of open or create operations bursting

into the metadata server. The limited metadata per-

formance became the bottleneck, especially when the

application is IOPS-dominated. Besides, only one or

several shared directories are used in N -N I/O pat-

tern. Parallel file creations in shared directories from

many clients incur high overhead on metadata consis-

tency and get poor performance [28, 29].

Uncontrolled I/O Path. In the Sunway storage sys-

tem, the I/O forwarding service and the OSS run on

the same server. However, the I/O requests of N -N

I/O may go through two distinct I/O paths illustrated

in Fig.10. It is evident that Fig.10(a) has a longer I/O

path, which increases the I/O latency and wastes the

network bandwidth. In Lustre, locations of files are

transparent to the users, and thus, the I/O path of

10(a) is inevitable. Besides, even when some methods

are used to constrain I/O path to 10(b), the decoupled

I/O stack of the client and OSS also brings about some

overhead.

LWFSD

OST

LWFSD

OST

Server A Server B

(a)

LWFSD

OST

LWFSD

OST

Server A Server B

(b)

CN CN CN CN

Fig.10. I/O paths when supporting N-to-N I/O pattern.

A remote node-local storage architecture is pro-

posed to break these limitations. The idea is similar

to some node-local burst buffer system, which provides

a private storage space for each computing node. The

difference is that we do not deploy storage devices in

computing nodes, but export remote dedicated direc-

tories on the storage nodes to computing nodes using

Qi Chen et al.: Optimization of the Sunway Storage System 57

LWFS. The exported directories are only used by one

computing node. That is why we called it the remote

node-local storage system.

Another difference with the prior work [30–32] is that

we provided two views to address metadata bottleneck

for running jobs, as shown in Fig.11.

CN

Rank 0

ext4

D00 D02 D04

ext4

D01 D03 D05

CN

Rank 4

CN

Rank 1

CN

Rank 2

CN

Rank 3

CN

Rank 5

Logic Global View

D00 D01 D02 D03 D04 D05U
se

r
G

lo
b
a
l
V

ie
w

N
o
d
e
 L

o
c
a
l
V

ie
w

Fig.11. Remote node-local storage architecture.

Node-Local View for Parallel I/O Processes. The

storage space of each storage node is divided into many

directories. The directories are exported by LWFSD to

the computing nodes. During the application running,

each computing node only accesses its remote private

directory, just like virtual disk access from the remote

guest OS. By this way, our method not only shortens

I/O path of N -N I/O processes but also eliminates the

global metadata operations during the job execution.

This also implies that our proposal only works for appli-

cations with N -N I/O pattern. When a job restarted,

the computing resources assigned to one job may be

changed. To make the node-local view valid to each

process after the job is restarted, the mapping between

the processes and the private directories should be un-

changed. In TaihuLight, the job scheduler assigns a

unique rank-id to each process in a job. Using this fea-

ture, a hash of rank-id is used to do the mapping. To

reduce the overhead of re-attaching the remote storage

space to the computing nodes (CN) when restarting be-

cause of node failures, we assigned the rank-ids of the

failed nodes to the new replaced nodes and kept the

others’ rank-id unchanged, as illustrated in Fig.12. By

this way, only the replaced nodes have to do the map-

ping.

Logic Global View for Data Management. Users

sometimes need to check the status of the data their

job generated or copy the results back to the PFS for

other usages. Therefore, a global view of the separate

datasets is also needed. However, implementing this

function is much easier than that in PFS because a

read-only view with eventual consistency guarantee is

enough. In this project, we implemented a combining

mechanism to aggregate the metadata information of

one job from all of the I/O forwarding nodes. To ac-

celerate the process, a distributed in-memory database

was used to index the metadata information on the I/O

forwarding nodes. Because the load of the interactive

operations from users is much lighter than that from

running jobs, this simple method was enough.

Using this method, the processes of N -N I/O pat-

tern got comparable performance with using PFS, but

without introducing any network traffic among storage

nodes. Moreover, in favor of the separated namespace

of each computing node, the metadata performance of

applications with N -N I/O pattern was greatly im-

proved.

Lesson 6. Not all scientific applications require the

storage system to provide a global strong consistent

namespace at all the time. Making some parallel I/O

operations get rid of the constraint of strong consistency

semantics improves the I/O performance and simpli-

fies the design and implementation of the storage sys-

After

Replace

CN

Rank 0

CN

Rank 1

CN

Rank 4

CN

Rank 5

CN

Rank 2

CN

Rank 3

New

CN

CN

Rank 0

CN

Rank 1

CN

Rank 4

CN

Rank 5

New

Rank 2

CN

Rank 3

Before

Fig.12. Remapping when replacing failed CN.

58 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

tem. The storage developers and designers should de-

liberately understand the requirements of each stage of

application I/O, adopt appropriate consistency model,

and build appropriate views (global or private) for ap-

plications to avoid unnecessary overheads.

7 Discussion

Applicability to Other Supercomputer Systems.

The I/O forwarding architecture is widely used in

HPC [1, 33]. The optimizations presented in this paper

are also applicable to other I/O forwarding systems.

The Sunway storage system was built upon the Lus-

tre filesystem. We made some special designs to break

some constraints of Lustre, such as virtual I/O forward-

ing nodes in Subsection 2.2 and remote node-local sys-

tem in Section 6. These designs are helpful for other

communities that use the Lustre file system. Except

that, the optimizations mentioned in this paper are not

Lustre specific. Some popular parallel file systems [34]

also lack efficient mechanisms to handle the I/O inter-

ferences and resource misallocations. The resource pool

and the application-aware data placement provide some

references to address these problems in those systems.

Besides, the architecture of the remote node-local sto-

rage system is similar to the shared burst buffer system.

The idea may be helpful for the design of shared burst

buffer file systems.

Implications for Future Supercomputer Designs.

I/O performance is becoming more important for HPC

platforms because modern applications, such as high-

resolution simulation, graph computing and deep learn-

ing, access or produce huge volumes of data. Another

trend is that applications with different I/O patterns

concurrently running in a supercomputer system are

becoming common. I/O interferences and resource mis-

allocations will constrain application I/O performance

and reduce the efficiency of the whole system. I/O

performance isolation or, even QoS control in the sto-

rage system becomes a must. However, these features

are missing in the HPC storage infrastructures. There

are some excellent studies [35–37] to mitigate interfer-

ences among different workflow executions in the data

processing systems. These studies give inspirations to

solve the issues in HPC. But these technologies cannot

be directly applied to HPC systems. For one thing,

I/O requests have longer I/O path in HPC, and QoS

control in one component is not enough; for another,

high-performance systems should not only avoid I/O

interferences among jobs but also keep the I/O perfor-

mance of parallel I/O processes inside a job balanced.

Our optimizations are performed in the whole storage

stack. They provide some tips and references for this

scenario.

8 Conclusions

In HPC, many applications concurrently accessing

the shared storage system will incur I/O interferences

among applications and resource misallocations in the

storage stack. These factors prevent the applications

from making full utilization of the storage I/O band-

width. We did an end-to-end I/O analyzing of the ap-

plications and the whole storage stack, and made some

optimizations at the I/O forwarding layer and the PFS

layer to improve application I/O performance. We also

proposed a lightweight storage stack to shorten the I/O

path of applications with N -N I/O pattern. This paper

presents these studies and lessons learned from them.

In our current work, we are focusing on improving

application I/O performance. In future work, we plan

to extend our studies to offer some I/O performance

guarantee for HPC applications.

References

[1] Vishwanath V, Hereld M, Iskra K, Kimpe D, Morozov

V, Papka M E, Ross R, Yoshii K. Accelerating I/O

forwarding in IBM Blue Gene/P systems. In Proc. the

2010 ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis,

November 2010, Article No. 34.

[2] Ohta K, Kimpe D, Cope J, Iskra K, Ross R, Ishikawa Y.

Optimization techniques at the I/O forwarding layer. In

Proc. the 2010 IEEE International Conference on Cluster

Computing, September 2010, pp.312-321.

[3] Ali N, Carns P, Iskra K, Kimpe D, Lang S, Latham R, Ross

R, Ward L, Sadayappan P. Scalable I/O forwarding frame-

work for high-performance computing systems. In Proc. the

2009 IEEE International Conference on Cluster Comput-

ing and Workshops, August 2009, Article No. 10.

[4] Schwan P. Lustre: Building a file system for 1000-node

clusters. In Proc. the 2003 Linux Symposium, July 2003,

pp.380-386.

[5] Lin H, Zhu X, Yu B, Tang X, Xue W, Chen W, Zhang L,

Hoefler T, Ma X, Liu X. ShenTu: Processing multi-trillion

edge graphs on millions of cores in seconds. In Proc. the

2018 International Conference for High Performance Com-

puting, Networking, Storage, and Analysis, November 2018,

Article No. 56.

[6] Yang B, Ji X, Ma X et al. End-to-end I/O monitoring on a

leading supercomputer. In Proc. the 16th USENIX Sympo-

sium on Networked Systems Design and Implementation,

February 2019, pp.379-394.

[7] Yildiz O, Dorier M, Ibrahim S, Ross R, Antoniu G. On the

root causes of cross-application I/O interference in HPC

Qi Chen et al.: Optimization of the Sunway Storage System 59

storage systems. In Proc. the 2016 IEEE International

Parallel and Distributed Processing Symposium, May 2016,

pp.750-759.

[8] Gainaru A, Aupy G, Benoit A, Cappello F, Robert Y,

Snir M. Scheduling the I/O of HPC applications under

congestion. In Proc. the 2015 IEEE International Parallel

and Distributed Processing Symposium, May 2015, pp.1013-

1022.

[9] Valiant L G. A bridging model for parallel computation.

Communications of the ACM, 1990, 33(8): 103-111.

[10] Ji X, Yang B, Zhang T, Ma X, Zhu X, Wang X, El-Sayed N,

Zhai J, Liu W, Xue W. Automatic, application-aware I/O

forwarding resource allocation. In Proc. the 17th USENIX

Conference on File and Storage Technologies, February

2019, pp.265-279.

[11] Gunawi H S, Suminto R O, Sears R et al. Fail-slow at scale:

Evidence of hardware performance faults in large produc-

tion systems. ACM Transactions on Storage, 2018, 14(3):

Article No. 23.

[12] Djordjevic B, Timcenko V. Ext4 file system performance

analysis in Linux environment. In Proc. the 11th WSEAS

International Conference on Applied Informatics and Com-

munications, August 2011, pp.288-293.

[13] Lofstead J, Zheng F, Liu Q, Klasky S, Oldfield R, Korden-

brock T, Schwan K, Wolf M. Managing variability in the

IO performance of petascale storage systems. In Proc. the

2010 ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis,

November 2010, Article No. 35.

[14] Kim Y, Gunasekaran R. Understanding I/O workload char-

acteristics of a Peta-scale storage system. The Journal of

Supercomputing, 2015, 71(3): 761-780.

[15] Dillow D A, Shipman G M, Oral S, Zhang Z, Kim Y. En-

hancing I/O throughput via efficient routing and place-

ment for large-scale parallel file systems. In Proc. the 30th

IEEE International Performance Computing and Commu-

nications Conference, November 2011, Article No. 6.

[16] Lockwood G K, Snyder S, Wang T, Byna S, Carns P, Wright

N J. A year in the life of a parallel file system. In Proc.

the 2018 International Conference for High Performance

Computing, Networking, Storage, and Analysis, November

2018, Article No. 74.

[17] Shipman G, Dillow D, Oral S, Wang F, Fuller D, Hill J,

Zhang Z. Lessons learned in deploying the world’s largest

scale Lustre file system. In Proc. the 2010 Cray User Group

Conference, May 2010.

[18] Bent J, Gibson G, Grider G, McClelland B, Nowoczynski P,

Nunez J, Polte M, Wingate M. PLFS: A checkpoint filesys-

tem for parallel applications. In Proc. the 2009 Conference

on High Performance Computing Networking, Storage and

Analysis, November 2009, Article No. 26.

[19] Liao W K, Choudhary A. Dynamically adapting file do-

main partitioning methods for collective I/O based on un-

derlying parallel file system locking protocols. In Proc. the

2008 ACM/IEEE Conference on Supercomputing, Novem-

ber 2008, Article No. 3.

[20] Shan H, Antypas K, Shalf J. Characterizing and predicting

the I/O performance of HPC applications using a parame-

terized synthetic benchmark. In Proc. the 2008 ACM/IEEE

Conference on Supercomputing, November 2008, Article

No. 42.

[21] Liu Y, Gunasekaran R, Ma X, Vazhkudai S S. Auto-

matic identification of application I/O signatures from noisy

server-side traces. In Proc. the 12th USENIX Conference on

File and Storage Technologies, February 2014, pp.213-228.

[22] Carns P H, Latham R, Ross R B, Iskra K, Lang S, Ri-

ley K. 24/7 characterization of petascale I/O workloads. In

Proc. the International Conference on Cluster Computing,

August 2009, Article No. 75.

[23] Conway A, Bakshi A, Jiao Y, Jannen W, Zhan Y, Yuan

J, Bender M A, Johnson R, Kuszmaul B C, Porter D E,

Farach-Colton M. File systems fated for senescence? Non-

sense, says science! In Proc. the 15th USENIX Conference

on File and Storage Technologies, February 2017, pp.45-58.

[24] Awerbuch B, Scheideler C. Towards a scalable and robust

DHT. Theory of Computing Systems, 2009, 45(2): 234-260.

[25] Qian Y, Li X, Ihara S, Zeng L, Kaiser J, Süß T, Brinkmann

A. A configurable rule based classful token bucket filter net-

work request scheduler for the Lustre file system. In Proc.

the 2017 International Conference for High Performance

Computing, Networking, Storage and Analysis, November

2017, Article No. 6.

[26] Weil S A, Brandt S A, Miller E L, Maltzahn C. CRUSH:

Controlled, scalable, decentralized placement of replicated

data. In Proc. the 2006 International Conference for High

Performance Computing, Networking, Storage and Ana-

lysis, November 2016, Article No. 122.

[27] Egwutuoha I P, Levy D, Selic B, Chen S. A survey of fault

tolerance mechanisms and checkpoint/restart implementa-

tions for high performance computing systems. The Journal

of Supercomputing, 2013, 65(3): 1302-1326.

[28] Artiaga E, Cortes T. Using filesystem virtualization to avoid

metadata bottlenecks. In Proc. the 2010 Design, Automa-

tion & Test in Europe Conference & Exhibition, March

2010, pp.562-567.

[29] Frings W, Wolf F, Petkov V. Scalable massively parallel I/O

to task-local files. In Proc. the 2009 Conference on High

Performance Computing Networking, Storage and Ana-

lysis, November 2009, Article No. 22.

[30] Wang T, Mohror K, Moody A, Sato K, YuW. An ephemeral

burst-buffer file system for scientific applications. In Proc.

the 2016 International Conference for High Performance

Computing, Networking, Storage and Analysis, November

2016, pp.807-818.

[31] Vef M A, Moti N, Süß T, Tocci T, Nou R, Miranda A, Cortes

T, Brinkmann A. GekkoFS—A temporary distributed file

system for HPC applications. In Proc. the 2018 IEEE In-

ternational Conference on Cluster Computing, September

2018, pp.319-324.

[32] Zheng Q, Cranor C D, Guo D, Ganger G R, Amvrosiadis G,

Gibson G A, Settlemyer B W, Grider G, Guo F. Scaling em-

bedded in-situ indexing with deltaFS. In Proc. the 2018 In-

ternational Conference for High Performance Computing,

Networking, Storage and Analysis, November 2018, Article

No. 3.

[33] Iskra K, Romein J W, Yoshii K, Beckman P. ZOID: I/O-

forwarding infrastructure for petascale architectures. In

Proc. the 13th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, February 2008,

pp.153-162.

60 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

[34] Schmuck F B, Haskin R L. GPFS: A shared-disk file system

for large computing clusters. In Proc. the 2002 USENIX

Conference on File and Storage Technologies, January

2002, pp.231-244.

[35] Grandl R, Kandula S, Rao S, Akella A, Kulkarni J.

GRAPHENE: Packing and dependency-aware scheduling

for data-parallel clusters. In Proc. the 12th USENIX Sym-

posium on Operating Systems Design and Implementation,

November 2016, pp.81-97.

[36] Zhou A C, Xiao Y, He B, Ibrahim S, Cheng R. Incorporat-

ing probabilistic optimizations for resource provisioning of

data processing workflows. In Proc. the 48th International

Conference on Parallel Processing, August 2019, Article

No. 6.

[37] Grandl R, Chowdhury M, Akella A, Ananthanarayanan G.

Altruistic scheduling in multi-resource clusters. In Proc. the

12th USENIX Symposium on Operating Systems Design

and Implementation, November 2016, pp.65-80.

Qi Chen currently is a Ph.D. stu-

dent of the Department of Computer

Science and Technology at Tsinghua

University, Beijing. He received his

Master’s degree in computer archi-

tecture from Huazhong University of

Science and Technology, Wuhan, in

2013. His research interests include

storage architecture for high-performance computing and

distributed file systems.

Kang Chen received his Ph.D. de-

gree in computer science and technology

from Tsinghua University, Beijing, in

2004. Currently, he is an associate

professor of computer science and

technology at Tsinghua University,

Beijing. His research interests include

parallel computing, distributed process-

ing, and cloud computing.

Zuo-Ning Chen received her Mas-

ter’s degree in computer application

technology from Zhejiang University,

Hangzhou, in 1999. She is an ad-

junct professor in computer science

and technology, Tsinghua University,

Beijing, and an academician of the

Chinese Academy of Engineering. Her

current research interests include big data computing,

cloud computing, and high performance computing. She

has made important contributions in the field of computer

software and high-end computers and received the Special

and First Prizes of the National Science and Technology

Progress Award of China.

Wei Xue received his Ph.D. degree

in electrical engineering from Tsinghua

University, Beijing, in 2003. Currently,

he is an associate professor of computer

science and technology at Tsinghua Uni-

versity, Beijing. His research interests

include high-performance computing,

and uncertainty quantification.

Xu Ji received his Ph.D. degree in

computer science and technology from

Tsinghua University, Beijing, in 2019.

Currently, he is a senior researcher at

Sensetime Inc. His research interests

include storage system and distributed

system. text text text text text text

text text text text

Bin Yang currently is a Ph.D. stu-

dent of High Performance Computing

and Big Data Processing Laboratory,

the Department of Software Engineering

at Shandong University, Jinan. He re-

ceived his Master’s degree in computer

science and technology from Shandong

University, Jinan, in 2018. His research

interests include I/O monitoring, data analysis, and

storage.

	1 Introduction
	2 Sunway Storage System Architecture
	2.1 I/O Forwarding Design
	2.2 Consolidating I/O Forwarding Service with PFS Service

	3 End-to-End Monitoring of Storage Performance Metrics
	4 Application-Aware Dynamic I/O Forwarding
	5 Performance-Aware Data Placement
	6 Remote Node-Local Storage System
	7 Discussion
	8 Conclusions

