
Vef MA, Moti N, Süß T et al. GekkoFS — A temporary burst buffer file system for HPC applications. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 35(1): 72–91 Jan. 2020. DOI 10.1007/s11390-020-9797-6

GekkoFS — A Temporary Burst Buffer File System for HPC

Applications

Marc-André Vef1, Nafiseh Moti1, Tim Süß1, Markus Tacke1, Tommaso Tocci2, Ramon Nou2, Alberto Miranda2

Toni Cortes2,3, and André Brinkmann1, Member, ACM

1Zentrum für Datenverarbeitung, Johannes Gutenberg University Mainz, Mainz 55128, Germany
2Barcelona Supercomputing Center, Barcelona 08034, Spain
3Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona 08034, Spain

E-mail: {vef, moti, suesst, tacke}@uni-mainz.de
E-mail: {tommaso.tocci, ramon.nou, alberto.miranda, toni.cortes}@bsc.es; brinkman@uni-mainz.de

Received June 30, 2019; revised October 3, 2019.

Abstract Many scientific fields increasingly use high-performance computing (HPC) to process and analyze massive

amounts of experimental data while storage systems in today’s HPC environments have to cope with new access patterns.

These patterns include many metadata operations, small I/O requests, or randomized file I/O, while general-purpose parallel

file systems have been optimized for sequential shared access to large files. Burst buffer file systems create a separate file

system that applications can use to store temporary data. They aggregate node-local storage available within the compute

nodes or use dedicated SSD clusters and offer a peak bandwidth higher than that of the backend parallel file system without

interfering with it. However, burst buffer file systems typically offer many features that a scientific application, running in

isolation for a limited amount of time, does not require. We present GekkoFS, a temporary, highly-scalable file system which

has been specifically optimized for the aforementioned use cases. GekkoFS provides relaxed POSIX semantics which only

offers features which are actually required by most (not all) applications. GekkoFS is, therefore, able to provide scalable I/O

performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming

the capabilities of common parallel file systems.

Keywords distributed file system, high-performance computing (HPC), burst buffer, POSIX (portable operating system

interface)

1 Introduction

High-performance computing (HPC) applications

are currently significantly changing. Traditional HPC

applications have been compute-bound, large-scale sim-

ulations, while today’s HPC community is additionally

moving towards the generation, processing, and ana-

lysis of massive amounts of experimental data. This

trend, known as data-driven science, is affecting many

different scientific fields, some of which have made

significant progress tackling previously unaddressable

challenges thanks to newly developed techniques [1, 2].

Most data-driven workloads are based on new algo-

rithms and data structures like graph databases, which

impose new requirements on HPC file systems [3, 4].

Among others, they include large numbers of metadata

operations, data synchronization, non-contiguous and

random access patterns, and small I/O requests [3, 5].

These access patterns differ significantly from past

workloads which mostly performed sequential I/O ope-

rations on large files. These new access patterns do not

only slow down the data-driven applications themselves

but can also heavily disrupt other applications that are

Regular Paper

Special Section on Selected I/O Technologies for High-Performance Computing and Data Analytics

This work has been funded by the German Research Foundation (DFG) through the Priority Programme 1648 “Software for
Exascale Computing” and the ADA-FS project, and also partially supported by the Spanish Ministry of Science and Innovation under
Grant No. TIN2015–65316, the Generalitat de Catalunya under Contract 2014–SGR–1051, as well as the European Union’s Horizon
2020 Research and Innovation Programme, under Grant Agreement No. 671951 (NEXTGenIO).

©Institute of Computing Technology, Chinese Academy of Sciences & Springer Nature Singapore Pte Ltd. 2020

http://dx.doi.org/10.1007/s11390-020-9797-6


Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 73

concurrently accessing the shared storage system [6, 7].

Consequently, conventional parallel file systems (PFS)

cannot handle these workloads efficiently and data-

driven applications suffer from prolonged I/O latencies,

reduced throughput, and long waiting times.

Software-based approaches to supporting data-

driven applications try to align the new access patterns

to the capabilities of the underlying PFS. These ap-

proaches include application modifications or use mid-

dleware and high-level libraries (e.g., ADIOS [8], or

HDF5 [9]). Adapting the software is typically time-

consuming, difficult to couple with big data and ma-

chine learning libraries, or sometimes (based on the un-

derlying algorithms) just impossible.

Hardware-based approaches move from magnetic

disks, which are still the main backend techno-

logy for PFSs, to NAND-based solid-state drives

(SSDs). Nowadays, many supercomputers deploy

SSDs, which provide a high sequential and random ac-

cess performance 1○− 6○. SSDs can be used as dedi-

cated burst buffers [10] or as node-local burst buffers.

To achieve high metadata performance, burst buffers

can be deployed in combination with a dynamic burst

buffer file system [11, 12].

Generally, burst buffer file systems increase perfor-

mance compared to a PFS without modifying an ap-

plication. Therefore, they typically support POSIX

(portable operating system interface) which provides

the standard semantics accepted by most application

developers. Nevertheless, enforcing POSIX can severely

reduce a PFS’s peak performance [13]. Further, many

POSIX features are not required for most scientific

applications [14], especially if they can exclusively ac-

cess the file system. Similar argumentations hold for

other advanced features like fault tolerance or security.

We present GekkoFS, a temporarily deployed,

highly-scalable distributed file system for HPC applica-

tions. GekkoFS pools together fast node-local storage

resources and provides a global namespace accessible

by all participating nodes. It relaxes POSIX by re-

moving some of the semantics that most impair I/O

performance in a distributed context, and it takes pre-

vious studies on the behavior of HPC applications into

account [14] to heavily optimize the most used file sys-

tem operations.

For load-balancing, all data and metadata are dis-

tributed across all nodes using the HPC RPC frame-

work Mercury [15] in combination with the HPC thread-

ing framework Argobots [16, 17]. The file system runs in

user-space and can be easily deployed in under 20 sec-

onds on a 512 node cluster by any user. It, therefore,

can be used in a number of temporary scenarios, e.g.,

during the lifetime of a compute job or in longer-term

use cases, such as campaigns in which data is simulta-

neously accessed by many nodes in short bursts.

Besides being able to offer the combined storage ca-

pabilities of node-local storage devices, GekkoFS’ goal

is to accelerate I/O operations in common HPC work-

loads that are challenging for modern PFSs. We demon-

strate how our lightweight, yet highly distributed file

system can achieve scalable data and metadata per-

formance, achieving tens of millions of metadata ope-

rations per second on a 512 node cluster. At the same

time, GekkoFS is able to run complex applications,

such as OpenFOAM solvers [18]. These features are

achieved while GekkoFS operates synchronously and

with a strong consistency model for file system ope-

rations that target a specific file or directory.

In this work, we built on the conference paper by

Vef et al. [19] and extended it by a more detailed descrip-

tion of its architecture and core techniques in Section 3.

Section 4 offers a deeper analysis of additional experi-

ments with an in-depth evaluation of the file system’s

metadata and data performance on the MOGON II su-

percomputer. In Subsection 4.4, we evaluate GekkoFS’

I/O variability on the MareNostrum IV supercomputer

and compare it with the capabilities of its GPFS instal-

lation. Further, Subsection 4.5 investigates GekkoFS’

and Lustre’s effects on the network communication

when the user application OpenFOAM [18] is run. Fi-

nally, we conclude in Section 5 and discuss further re-

search directions.

2 Related Work

In this section, we give an overview over exist-

ing HPC file systems and discuss the differences to

1○Aurora. http://aurora.alcf.anl.gov, Nov. 2019.
2○Cori. http://www.nersc.gov/users/computational-systems/cori, Nov. 2019.
3○Marenostrum. https://www.bsc.es/marenostrum/marenostrum, Nov. 2019.
4○Mogon II. https://hpc.uni-mainz.de, Nov. 2019.
5○Sierra. https://computation.llnl.gov/computers/sierra, Nov. 2019.
6○Summit. https://www.olcf.ornl.gov, Nov. 2019.



74 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

GekkoFS.

General-Purpose Parallel File Systems. Most HPC

systems are equipped with a backend storage sys-

tem which is globally accessible using a parallel file

system (e.g., GPFS [20], Lustre [21, 22], BeeGFS [23], or

PVFS [24]). These file systems offer a POSIX-like inter-

face, which allows applications to run as they were ac-

cessing a local file system, focusing on data consistency

and long-term storage. However, due to the nature of

the file system being globally accessible, single applica-

tions can disrupt the I/O performance of other appli-

cations as well. In addition, these file systems are not

well suited for small file accesses, in particular on shared

files, which can be found in scientific applications [3].

GekkoFS’ design does not focus on long-term sto-

rage. Contrary to previously mentioned and perma-

nently available file systems, it offers a separate names-

pace only accessible to nodes participating within the

context of an HPC job or other temporary defined

groups. When such a context is finished, all data is

deleted. Further, GekkoFS offers a relaxed POSIX en-

vironment. As such, our file system is able to provide

a significant increase in metadata performance and re-

duces the impact on other applications running on the

same HPC system.

Burst Buffers. Burst buffers are fast, intermedi-

ate storage systems that aim to reduce the load on

the global file system and on reducing an applications’

I/O overhead [10]. Essentially, burst buffers can be cat-

egorized into two groups [11]: remote-shared and node-

local. Remote-shared burst buffers, e.g., DDN’s IME 7○

and Cray’s DataWarp 8○, are centralized, dedicated I/O

nodes structured as a forwarding layer.

Node-local burst buffers are generally collocated

with the compute nodes and can be dependent on the

PFS (e.g., PLFS [12]). In some cases, these burst buffers

can also be managed directly by the PFS itself [25].

The Hermes [26] I/O middleware library provides a dis-

tributed I/O buffering system which transparently com-

bines multi-tiered storage (e.g., node-local SSDs) and

memory hierarchies of supercomputer environments. It

uses multiple data placement techniques to place data

on all storage layers efficiently and therefore considers

both local and shared resources as burst buffers.

BurstFS [11], perhaps the most related work to

ours, is a standalone burst buffer file system which

does not require a centralized instance as well. How-

ever, GekkoFS is not limited to write data locally like

BurstFS. Instead, all data is distributed across all par-

ticipating file system nodes to balance data workloads

for write and read operations without sacrificing scala-

bility. BeeOND [23] can create a job-temporal file sys-

tem on a number of nodes similar to GekkoFS. BeeOND

is, in contrast to our file system, POSIX-compliant and

our GekkoFS’ measurements show a much higher meta-

data throughput than what is offered by BeeOND (see

Subsection 4.2).

POSIX. The term portable operating system

interface 9○ (POSIX) is rather broad and at times am-

biguous. When used within a file system context,

POSIX is typically referred to as POSIX I/O, targeting

the behavior of write and read operations. Henceforth,

POSIX refers in this paper to POSIX I/O. POSIX was

developed over 25 years ago for file accesses by a single

process. Yet, until today there is no support for parallel

I/O which involves multiple I/O operations on a single

shared file.

To provide POSIX semantics in a distributed envi-

ronment with a strong consistency model and shared

accesses, parallel file systems typically rely on ex-

pensive distributed locking mechanisms to avoid con-

flicts, such as byte-range locking (e.g., Lustre [21] and

GPFS [20]). However, strong consistency semantics and

poor parallel I/O support in file systems [27] combined

with scientific applications’ access patterns [3] are the

main reasons for HPC I/O challenges. Despite ever-

increasing computing performance, data-intensive ap-

plications running on HPC systems face scalability chal-

lenges which prevents them to fully utilize the offered

computing power [28].

One solution to reduce locking induced overhead

is to give the responsibility that no shared con-

flicts occur to the application or external libraries.

PVFS, e.g., does not implement a file system locking

mechanism [24, 29]. GekkoFS supports this argumenta-

tion and does not provide a locking mechanism to avoid

any global locking overhead.

Metadata Scalability. At its core, metadata in Unix-

like operating systems can be categorized into three

components: an object’s metadata, a file’s data, and

a directory’s contents [30]. Metadata is typically stored

in an inode, containing information about the object’s

7○ddn.com/products/ime-flash-native-data-cache, Nov. 2019.
8○https://www.cray.com/datawarp, Nov. 2019.
9○http://pubs.opengroup.org/onlinepubs/9699919799/, Nov. 2019.



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 75

type (e.g., file, directory, symbolic links), its size, ac-

cess permissions, and last modification time (mtime),

for example. For data organization, file systems offer

directories that store information about their contents

in directory blocks.

However, inodes and directory blocks were not de-

signed for parallel accesses because a single block can

only be accessed by one process at a time. This is

particularly relevant in distributed systems when a

huge number of files are created in a single directory

from multiple processes, a common workload in HPC

environments [12, 25, 31, 32]. In general, such systems dis-

tribute data across all available storage targets. While

this technique works well for data, it does not achieve

the same throughput when handling metadata [33, 34].

This is caused by complex distributed locking of cen-

tral data structures (generally managed by a meta-

data server instance) that are required to be accessed

in parallel [31]. The file system community presented

various techniques for handling metadata [12, 32, 35–38],

but this challenge is still prevailing and is becoming an

even bigger challenge for upcoming data-science appli-

cations.

IndexFS [33], for example, is one such attempt to

drastically improve metadata performance by using it

as a middleware software on top of existing file sys-

tems, such as PVFS or Lustre. Similar to GekkoFS,

IndexFS uses a key-value database to store metadata

information and it distributes metadata across multi-

ple IndexFS servers. In addition, IndexFS uses vari-

ous client caches to increase RPC efficiency further and

assigns directories to IndexFS servers. GekkoFS, on

the other hand, uses loosely coupled components and

does not offer any caching functionality on clients. In-

stead, GekkoFS aggressively stripes all metadata across

all servers. Moreover, in contrast to GekkoFS, IndexFS

is still bound to implement POSIX file I/O semantics,

requiring IndexFS to work with the file system pro-

tocols of the used underlying file system, e.g., path-

name traversal or permission checking. GekkoFS re-

laxes POSIX and weakens the concept of directories

which internally are no longer treated as mentioned di-

rectory blocks, directory entries, and inodes (see Sub-

section 3.5). In fact, GekkoFS entirely removes direc-

tory blocks and replaces directory entries by objects,

stored within a strongly consistent key-value database

which relinquishes the need for locking mechanisms

within the file system. As a result, GekkoFS achieves

tens of millions of metadata operations for 512 nodes

and billions of files.

3 Design and Implementation

In this section we introduce the goals and the de-

sign of GekkoFS. First, we present the goals of our file

system. Second, we give a brief overview of the system

components and the file system’s architecture. Finally,

we present details to each component of our system.

3.1 Design Goals

We define the following goals for GekkoFS’ design.

Functionality. Any user should be able to deploy the

file system on an arbitrary number of nodes without ad-

ministrative assistance. The mount point of GekkoFS

and the data directory, which the file system uses to

store user data, is given when the file system is started.

The mount point should then present the user with a

single global namespace, consisting of the aggregated

node-local storage of each node.

Scalability. To benefit from current and future sto-

rage and network technologies, GekkoFS should scale

with an arbitrary number of nodes and efficiently use

available hardware.

Consistency Model. GekkoFS should provide the

same consistency as POSIX for any file system ope-

ration that accesses a specific data file. This includes

read and write operations as well as any metadata ope-

rations that target a single file, e.g., file creation. Nev-

ertheless, the consistency of directory operations, for

instance, can be relaxed.

Fast Deployment. Compute time in HPC envi-

ronments is valuable and expensive and should not

be wasted for the purpose of file system deployment.

Therefore, GekkoFS’ startup should be finished within

one minute to be used immediately by applications once

the startup succeeds.

Hardware Independence. GekkoFS should be able to

utilize all networking hardware that is commonly used

in HPC clusters, such as Infiniband or Omni-Path, and

fully support the native protocols of these fabrics to ef-

ficiently move the data between file system nodes. In

addition, GekkoFS should work with any modern and

future storage subsystem that is (or will be) attached to

compute nodes with the condition that the node-local

storage is accessible at a path permitted to the user.

3.2 Overview

GekkoFS aims to offer a user-space file system for

the lifetime of a particular use case, e.g., within the

context of an HPC job. The file system uses the availa-

ble local storage of compute nodes and combines their



76 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

node-local storage into a single global namespace. For

the scalability and balanced usage of all available sto-

rage, data and metadata are distributed across all file

system nodes.

Before an application is started, a file system server

process is launched on each node with information

about the file system mount point, the location where

file system data is stored, and a list of participating

nodes. An application uses the file system by preloading

the GekkoFS client interposition library that intercepts

file system operations on the GekkoFS mount point.

The client library can also be used to stage-in or stage-

out data into GekkoFS from the PFS or vice versa, if

necessary. For example, to copy data from a PFS path

to a GekkoFS path, a user may use the cp command on

the command line interface (CLI) while the interposi-

tion library is preloaded. When a GekkoFS operation is

intercepted, the client forwards the operation to the re-

sponsible server, determined by hashing the file’s path,

where it is directly executed. To achieve a balanced

data distribution for large files, each file is additionally

split into equally sized chunks by the client and then

distributed among the servers. Due to this communica-

tion scheme, there is no communication between server

instances.

3.3 POSIX Relaxation

From definitions on how I/O interfaces work, come

certain requirements and expectations on how the file

system retrieves results. The POSIX model inherently

leads to a consistency model, which requires atomicity

and locking mechanisms in a distributed environment.

While local file systems are able to efficiently provide

such a consistency model, it can result in scalability

issues in a PFS (see Section 2).

The POSIX consistency is especially challenging for

the scalability of a PFS in the following cases.

1) Atomic operations within a distributed environ-

ment that require exclusive write or read access to a cen-

tral data structure. Such atomicity is typically achieved

by acquiring a global lock on the desired data structure,

which can impair concurrent work. Examples of such

operations are file create(), since it involves modify-

ing the parent directory, and readdir() as it needs to

create a snapshot of a directory’s current state and may

target an arbitrary number of file system objects.

2) Cache coherency protocols. While there are sev-

eral advantages to provide various forms of caching in

a PFS, it is generally not clear whether an applica-

tion with particular semantics can benefit from such

general caching protocols. Moreover, distributed cache

coherency protocols often require a large body of net-

work communication to keep synchronization, which is

commonly impracticable at larger scales.

Therefore, similar to PVFS [39] and OrangeFS [29],

GekkoFS does not provide a global lock mechanism. In

this sense, applications should be responsible to ensure

that no conflicts occur, in particular, w.r.t. overlapping

file regions, to avoid complex locking within the file sys-

tem. However, the lack of distributed locking has con-

sequences for operations where the number of affected

file system objects is unknown a priori, e.g., when re-

questing the contents of a directory. In these indirect

file system operations, GekkoFS does not guarantee to

return the current state of the directory. In other words,

readdir() operations, which are called by the ls -l or

rm -rf /* commands, for instance, follow an eventual-

consistency model. Also for the above-stated reasons,

each operation in GekkoFS is synchronous without any

form of caching within the context of file system ope-

rations. This not only reduces file system complexity

but allows for an evaluation of GekkoFS’ raw perfor-

mance capabilities.

Moreover, studies on the behavior of HPC appli-

cations have shown that many features that file sys-

tems offer are rarely used or not used at all, such as

move/rename operations [14]. Instead, these operations

are typically only called from a console after the ac-

tual simulation ends and when parallel access is not

required anymore. Taking these observations into ac-

count, GekkoFS’ does not optimize towards move or

rename operations and linking functionality although

supporting it rudimentarily.

Finally, security management in the form of access

permissions is not maintained by GekkoFS as it already

implicitly follows the security protocols of the node-

local file system that is used to store the file system’s

data and metadata. Data can only be staged into or

out of GekkoFS if the user has the corresponding ac-

cess rights on the backend file system.

3.4 Architecture

GekkoFS’ architecture (see Fig.1) consists of two

main components: a client library and a server process.

An application that uses GekkoFS must first preload

the client interposition library through the LD PRELOAD

environment variable which intercepts file system ope-

rations. However, because any function can be inter-

cepted by the preloading library, all used I/O functions



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 77

File Map

GekkoFS Client

Library

Node-Local FS

Margo

RPC

Server Margo IPC

Server

RocksDB 

GekkoFS Daemon

Application

RPC
Margo

RPC

Client

Margo

IPC

Client

Margo

RPC

Server Margo IPC

Server

RocksDB 

GekkoFS Daemon

Node-Local FS

Node 

RDMA

Fig.1. GekkoFS architecture with its components.

by an application must be reinterpreted by GekkoFS for

the application to work. Therefore, the more complex

an application, the more the functions need to be inter-

cepted, potentially reimplementing a large percentage

of the GNU C Library (glibc).

To limit the number of functions that need to be in-

tercepted, GekkoFS uses the system call intercepting

library 10○ (syscall intercept) which aims to solve this

challenge by providing a low-level interface for hook-

ing Linux system calls while still using the LD PRELOAD

method. As a result, the GekkoFS client only needs to

intercept system calls, such as sys mknod or sys write,

while leaving the functionality of glibc, for instance, un-

touched.

Once the client has intercepted an I/O call, it for-

wards the I/O call to a server (GekkoFS daemon), if re-

quired. The GekkoFS daemon, which runs on each file

system node, receives forwarded file system operations

from clients and processes them, sending a response

when finished. The daemons operate independently

and do not communicate with other server processes on

remote nodes, therefore being effectively unaware from

each other. In the following paragraphs, we describe

the client and the daemon in detail.

GekkoFS Client. The client consists of three compo-

nents: 1) an interception interface that catches relevant

calls to GekkoFS and forwards unrelated calls to the

node-local file system; 2) a file map that manages the

file descriptors of opened files and directories, indepen-

dently of the kernel; 3) an RPC-based communication

layer that forwards file system requests to local/remote

GekkoFS daemons.

When the client library is first invoked by an

application, it requests basic information about the

mount point and the participating nodes from the lo-

cal GekkoFS daemon. The interception library then

checks for each file system operation if the GekkoFS

mount point is used. If this is not the case, the call is

passed through to the underlying file system. When-

ever a file is opened, a new file map entry is created

which associates the file handle with its path, among

other information. Upon closing the file this entry is

removed.

While a file is open, the client uses the file path p

for each related file system operation to determine the

GekkoFS daemon node that should process it. Specifi-

cally, the path p is hashed using a hash function h to

resolve the responsible daemon for an operation by cal-

culating:

nodeID = h(p) (mod number of GekkoFS nodes).

The corresponding operation is then forwarded via an

RPC message to the daemon with the unique nodeID

where it is directly executed. In other words, GekkoFS

uses a pseudo-random distribution to spread data and

metadata across all nodes, also known as wide-striping.

Because each client is able to independently resolve the

responsible node for a file system operation, GekkoFS

does not require central data structures that keep track

of where metadata or data is located.

10○https://github.com/pmem/syscall intercept, Nov. 2019.



78 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

In addition, to achieve a balanced data distribu-

tion for large files, data requests are split into equally

sized chunks before they are distributed across file

system nodes. During data transfers between client

and GekkoFS daemons, the client exposes the rele-

vant chunk memory region to the daemon which ac-

cesses it via remote-direct-memory-access (RDMA), if

supported by the underlying network fabric protocol.

GekkoFS Daemon. A GekkoFS daemon’s purpose

is to process forwarded file system operations of clients

to store and retrieve data and metadata that hashes

to a daemon. To achieve this goal, GekkoFS daemons

consist of three parts: 1) a key-value store (KV store)

used for handling metadata operations, 2) an I/O per-

sistence layer that reads/writes data from/to the under-

lying node-local storage system, and 3) an RPC-based

communication layer that accepts local and remote con-

nections to handle file system operations.

Each daemon operates a single local RocksDB key-

value store which provides a high-performance em-

bedded database for key-value data, based on a log-

structured merge-tree (LSM) [40]. RocksDB is opti-

mized for NAND storage technologies with low laten-

cies and thus fits GekkoFS’ needs as SSDs are primarily

used as node-local storage in today’s HPC clusters.

For the communication layer, we leverage on the

Mercury RPC framework, which allows GekkoFS to be

network-independent, achieving one of our design goals

(see Subsection 3.1). Mercury is an RPC communica-

tion library developed by the Argonne National Labora-

tories (ANL), which focuses on HPC environments [15].

In contrast to other RPC frameworks, Mercury is able

to use the native network transport layer and can,

therefore, handle large data transfers efficiently. Mer-

cury’s network abstraction layer, which provides a high-

level interface on top of the lower-level network fab-

rics, offers a wide variety of plugins to natively support

common fabric protocols, e.g., InfiniBand or Omni-

Path. When available, large data transfers are pro-

cessed via RDMA or cross-memory attach (CMA) in

remote and local communications, respectively. This

allows GekkoFS to efficiently transfer data within the

file system.

Within a GekkoFS, Mercury is interfaced indirectly

through the Margo library 11○ which provides Argobots-

aware wrappers to Mercury’s API with the goal to pro-

vide a simple multi-threaded execution model [17]. Ar-

gobots is a lightweight low-level threading and task-

ing framework, developed to support massive on-node

concurrency in modern HPC environments [16]. Using

Margo allows GekkoFS daemons to minimize the re-

source consumption of Margo’s progress threads and

handlers that accept and handle RPC requests [17].

3.5 Rethinking Metadata Management

Modern distributed storage systems typically em-

ploy several strategies to distribute metadata and data

across all available storage targets [20–23]. As described

in Section 2 this technique usually works well for data

but does not achieve the same efficiency and perfor-

mance (throughput or operations per second) when

handling metadata due to expensive distributed locking

mechanisms. Based on these observations, we aim at

forming a file system that performs well for any type of

direct metadata operations and allows them to scale to

an arbitrary number of nodes. We present our method-

ology in two steps targeting metadata management and

its contents.

Decoupled Wide-Striping. We aim to achieve meta-

data scalability by decoupling directory contents from

directory blocks, allowing GekkoFS to operate without

a global lock manager, and by wide-striping metadata

across all file system nodes. Instead of using directory

blocks which are challenging to use in distributed envi-

ronments, each directory entry is stored in a daemon’s

KV store where the file path is used as the key and the

value contains the file’s metadata. As a result, each file

becomes individually accessible by its path, resulting in

a flat namespace where paths that share the same prefix

are considered as the children of a directory. Finally, by

using the previously described distribution algorithm

(see Subsection 3.4), metadata entries are striped across

all nodes.

However, using the path of a file system object as

an index within a flat namespace comes at a price. If a

directory is, e.g., moved to a different file system path,

the paths of all its contents would have to be recursively

modified as well. Depending on the size of the direc-

tory and due to the distribution of metadata, this can

be a time-consuming process, as metadata might need

to be migrated if the hashes for the new paths lead to

different file system nodes. Nonetheless, as described in

Subsection 3.3, GekkoFS explicitly disallows such ope-

rations, since they are rarely used in HPC applications.

Metadata Contents. A file system that is only tem-

porarily accessed during a specific use case, e.g., within

the context of an HPC job, may not require exposing

11○https://xgitlab.cels.anl.gov/sds/margo, Dec. 2019.



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 79

all metadata fields to an application. First, we cat-

egorize metadata fields into three categories: redun-

dant, rarely used, and mandatory. The first category

includes permission bits, user ID, and group ID infor-

mation, which are used for security purposes, but that

we consider as redundant as GekkoFS has to follow the

node-local file system’s security protocols (see Subsec-

tion 3.3). The second category contains metadata fields

which are rarely used by HPC applications, including

timestamps, the inode number, and block size informa-

tion. The metadata fields of the first two categories

are disabled by default to save space within the KV

store and to reduce the amount of metadata that is sent

over the network. However, they can still be enabled if

needed.

The third category contains mandatory metadata

fields which cannot be turned off: the file type and

the file size. Although we do not use traditional direc-

tories which store all entries in a directory block, we

still support directory types because applications often

check for a directory’s existence before it is populated.

The second mandatory metadata field, the file size, is

used to keep track of a file’s data boundaries. This is

particularly of interest when working with a sparse file

in which file systems generally do not write regions to

disk that contain no information. In other words, the

file size is used to differentiate between an application

accessing outside a file’s dimensions or within a sparse

region of the file.

3.6 Data Management

GekkoFS manages data by utilizing a compute

node’s local storage system. In the following para-

graphs, we describe GekkoFS’ I/O protocol and explain

how shared file access is managed in an environment

where global locks are not used.

I/O Protocol. Similar to metadata, data (split into

equally-sized chunks) is evenly distributed across all

file system nodes. Within a node-local file system,

each chunk is represented as a file and is named af-

ter the chunk’s numeric identifier, which also describes

the chunk’s data offset. For example, in a 1 MiB chunk-

sized file system, the chunk 2 references a file’s offset

starting at address 2 MiB. Chunks of the same file in

GekkoFS are stored within the scope of the same direc-

tory in the node-local file system.

Fig.2 shows a write operation from the clients point

of view. In the given case, the write buffer is split into

six chunks (dependent on the chunk size). For each

chunk, GekkoFS computes the target node with the

help of the file’s path and chunk identifier, grouping

chunks that target the same node. The client then

sends an RPC message to each target daemon node,

each independently handling the write request for a

group of chunks. Each GekkoFS daemon accesses the

client’s memory via RDMA and writes the correspond-

ing chunks to its node-local file system. If the target

daemon refers to the local machine, data is moved via

CMA, which allows accessing a set memory region of

another process on the same machine without copying

it. In the event of serving multiple chunks per daemon,

data transfer and disk I/O may be done in parallel.

The read operation works similarly but in reverse. As

explained in Subsection 3.3, all I/O operations are syn-

chronous without any caching mechanisms on clients or

daemons, while the caching mechanisms of the local file

systems are used.

G
e
k
k
o
F
S
 C

li
e
n
t

 
Write Buffer

Hash

RPC+RDMA

41 2 3

Write Chunks

A
p
p
li
c
a
ti
o
n

Node 2

3 4

Node 1

1 6

Node-Local

FS

Chunk 6

Chunk 1

Node-Local

FS

Chunk 4

Chunk 3

Node 0

52

2 5 1 6 3 4

Node-Local

FS

Chunk 5

Chunk 2

5 6

Fig.2. GekkoFS’ write operation where a write buffer is split into
six chunks and then distributed among three daemons. Each
daemon stores its chunk in a node-local file system.

Shared Write Conflicts. As shown in Subsection 3.3,

GekkoFS does not implement a global locking manager.

This can impose challenges when working with shared

files. For instance, when two or more processes write to

the same file region at the same time they could cause a

shared write conflict, resulting in an undefined behavior

with regard to the data which is written to the under-



80 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

lying storage device. However, because of GekkoFS’

decoupled design, the above-described locking conflicts

can, in fact, be handled by any file system daemon lo-

cally. This is owing to the use of a POSIX-compliant

node-local file system which stores the corresponding

data chunks and, in the case of a shared write conflict,

serializes access to the same chunk file. Moreover, be-

cause a file may be distributed across many chunk files

and nodes, multiple conflicts in the same file only af-

fect one chunk at a time. Hence, other chunks of the file

are not disrupted during such a potential shared write

conflict.

4 Evaluation

In this section, we evaluate the performance of

GekkoFS based on various microbenchmarks which

catch access patterns that are common in HPC ap-

plications. First, we describe the experimental setup

and introduce the workloads that we simulate with

microbenchmark applications. Then, we investigate

GekkoFS’ startup time and compare GekkoFS’ meta-

data performance against a Lustre parallel file system.

Although GekkoFS and Lustre have different goals, we

point out the performances that can be gained by us-

ing GekkoFS as a burst buffer file system. In addi-

tion, we compare GekkoFS’ metadata performance with

BeeGFS’ BeeOND burst buffer file system which is used

similarly as GekkoFS. Then, we evaluate GekkoFS’

data performance and compare them with BeeGFS’

BeeOND and discuss the measured results. Further,

we investigate GekkoFS’ I/O variability and worst-case

performance. Finally, we explore GekkoFS’ with Lus-

tre’s effects on the network when the OpenFOAM ap-

plication is used.

4.1 Experimental Setup

We use three supercomputers in our experiments:

MOGON II at the Johannes Gutenberg Univer-

sity Mainz in Germany 12○, MareNostrum IV at the

Barcelona Supercomputing Center in Spain 13○, and the

NEXTGenIO prototype 14○.

4.1.1 MOGON II

MOGON II consists of 1 876 nodes in total, with 822

nodes using Intel 2630v4 Intelr Broadwell processors

(two sockets each) and 1 046 nodes using Xeonr Gold

6130 Intel Skylake processors (four sockets each). If not

otherwise noted, Intelr Broadwell processors are used

in all presented experiments. The node main memory

capacity ranges from 64 GiB up to 512 GiB of memory.

The cluster uses 100 Gbit/s Intelr Omni-Path in-

terconnect to establish a fat-tree between all compute

nodes and offers a 7.5 PiB storage backend, managed

by multiple Lustre parallel file systems. In addition,

each node provides a data center Intelr SATA SSD DC

S3700 Series with 200 GiB or 400 GiB of available sto-

rage as a scratch-space (XFS formatted) usable within

a compute job. In our experiments, we use these SSDs

for storing data and metadata of GekkoFS or BeeGFS.

Both GekkoFS and BeeGFS use internal chunk sizes of

512 KiB.

All Lustre experiments were performed on a Lus-

tre scratch file system with 12 object storage targets

(OSTs), two object storage servers (OSSs), and one

metadata service (MDS) with a total of 1.2 PiB of sto-

rage.

For GekkoFS and BeeGFS experiments, all SSD

contents are removed, and all kernel caches, i.e., buffer,

inode, and dentry caches, are flushed before each

experiment iteration. In addition, the GekkoFS dae-

mons are restarted (requiring less than 20 seconds for

512 nodes) before each experiment iteration as well.

The GekkoFS daemon and the BeeGFS storage and

metadata services, and the application under test are

pinned to separate processor sockets to ensure that file

system and application do not interfere with each other.

4.1.2 MareNostrum IV

MareNostrum IV uses 3 456 Lenovo ThinkSystem

SD530 compute nodes on 48 racks. Each node uses two

Intelr Xeonr Platinum 8160 24C chips with 24 proces-

sors each at 2.1 GHz which totals to 165 888 processes

and 390 TB of main memory. In addition, each node

provides an Intelr SSD DC S3520 Series with 240 GiB

of available storage, usable within a compute job. All

GekkoFS experiments use these SSDs as their underly-

ing storage.

A 100 Gb Intelr Omni-Path Full-Fat Tree is used

for the interconnection network connected to a total

14 PB of storage capacity offered by IBM’s GPFS. All

GPFS experiments were run in the projects file system

which offers 4.4 PB of storage with an 8 MB set file

system block size.

12○Mogon II. https://hpc.uni-mainz.de, Nov. 2019.
13○Marenostrum. https://www.bsc.es/marenostrum/marenostrum, Nov. 2019.
14○NEXTGenIO prototype. http://www.nextgenio.eu/, Nov. 2019.



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 81

4.1.3 NEXTGenIO Prototype

NEXTGenIO prototype is composed of 34 compute

nodes 15○. Each node has a dual Intelr Xeonr Platinum

8260M CPU @ 2.40 GHz (i.e., 48 cores per node), 192

GiB of main memory and 3 TBytes of node-local Intel

DCPMM memory. All GekkoFS experiments use these

DCPMM memories as their underlying storage.

Compute nodes are interconnected with an Omni-

Path fabric with two fabrics per node, henceforward

called ib0 and ib1, and they have a 56 Gbps In-

finiBand to communicate with a Lustre server with 6

OSTs. GekkoFS uses TCP/IP over Omni-Path (em-

ulated TCP) while Lustre uses the Omni-Path fabric

with InfiniBand emulation.

4.2 Metadata Performance

On MOGON II, we simulated common metadata in-

tensive HPC workloads using the mdtest 16○ microbench-

mark to evaluate GekkoFS’ metadata performance. In

our experiments, mdtest performs create, stat, and re-

move operations in parallel in a single directory. In

particular, concurrent metadata operations in a single

directory are an important workload in many HPC ap-

plications and are among the most difficult workloads

for a general-purpose PFS to handle efficiently [31].

Each operation was performed on GekkoFS using

100 000 zero-byte files per process with 16 processes

used per node. We chose the high number of files to

force RocksDB to flush its in-memory tables to the

underlying SSD to show RocksDB’s consistent perfor-

mance. As a result, a number of static sorted table

files (sst files) were created on the backend SSD storage

during our experiments.

All files created in the GekkoFS experiments are

stored from the user application’s perspective within

a single directory. However, due to the flat namespace

that is kept internally in the KV stores, there is concep-

tually no difference in which directory files are created.

This is in contrast to a traditional PFS that may per-

form better if the workload is distributed among many

directories instead of in a single directory. This is be-

cause inserting files into a directory is mostly sequen-

tialized as multiple process cannot access the same file

system block in parallel (see Section 2). As a result,

application developers are often asked to create files in

a separate directory per process, even if this does not

fit their natural ordering.

Fig.3 compares GekkoFS with Lustre in three sce-

narios with up to 512 nodes: file creation, file stat, and

file removal. The y-axis depicts the corresponding ope-

rations per second that were achieved for a particular

workload on a logarithmic scale. During the experi-

ments GekkoFS was running exclusively on the cluster

without other compute jobs interfering. Each experi-

ment was run at least five times with each data point

representing the mean of all iterations. GekkoFS’ work-

load scaled with 100 000 files per process, while Lustre’s

workload was fixed to four million files for all experi-

ments. We fix the number of files for Lustre’s meta-

data experiments because Lustre was detecting hanging

nodes when scaling to too many files.

Lustre experiments were run in two configurations:

all processes operated in a single directory (single

dir) or each process worked in its own directory

(unique dir). Moreover, Lustre’s metadata perfor-

mance was evaluated while the system was accessible

by other applications as well.

1 2 4 8

GekkoFS single/
unique dir

16

Number of Nodes (16 Processes/Node)

C
re

a
te

s/
s

32 64 12
8

25
6

51
2

108

107

106

105

104

103

Lustre single dir

Lustre unique dir

(a)

S
ta

ts
/
s

108

107

106

105

104

103

(b)

GekkoFS single/
unique dir

Lustre single dir

Lustre unique dir

1 2 4 8 16

Number of Nodes (16 Processes/Node)

32 64 12
8

25
6

51
2

R
em

o
v
es

/
s

108

107

106

105

104

103

(c)

GekkoFS single/
unique dir

Lustre single dir
Lustre unique dir

1 2 4 8 16

Number of Nodes (16 Processes/Node)

32 64 12
8

25
6

51
2

Fig.3. GekkoFS’ file create, stat, and remove throughput for an increasing number of nodes compared to a Lustre parallel file system.
(a) Create throughput. (b) Stat throughput. (c) Remove throughput.

15○http://www.nextgenio.eu/, Nov. 2019.
16○https://github.com/hpc/ior, Nov. 2019.



82 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

As seen in Fig.3, GekkoFS outperforms Lustre by

a large margin in all scenarios, regardless of whether

Lustre processes operated in a single or in an isolated

directory. Compared with Lustre, GekkoFS achieved

around 46 million creates per second (∼1 405x), 44 mil-

lion stats per second (∼359x), and 22 million removes

per second (∼453x) at 512 nodes. The standard de-

viation was computed as the percentage of the mean

which, in all GekkoFS cases, was less than 3.5%. For

GekkoFS, each operation is performed synchronously

without any caching mechanisms in place and showed

close to linear scaling. Therefore, we achieve our scala-

bility goal, demonstrating the performance benefits of

distributing metadata and decoupling directory entries

from non-scalable directory blocks (see Subsection 3.5).

The GekkoFS experiments were also run while

Mogon II was used by other users during production,

revealing network interference within the cluster. Up

to 128 nodes we were unable to measure a difference in

metadata operation throughput outside of the margin

for errors compared with the experiments in an undis-

turbed environment. For 256 and 512, we measured a

reduced metadata operation throughput between 10%

and 20% for create and stat operations. Remove ope-

ration throughput remained unaffected.

Lustre’s metadata performance did not scale be-

yond approximately 32 nodes, demonstrating the afore-

mentioned metadata scalability challenges in such a

general-purpose PFS. Moreover, processes in Lustre

experiments that operated within their own directory

achieved a higher performance in most cases, except

for the remove case where Lustre’s unique dir remove

throughput is reduced by over 70% at 512 nodes com-

pared with Lustre’s single dir throughput. This is

because the time required to remove the directory of

each process (in which it creates its workload) is in-

cluded in the remove throughput and the number of

created unique directories increases with the number

of used processes in an experiment. Similarly, the time

to create the process directories is also included in the

create throughput but does not show the same behavior

as the remove throughput, indicating optimizations to-

wards create operations.

Fig.4 compares GekkoFS with a POSIX-compliant

burst buffer file system: BeeGFS’ BeeOND. Similar to

GekkoFS, we configured BeeGFS to distribute meta-

data across all file system nodes. All experiments are

run in two configurations: all processes operated in a

single directory (single dir) or each process worked

in its own directory (unique dir). GekkoFS’ workload

and all BeeGFS unique dir experiments were weakly

scaled with 100 000 files per process. The workload for

BeeGFS single dir experiments, on the other hand,

was fixed to four million files. This is because BeeGFS’

distribution to multiple metadata servers is coupled

with the number of directories. Hence, operations in

a single directory are only utilizing a single metadata

server which inherently causes congestion on the corre-

sponding node, affecting scalability. Further, BeeGFS

is equivalently deployed to GekkoFS, that is, BeeGFS

is deployed in an ad hoc fashion for the lifetime of a

compute job and destroyed afterwards while all meta-

data is stored on the node-local SSD. It is therefore only

accessible by the benchmark application.

As seen in Fig.4, both GekkoFS’ and BeeGFS’

unique dir experiments show close to linear scalability

with the number of nodes for create and stat operations.

BeeGFS’ remove operations, however, do not scale be-

yond four nodes, although throughput doubled from

256 to 512 nodes. GekkoFS’ unique dir and single

dir performance is equivalent as both scenarios are in-

ternally treated indifferently (see Subsection 3.5). In

C
re

a
te

s/
s

108

107

106

105

104

103

BeeGFS-BeeOND single dir
BeeGFS-BeeOND unique dir
GekkoFS single/unique dir

(a)

1 2 4 8 16

Number of Nodes (16 Processes/Node)

32 64 12
8

25
6

51
2

S
ta

ts
/
s

108

107

106

105

104

103

BeeGFS-BeeOND single dir
BeeGFS-BeeOND unique dir
GekkoFS single/unique dir

(b)

1 2 4 8 16

Number of Nodes (16 Processes/Node)

32 64 12
8

25
6

51
2

R
e
m

o
v
e
s/

s

108

107

106

105

104

103

BeeGFS-BeeOND single dir
BeeGFS-BeeOND unique dir
GekkoFS single/unique dir

(c)

1 2 4 8 16

Number of Nodes (16 Processes/Node)

32 64 12
8

25
6

51
2

Fig.4. GekkoFS’ file create, stat, and remove throughput for an increasing number of nodes compared with a BeeGFS’ BeeOND. (a)
Create throughput. (b) Stat throughput. (c) Remove throughput.



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 83

summary, at 512 nodes, GekkoFS achieved a ∼6.5x

higher create throughput, a ∼1.2x higher stat through-

put, and a ∼102x higher remove throughput, com-

pared with BeeGFS unique dir scenario. All BeeGFS

single dir experiments did not scale beyond four

nodes due to above described limitations.

4.3 Data Performance

On MOGON II, we evaluated GekkoFS’ I/O perfor-

mance with experiments that were designed to reflect

some of the most difficult I/O patterns that scientific

applications request from the PFS, such as small I/O re-

quests or random access patterns. We used the IOR 17○

microbenchmark which offers a rich configuration in-

terface for evaluating a file system’s I/O performance

in various scenarios. We performed experiments with

sequential and random access patterns in two configu-

rations: each process is accessing its own file (file-per-

process) and all processes access a single file (shared-

file).

We used four different write and read sizes for each

configuration, in the following called transfer sizes:

8 KiB, 64 KiB, 1 MiB, and 64 MiB to assess the perfor-

mances for many small I/O accesses as well as for few

large I/O requests. In all experiments 16 processes ran

on each client with each process writing and reading

4 GiB in total.

GekkoFS data performance is not compared with

the Lustre scratch file system as its peak performance,

around 12 GiB per second, is already reached for no

more than 10 nodes for sequential I/O patterns. More-

over, Lustre has shown to scale linearly for sequential

access patterns in larger deployments with more OSSs

and OSTs being available [41]. Instead, we first focus on

GekkoFS’ behavior with various transfer sizes and I/O

patterns with the goal to achieve close to linear scala-

bility, and then compare GekkoFS’ I/O performance

with BeeGFS’ BeeOND where both file systems write

and read data on the node-local SSDs.

We first evaluate file-per-process throughput perfor-

mances, write and read operations per second (IOPS),

and latencies. Then we discuss shared-file performance

and its challenges.

File-per-Process and Sequential Access Patterns.

Fig.5 shows GekkoFS’ sequential read and write

throughput in MiB/s for an increasing number of nodes

for different transfer sizes. Each data point represents

the mean of at least five iterations. The standard de-

viation, calculated as the percentage of the mean, was

smaller than 5% in all cases, except for 64 KiB writes

which varied up to 13%. Further, each data point is

compared to the peak performance that all aggregated

SSDs could deliver for a given node configuration, vi-

sualized as a white rectangle, indicating GekkoFS’ SSD

usage efficiency.

In general, every result demonstrates GekkoFS’

close to linear scalability, achieving about 141 GiB/s

(∼80% of the aggregated SSD peak bandwidth) and

204 GiB/s (∼70% of the aggregated SSD peak band-

width) in respective write and read operations for

64 MiB transfer sizes for 512 nodes.

Any I/O operation which is larger than the used

chunk size of 512 KiB will internally be split into equally

sized chunk files on the node-local file system on one or

more nodes (see Subsection 3.6). Chunks that hash

to the same node are packaged together into the same

RPC request, resulting in parallel RDMA accesses to

the client’s memory from multiple nodes. Therefore,

chunks of 64 MiB I/O requests can be served in para-

llel, achieving a higher throughput than 1 MiB I/O re-

quests. I/O requests smaller than the chunk size always

target a single chunk, and hence, a single node.

1 2 4 8

8 KiB
64 KiB
1 MiB
64 MiB
SSD Peak Perf.

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256 512

105

104

103

102

(a)

8 KiB
64 KiB
1 MiB
64 MiB
SSD Peak Perf.

M
iB

/
s

105

104

103

102

1 2 4 8

Number of Nodes (16 Processes/Node)

3216 64 128 256 512

(b)

Fig.5. GekkoFS’ sequential throughput for each process operating on its own file compared to the plain SSD peak throughput. (a)
Write throughput. (b) Read throughput.

17○https://github.com/hpc/ior, Nov. 2019.



84 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

Fig.6 shows the I/O operations per second (IOPS)

for an increasing number of nodes (x-axis). GekkoFS

achieved more than 13 million write IOPS and more

than 22 million read IOPS at 512 nodes with an 8 KiB

transfer size. In general, the smaller the transfer size,

the higher the IOPS in all cases. This is because small

I/O requests reduce the amount of time the target node

spends during an I/O operation of a chunk file. There-

fore, the latency of each I/O request becomes the pre-

dominant factor in such an operation causing a decrease

in throughput and an increase in IOPS.

Fig.7 depicts the I/O latencies for such small write

and read requests, exemplarily shown for 8 KiB transfer

sizes. Each data point represents the mean latency for

all write or read requests over five iterations. Because

the experiments were weakly scaled, an increasing node

number translates into more I/Os. For instance, at 512

nodes the I/O latency of over 167 million operations

were taken into account. In all cases, the I/O latencies

were well below the capabilities of modern hard disk

drives with access times of several milliseconds, show-

ing GekkoFS’ efficient utilization of the SSD storage

backend. Note that the latencies of read operations are

lower than those of write operations as the latter in-

volves an additional communication step to update the

size of the file.

1 2 4 8

8 KiB

Number of Nodes (16 Processes/Node)

O
p
e
ra

ti
o
n
s/

s

3216 64 128 256 512

106

104

102

100

(a)

1 MiB
64 KiB 64 MiB

O
p
e
ra

ti
o
n
s/

s 106

104

102

100

1 2 4 8

Number of Nodes (16 Processes/Node)

3216 64 128 256 512

(b)

8 KiB 1 MiB
64 KiB 64 MiB

Fig.6. GekkoFS’ sequential write and read operations per second for each process operating on its own file. (a) Write IOPS. (b) Read
IOPS.

1 2

L
a
te

n
c
y
 (
m
s)

4

700

600

500

400

300

8

Number of Nodes

3216

8 KiB Write
8 KiB Read

64 128 256 512

Fig.7. GekkoFS’ I/O latencies for 8 KiB transfer sizes.

Further, we noticed rare but severe outliers which

resulted in a high standard deviation that needs to be

further investigated. Nonetheless, despite these out-

liers, the throughput and IOPS in various scenarios, as

shown above, were stable with a low standard devia-

tion.

Fig.8 compares GekkoFS with BeeGFS’ BeeOND up

to 256 nodes in two configurations: 64 MiB and 8 KiB

transfer size to evaluate large and small transfer sizes

alike. In both configurations, BeeGFS scales almost

1 2 4 8

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256

105

104

103

102

(a)

GekkoFS 8 KiB
BeeGFS-BeeOND 8 KiB
GekkoFS 64 MiB
BeeGFS-BeeOND 64 MiB

1 2 4 8

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256

105

104

103

102

(b)

GekkoFS 8 KiB
BeeGFS-BeeOND 8 KiB
GekkoFS 64 MiB
BeeGFS-BeeOND 64 MiB

Fig.8. GekkoFS’ sequential throughput for each process operating on its own file compared with BeeGFS’ BeeOND. (a) Write through-
put. (b) Read throughput.



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 85

linearly with a standard deviation smaller than 9% in

all cases. Similar to GekkoFS, BeeGFS used node-local

SSDs for storage with the same workload, and it dis-

tributed all data across all available nodes with the

test directory’s stripe size set to −1. At 256 nodes

with 64 MiB transfer sizes, GekkoFS’ write through-

put is ∼1.12x higher than BeeGFS’ while BeeGFS’

read throughput is ∼1.26x higher than GekkoFS’. For

operations with an 8 KiB transfer size, on the other

hand, BeeGFS’ write and read throughput are ∼1.73x

and ∼1.86x higher than GekkoFS, respectively. Fur-

ther experiments with BeeGFS and transfer sizes rang-

ing from 1 MiB to 8 KiB showed that write and read

throughput remained similar, suggesting caching mech-

anisms for such transfer sizes. Since GekkoFS is not

utilizing any caching mechanisms, a reduction in I/O

throughput for smaller transfer sizes is expected as each

I/O request is sent individually and therefore becoming

increasingly more latency-dependent in the process.

File per Process and Random Access Patterns. Fig.9

shows GekkoFS’ throughput for random accesses for

an increasing number of nodes, showing close to linear

scalability in all cases. The file system achieved up to

141 GiB/s write throughput and up to 204 GiB/s read

throughput for 64 MiB transfer sizes at 512 nodes.

The throughput for 64 MiB and 1 MiB transfer sizes

is comparable to the sequential results. Nevertheless,

write and read throughput decreased by approximately

33% and 60% for 512 nodes and a transfer size of 8 KiB.

The reason is that transfer sizes larger than the chunk

size internally access whole chunks while smaller trans-

fer sizes access one chunk at a random offset.

Consequently, random accesses for large transfer

sizes are conceptually the same as sequential accesses.

In both cases whole chunks are written or read, result-

ing in a similar performance. Small transfer sizes, on

the other hand, are slower than sequential accesses due

to the resulting random access to chunks. Hence, appli-

cations may benefit from choosing smaller chunk sizes

if their transfer sizes are small.

Fig.10 compares GekkoFS’ throughput for random

accesses with BeeGFS’ with up to 256 nodes. At

256 nodes with 64 MiB transfer sizes, GekkoFS’ write

and read throughput is ∼1.86x and ∼2.7x higher than

BeeGFS’, respectively, potentially showing the above-

described benefits of transfer sizes larger than the chunk

size. For 8 KiB transfer sizes, GekkoFS’ write through-

put is ∼2x higher than BeeGFS’ while BeeGFS’ read

throughput is ∼1.95x higher than GekkoFS’.

Single Shared File. Shared file operations have

many similarities to the previously presented experi-

ments in which each process operated on its own file.

1 2 4 8

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256 512

105

104

103

102

(a)

8 KiB
64 KiB
1 MiB
64 MiB

1 2 4 8

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256 512

105

104

103

102

(b)

8 KiB
64 KiB
1 MiB
64 MiB

Fig.9. GekkoFS’ random (a) write and (b) read throughput for each process operating on its own file.

1 2 4 8

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256

105

104

103

102

(a)

GekkoFS 8 KiB
BeeGFS-BeeOND 8 KiB
GekkoFS 64 MiB
BeeGFS-BeeOND 64 MiB

1 2 4 8

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256

105

104

103

102

(b)

GekkoFS 8 KiB
BeeGFS-BeeOND 8 KiB
GekkoFS 64 MiB
BeeGFS-BeeOND 64 MiB

Fig. 10. GekkoFS’ random (a) write and (b) read throughput for each process operating on its own file compared with BeeGFS’
BeeOND.



86 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

For instance, in cases where the transfer size is bigger

than the chunk size, each chunk file is only accessed

by a single process, regardless of whether the whole file

is shared among many processes or accessed by just a

single process. If two processes try to access the same

offset in the same chunk file, locking mechanisms of the

node-local file system serialize the access to this file.

Fig.11 presents the write throughput and the write

IOPS for 64 KiB and 8 KiB transfer sizes for a sequen-

tially written single shared file for up to 32 nodes. In

these examples a drawback of GekkoFS’ synchronous

and cache-less design becomes visible and no more than

approximately 150 000 write operations per second were

achieved. We omit experiments for more than 32 nodes

as throughput and IOPS stagnate. This behavior is

caused by the size of a single metadata entry that is

maintained by only a single node and needs to be up-

dated constantly by all nodes in a mutually exclusive

way.

1 2 4 8

Number of Nodes
(16 Processes/Node)

3216

(a)

M
iB

/
s

103

102

8 KiB
64 KiB

1 2 4 8

Number of Nodes
(16 Processes/Node)

3216

(b)

W
ri
te

 O
p
e
ra

ti
o
n
s/

s

105

104

103

Fig.11. GekkoFS’ sequential write throughput and write IOPS for
each process operating on a single shared file. (a) Write through-
put. (b) Write IOPS.

This bottleneck becomes worse for more processes

participating in an experiment — eventually reaching a

bottleneck, visible at the number of write IOPS. Note

that each node in the previous file-per-process experi-

ments only handled at most 25 000 write operations per

second on average. Therefore, such behavior did not ap-

pear during the previous experiments. The root-cause

lies within the number of small RPC messages updating

the file size for each write operation, causing network

contention on the metadata maintaining node. This ob-

servation is supported by the fact that read operations

did not show a similar behavior as no metadata updates

are necessary and that increasing the number of RPC

handler threads did not result in a higher number of

write IOPS.

To reduce the number of RPC messages being sent

to a single node, we add a rudimentary client cache to

locally buffer size updates of a number of write ope-

rations before they are sent to the node that manages

the size of the file. Fig.12 shows the resulting through-

put for the cache case for sequential accesses on a single

shared file for up to 512 nodes, now showing close to lin-

ear scalability. Due to the internal similarities in data

distribution, shared file performances are now compa-

rable to the previously discussed file-per-process per-

formances. While the usage of such a cache may not be

ideal for all applications, it significantly prevents node

contention.

4.4 I/O Variability and Worst-Case

On MareNostrum IV, we used the IOR benchmark

to measure the I/O variability and worst-case I/O per-

formance, which applications experience when using

GekkoFS compared to the cluster’s GPFS. All experi-

ments were run during production, and they were co-

located with the ordinary HPC workload. For each file

system, we ran 25 independent repetitions of the same

benchmark set with each using different node alloca-

tions at different time throughout one week.

Each benchmark set used varying I/O request sizes

ranging between 512 bytes and 64 MiB to evaluate a

more realistic representation of real applications whose

1 2 4 8

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256 512

105

104

103

102

(a)

8 KiB
64 KiB
1 MiB
64 MiB

1 2 4 8

Number of Nodes (16 Processes/Node)

M
iB

/
s

3216 64 128 256 512

105

104

103

102

(b)

8 KiB
64 KiB
1 MiB
64 MiB

Fig.12. GekkoFS’ sequential throughput with a metadata client cache for all processes operating on a single shared file. (a) Write
throughput. (b) Read throughput.



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 87

I/O request sizes usually differ during execution. In

addition, GekkoFS chunk size was varied as well, rang-

ing between 128 KiB and 64 MiB. GPFS’ block size

is not dynamically changeable and therefore remained

8 MiB. The benchmarks used 24 out of the 48 available

cores on each node, and the written file sizes were set

large enough to fill the node’s main memory to avoid

cache effects. The files IOR writes data to and reads

from are initially created with each process working on

a dedicated file.

Fig.13 presents the I/O variability of GPFS and

GekkoFS as squares and triangles, respectively, up to 32

nodes for each IOR run. GPFS’ measured throughput

shows significant variability, often scattered by orders

of magnitude, with writes showing a higher variabil-

ity than reads. In fact, such I/O behavior is not un-

common at many HPC sites [42–44], and it is generally

known as the so-called cross-application interference.

Cross-application interference is caused by an I/O bot-

tleneck where a shared resource, such as a PFS, is ac-

cessed by multiple, uncoordinated applications. With

this I/O bottleneck already being a great challenge at

many HPC sites today, some studies suggest this issue

could become one of the core challenges for Exascale

machines in the future [45–47].

Read Write

1 2 4 8 16 32 1 2 4 8 16 32

102

103

104

Number of Nodes
(24 Processes/Node)

Number of Nodes
(24 Processes/Node)

M
iB

/
s

GPFS
GekkoFS

GPFS
GekkoFS

Fig.13. I/O variability of GPFS and GekkoFS of multiple IOR
runs on different time and node allocations throughout one week.

GekkoFS, on the other hand, shows steady and pre-

dictable performance with low cross-application inter-

ference, showing the benefits of a private, job-exclusive

file system that is accessed by a single application. In

both read and write cases, GekkoFS shows close to lin-

ear scalability as the available bandwidths and storage

capabilities increase with the number of nodes, eventu-

ally closing the gap to GPFS’ best-case performance.

Nonetheless, in terms of the worst-case performance

both file systems experience, GekkoFS considerably ex-

cels GPFS’ throughput in most cases due to the low

impact of cross-application interference on GekkoFS,

visualized in Fig.14.

Read Write

1 2 4 8 16 1 2 4 8 16

0

1000

2000

3000

4000

Number of Nodes
(24 Processes/Node)

Number of Nodes
(24 Processes/Node)

M
iB

/
s

GPFS

GekkoFS

GPFS

GekkoFS

Fig.14. I/O worst-case of GPFS and GekkoFS of multiple IOR
runs on different time and node allocations throughout one week.

4.5 Effects on the Network

On the NEXTGenIO prototype, we use the user ap-

plication OpenFOAM to investigate GekkoFS’ effects

on the network. OpenFOAM [18] is a C++ library for

developing user-customized numerical solvers for the

solution of Continuum Mechanics problems, including

Computational Fluid Dynamics. OpenFOAM solvers

often require multiple stages to complete, involve large

amounts of I/O, and benefit from using multiple nodes

while parallelization is achieved with MPI. The appli-

cation is used in industry as well as academia in large-

scale computations.

In our experiments, we used the simpleFOAM solver

which is a steady-state solver for incompressible, tur-

bulent flow, using the SIMPLE (Semi-Implicit Method

for Pressure Linked Equations) algorithm. We used 100

iterations with a time step 1 setting which generates

around 25 GiB of data in over 170 000 files. The experi-

ments were run on four nodes (24 processes per node)

with simpleFOAM pinned to socket 0. GekkoFS and

Lustre both use the ib0 Omni-Path adapter. Simple-

FOAM’s MPI communication was run in three configu-

rations: MPI using the ib0, ib1, or ib0 and ib1 Omni-

Path adapters. Hence, ib1 separates MPI from Lustre’s

and GekkoFS’ internal file system network traffic.

Fig.15 shows the runtime (in seconds) of the sim-

pleFOAM experiments when used with Lustre or

GekkoFS. The three bar groups depict the above-

described simpleFOAM MPI configurations for each

file system. Although simpleFOAM in this config-

uration does not generate significant I/O, GekkoFS



88 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

is still ∼7%–∼9% faster in all cases compared with

Lustre. Further profiling revealed that the perfor-

mance improvements are caused by MPI Waitall and

MPI Allreduce, instead of from direct file system ope-

rations. As a result, both MPI functions poten-

tially benefit from less generated network pollution of

GekkoFS. This is because GekkoFS is writing parts of

the data locally (see Subsection 3.6) with less file system

traffic being put onto the network in general compared

with Lustre, where all file system communication is re-

mote. Therefore, in addition to GekkoFS’ linear scaling

for metadata and data operations (see Subsection 4.2

and Subsection 4.3), GekkoFS can also be beneficial for

an application’s inter-node communication by reducing

file system network pollution.

ib0

Lustre
979

896
944

883
952

887

GekkoFS

R
u
n
ti
m

e
 (

s)

1250

1000

750

500

250

0
ib0 & ib1ib1

Network Interface for simpleFOAM MPI

Fig.15. Runtime of the simpleFOAM application when its MPI
communication is run on different network interfaces.

5 Conclusions

Increasingly more powerful HPC clusters will lead

to even more I/O pressure on a general-purpose PFS,

as more applications will concurrently access the shared

storage. At the same time, applications with access to

node-local SSDs at the compute nodes can use burst

buffer file systems to benefit from low latencies and

modern network fabrics, reducing the load on the global

PFS. Yet, burst buffer file systems often offer features

that scientific applications do not require when running

in isolation in an exclusive file system environment.

We introduced and evaluated GekkoFS, a new burst

buffer file system with relaxed POSIX-semantics, which

is optimized for access patterns of HPC applications

that are known to not work well on a traditional PFS.

The POSIX relaxation allows GekkoFS to especially

scale metadata operations for accesses to a single di-

rectory or even to a single file. We evaluated GekkoFS’

advantages for typical metadata workloads and showed

that it is able to achieve millions of metadata ope-

rations already for a small number of nodes. More-

over, we presented its linear scalability and low impact

of cross-application interference on the file system. We

discussed challenges that occur for shared file I/O ope-

rations and how client caches can overcome resulting

bottlenecks. Finally, we evaluated GekkoFS’ I/O vari-

ability and its effects on the network with the Open-

FOAM application.

We plan to extend GekkoFS into three directions.

First, we plan an extensive survey on use cases which

might benefit from even smaller chunk sizes than the in-

vestigated 512 KiB, including metadata effects on node-

local file systems. Second, we plan to investigate how

applications can benefit from caching without compro-

mising GekkoFS’ lightweight design. Third, we aim to

carefully explore in detail how the file system itself and

other applications interfere with GekkoFS to further

improve its predictable performance.

Acknowledgments We greatly appreciate Franz-

Joseph Pfreundt with Fraunhofer ITWM for his assis-

tance on configuring and running BeeGFS’ BeeOND.

This research was conducted using the supercomputer

Mogon II and services offered by Johannes Gutenberg

University Mainz. The authors gratefully acknowledge

the computing time granted on Mogon II.

References

[1] Hey T, Tansley S, Tolle K M. The Fourth Paradigm: Data-

Intensive Scientific Discovery (1st edition). Microsoft Re-

search, 2009.

[2] Ross R, Thakur R, Choudhary A. Achievements and chal-

lenges for I/O in computational science. Journal of Physics:

Conference Series, 2005, 16(1): 501-509.

[3] Nieuwejaar N, Kotz D, Purakayastha A, Ellis C S, Best M

L. File-access characteristics of parallel scientific workloads.

IEEE Trans. Parallel Distrib. Syst., 1996, 7(10): 1075-

1089.

[4] Wang F, Xin Q, Hong B, Brandt S A, Miller E, Long D,

McLarty T. File system workload analysis for large scien-

tific computing applications. In Proc. the 21st IEEE/12th

NASA Goddard Conference on Mass Storage Systems and

Technologies, April 2004, pp.139-152.

[5] Crandall P, Aydt R A, Chien A A, Reed D A. Input/output

characteristics of scalable parallel applications. In Proc. the

1995 Supercomputing, December 1995, Article No. 59.

[6] Dorier M, Antoniu G, Ross R B, Kimpe D, Ibrahim S.

CALCioM: Mitigating I/O interference in HPC systems

through cross-application coordination. In Proc. the 28th

IEEE International Parallel and Distributed Processing

Symposium, May 2014, pp.155-164.

[7] Thapaliya S, Bangalore P, Lofstead J F, Mohror K, Moody

A. Managing I/O interference in a shared burst buffer sys-

tem. In Proc. the 45th International Conference on Parallel

Processing, August 2016, pp.416-425.



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 89

[8] Lofstead J F, Klasky S, Schwan K, Podhorszki N, Jin C.

Flexible IO and integration for scientific codes through the

adaptable IO system (ADIOS). In Proc. the 6th Interna-

tional Workshop on Challenges of Large Applications in

Distributed Environments, June 2008, pp.15-24.

[9] Folk M, Cheng A, Yates K. HDF5: A file format and

I/O library for high performance computing applications.

In Proc. the 1999 Supercomputing (CD-ROM), November

1999, pp.5-33.

[10] Liu N, Cope J, Carns P H, Carothers C D, Ross R B, Grider

G, Crume A, Maltzahn C. On the role of burst buffers in

leadership-class storage systems. In Proc. the 28th IEEE

Symposium on Mass Storage Systems and Technologies,

April 2012, Article No. 5.

[11] Wang T, Mohror K, Moody A, Sato K, Yu W. An ephemeral

burst-buffer file system for scientific applications. In Proc.

the 2016 International Conference for High Performance

Computing, November 2016, pp.807-818.

[12] Bent J, Gibson G A, Grider G, McClelland B, Nowoczyn-

ski P, Nunez J, Polte M, Wingate M. PLFS: A check-

point filesystem for parallel applications. In Proc. the 2009

ACM/IEEE Conference on High Performance Computing,

November 2009, Article No. 26.

[13] Vilayannur M, Nath P, Sivasubramaniam A. Providing tun-

able consistency for a parallel file store. In Proc. the 2005

Conference on File and Storage Technologies, December

2005, Article No. 3.

[14] Lensing P H, Cortes T, Hughes J, Brinkmann A. File system

scalability with highly decentralized metadata on indepen-

dent storage devices. In Proc. the 16th the IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Grid Com-

puting, May 2016, pp.366-375.

[15] Soumagne J, Kimpe D, Zounmevo J A, Chaarawi M, Koziol

Q, Afsahi A, Ross R B. Mercury: Enabling remote pro-

cedure call for high-performance computing. In Proc. the

2013 IEEE International Conference on Cluster Comput-

ing, September 2013, Article No. 50.

[16] Seo S, Amer A, Balaji P, Bordage C et al. Argobots:

A lightweight low-level threading and tasking framework.

IEEE Trans. Parallel Distrib. Syst., 2018, 29(3): 512-526.

[17] Carns P H, Jenkins J, Cranor C D, Atchley S, Seo S, Sny-

der S, Ross R B. Enabling NVM for data-intensive scien-

tific services. In Proc. the 4th Workshop on Interactions

of NVM/Flash with Operating Systems and Workloads,

November 2016, Article No. 4.

[18] Jasak H, Jemcov A, Tukovic Z et al. OpenFOAM: A C++

library for complex physics simulations. In Proc. the In-

ternational Workshop on Coupled Methods in Numerical

Dynamics, September 2007, Article No. 3.

[19] Vef M, Moti N, Süß T, Tocci T, Nou R, Miranda A, Cortes

T, Brinkmann A. GekkoFS — A temporary distributed file

system for HPC applications. In Proc. the 2018 IEEE In-

ternational Conference on Cluster Computing, September

2018, pp.319-324.

[20] Schmuck F B, Haskin R L. GPFS: A shared-disk file system

for large computing clusters. In Proc. the 2002 Conference

on File and Storage Technologies, January 2002, pp.231-

244.

[21] Braam P J, Schwan P. Lustre: The intergalactic file system.

In Proc. the 2002 Ottawa Linux Symposium, June 2002,

pp.50-54.

[22] Qian Y, Li X, Ihara S, Zeng L, Kaiser J, Süß T, Brinkmann

A. A configurable rule based classful token bucket filter net-

work request scheduler for the Lustre file system. In Proc.

the 2017 International Conference for High Performance

Computing, Networking, Storage and Analysis, November

2017, Article No. 6.

[23] Herold F, Breuner S. An introduction to BeeGFS. https://w

ww.beegfs.io/docs/whitepapers/Introduction to BeeGFS b

y ThinkParQ.pdf, August 2019.

[24] Ross R B, Latham R. PVFS — PVFS: A parallel file sys-

tem. In Proc. the 2006 ACM/IEEE Conference on High

Performance Networking and Computing, November 2006,

Article No. 34.

[25] Oral S, Shah G. Spectrum scale enhancements for CORAL.

http://files.gpfsug.org/presentations/2016/SC16/11 Sarp

Oral Gautam Shah Spectrum Scale Enhancements for CO

RAL v2.pdf, August 2019.

[26] Kougkas A, Devarajan H, Sun X. Hermes: A heterogeneous-

aware multi-tiered distributed I/O buffering system.

In Proc. the 27th International Symposium on High-

Performance Parallel and Distributed Computing, June

2018, pp.219-230.

[27] Latham R, Ross R B, Thakur R. The impact of file sys-

tems on MPI-IO scalability. In Proc. the 11th European

PVM/MPI Users’ Group Meeting, September 2004, pp.87-

96.

[28] Choudhary A, Liao W K, Gao K, Nisar A, Ross R,

Thakur R, Latham R. Scalable I/O and analytics. Jour-

nal of Physics: Conference Series, 2009, 180(1): Article

No. 012048.

[29] Moore M, Bonnie D, Ligon B, Marshall M, Ligon W, Mills

N, Quarles E, Sampson S, Yang S, Wilson B. OrangeFS: Ad-

vancing PVFS. https://www.usenix.org/legacy/event/fas

t11/posters files/Moore.pdf, August 2019.

[30] Ritchie D, Thompson K. The UNIX time-sharing system

(reprint). Commun. ACM, 1983, 26(1): 84-89.

[31] Vef M A, Tarasov V, Hildebrand D, Brinkmann A. Chal-

lenges and solutions for tracing storage systems: A case

study with spectrum scale. ACM Trans. Storage, 2018,

14(2): Article No. 18.

[32] Patil S, Gibson G A. Scale and concurrency of GIGA+:

File system directories with millions of files. In Proc. the

9th USENIX Conference on File and Storage Technologies,

February 2011, pp.177-190.

[33] Ren K, Zheng Q, Patil S, Gibson G A. IndexFS: Scaling file

system metadata performance with stateless caching and

bulk insertion. In Proc. the 2014 International Conference

for High Performance Computing, November 2014, pp.237-

248.

[34] Carns P, Yao Y, Harms K, Latham R, Ross R, Antypas K.

Production I/O characterization on the Cray XE6. In Proc.

the Cray User Group Meeting, May 2013, Article No. 121.

[35] Xing J, Xiong J, Sun N, Ma J. Adaptive and scalable meta-

data management to support a trillion files. In Proc. the

2009 ACM/IEEE Conference on High Performance Com-

puting, November 2009, Article No. 31.

[36] Frings W, Wolf F, Petkov V. Scalable massively parallel I/O

to task-local files. In Proc. the 2009 ACM/IEEE Confe-

rence on High Performance Computing, November 2009,

Article No. 22.



90 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

[37] Yang S, Ligon III W B, Quarles E C. Scalable distributed

directory implementation on orange file system. In Proc.

the 7th IEEE International Workshop on Storage Network

Architecture and Parallel I/Os, May 2011.

[38] Patil S, Ren K, Gibson G. A case for scaling HPC meta-

data performance through de-specialization. In Proc. the

2012 SC Companion: High Performance Computing, Net-

working Storage and Analysis, November 2012, pp.30-35.

[39] Carns P H, Ligon III W B, Ross R B, Thakur R. PVFS: A

parallel file system for Linux clusters. In Proc. the 4th An-

nual Linux Showcase & Conference, October 2000, Article

No. 4.

[40] Dong S, Callaghan M, Galanis L, Borthakur D, Savor T,

Strum M. Optimizing space amplification in RocksDB. In

Proc. the 8th Biennial Conference on Innovative Data Sys-

tems Research, January 2017, Article No. 30.

[41] Oral S, Dillow D A, Fuller D et al. OLCF’s 1 Tb/s, next-

generation Lustre file system. In Proc. the 2013 Cray User

Group Conference, May 2013, Article No. 151.

[42] Lofstead J F, Zheng F, Liu Q, Klasky S, Oldfield R, Korden-

brock T, Schwan K, Wolf M. Managing variability in the IO

performance of petascale storage systems. In Proc. the 2010

Conference on High Performance Computing Networking,

Storage and Analysis, November 2010, Article No. 35.

[43] Xie B, Chase J S, Dillow D, Drokin O, Klasky S, Oral S,

Podhorszki N. Characterizing output bottlenecks in a su-

percomputer. In Proc. the 2012 International Conference

on High Performance Computing Networking, Storage and

Analysis, November 2012, Article No. 8.

[44] Kougkas A, Devarajan H, Sun X, Lofstead J F. Harmonia:

An interference-aware dynamic I/O scheduler for shared

non-volatile burst buffers. In Proc. the 2018 IEEE Interna-

tional Conference on Cluster Computing, September 2018,

pp.290-301.

[45] Hashimoto Y, Aida K. Evaluation of performance degrada-

tion in HPC applications with VM consolidation. In Proc.

the 3rd International Conference on Networking and Com-

puting, December 2012, pp.273-277.

[46] Lofstead J F, Ross R. Insights for exascale IO APIs from

building a petascale IO API. In Proc. the 2013 Inter-

national Conference for High Performance Computing,

November 2013, Article No. 87.

[47] Reed D A, Dongarra J J. Exascale computing and big data.

Commun. ACM, 2015, 58(7): 56-68.

Marc-André Vef is a third-year

Ph.D. candidate in André Brinkmann’s

research team at the Johannes Guten-

berg University Mainz, Mainz. He

started his Ph.D. in 2016 after receiv-

ing his B.Sc. and M.Sc. degrees in

computer science from the Johannes

Gutenberg University Mainz, Mainz.

His master thesis was in cooperation with IBM Research

about analyzing file create performance in the IBM

Spectrum Scale parallel file system (formerly GPFS). His

research interests focus on parallel and ad-hoc file systems

and system analytics.

Nafiseh Moti is a Ph.D. student

in computer science at the Johannes

Gutenberg University Mainz. Cur-

rently, she is a research assistant at

Efficient Computing and Storage Group

at Center for Data Processing at the

University of Mainz, Mainz. Her main

research interests include user-level file

systems and file systems and data structures for storage

class memories.

Tim Süß is a full professor at the

Computer Science Department of the

Fulda University of Applied Science

(since 2019). He received his Ph.D.

degree in computer science in 2011 from

the Paderborn University, Paderborn,

and has been post-doc at the Johannes

Gutenberg University Mainz, from 2012

to 2019 with an intermission as temporal professor for

Applied Computer Science from 2017 to 2018. His research

interests focus on techniques for accelerating parallel

computing, effective parallel scheduling, and storage

systems.

Markus Tacke is the technical

head of HPC (since 2015) at the

Center for Data Processing (ZDV) at

the Johannes Gutenberg University

Mainz, Mainz, Germany. He studied

mathematic (and astronomy) at the

WWU Münster, Germany, where he

received his M.Sc. degree in 1987 in

applied mathematics. He joined the ZDV in 1991 and

has been in charge of several responsibilities, including

the design of the university’s two supercomputers (since

1994). However, his true passion lies in parallel file systems.

Tommaso Tocci graduated in com-

puter science at Sapienza University

of Rome, Rome, and he concluded his

Master’s degree in distributed systems

at Universitat Politècnica de Catalunya

(UPC), Barcelona. At the moment he

is employed at Barcelona Supercom-

puting Center (BSC), investigating new

distributed storage solutions for the upcoming exascale

computing era.



Marc-André Vef et al.: GekkoFS — A Temporary Burst Buffer File System for HPC Applications 91

Ramon Nou has been working

at Barcelona Supercomputing Center

(BSC) on the Autonomic System and

e-Business Platforms group of the

Barcelona Supercomputing Center

(BSC), Barcelona, until 2008 when he

switched to the Storage-System group

at BSC since 2009 as a researcher.

In 2008, he obtained his Ph.D. degree with the topic

“Using online simulation to improve QoS on middleware”.

Ramon has a wide view on all computer levels, with

expertise in optimization, performance measurements

and simulation/modelling of complex systems. Now he

has been co-leader of the Storage Systems for Extreme

Computing research group since January 2019.

Alberto Miranda is a senior re-

searcher in advanced storage systems in

the Computer Science Department of

the Barcelona Supercomputing Center

(BSC), Barcelona, and co-leader of the

Storage Systems for Extreme Com-

puting research group since January

2019. His research interests include

scalable storage technologies, architectures for distributed

systems, operating system internals, and high performance

networking. He received a Ph.D. Cum Laude in computer

science from the Technical University of Catalonia (UPC),

Barcelona, in 2014, and has been working at BSC since

2007.

Toni Cortes is an associate professor

at Universitat Politècnica de Catalunya

(since 1998), Barcelona, and researcher

at the Barcelona Supercomputing

Center, Barcelona. He received his

M.S. degree in computer science in

1992 and his Ph.D. degree also in

computer science in 1997 (both at Universitat Politècnica

de Catalunya). Currently he develops his research at the

Barcelona Supercomputing Center, where he acted as

the leader of the Storage Systems Research Group from

2006 until 2019. His research concentrates in storage

systems, programming models for scalable distributed

systems and operating systems. He is also editor of the

Cluster Computing Journal and served as the coordinator

of the SSI task in the IEEE TCSS. He has also served in

many international conference program committees and/or

organizing committees and was general chair for the

Cluster 2006 and 2021 conference, LaSCo 2008, XtreemOS

summit 2009, and SNAPI 2010. He is also served as the

chair of the steering committee for the Cluster conference

series (2011−2014). His involvement in IEEE CS has been

awarded by the “Certificate of Appreciation” in 2007.

André Brinkmann is a full

professor at the Computer Science

Department of Universitat Politècnica

de Catalunya and head of the univer-

sity’s Data Center ZDV (Zentrum für

Datenverarbeitung) (since 2011). He

received his Ph.D. degree in electrical

engineering in 2004 from the Paderborn

University and has been an assistant professor in the

Computer Science Department of the Paderborn Univer-

sity from 2008 to 2011. Furthermore, he has been the

managing director of the Paderborn Centre for Parallel

Computing PC2 during this time frame. His research

interests focus on the application of algorithm engineering

techniques in the area of data centre management, cloud

computing, and storage systems.


	1 Introduction
	2 Related Work
	3 Design and Implementation
	3.1 Design Goals
	3.2 Overview
	3.3 POSIX Relaxation
	3.4 Architecture
	3.5 Rethinking Metadata Management
	3.6 Data Management

	4 Evaluation
	4.1 Experimental Setup
	4.1.1 MOGON II
	4.1.2 MareNostrum IV
	4.1.3 NEXTGenIO Prototype

	4.2 Metadata Performance
	4.3 Data Performance
	4.4 I/O Variability and Worst-Case
	4.5 Effects on the Network

	5 Conclusions

