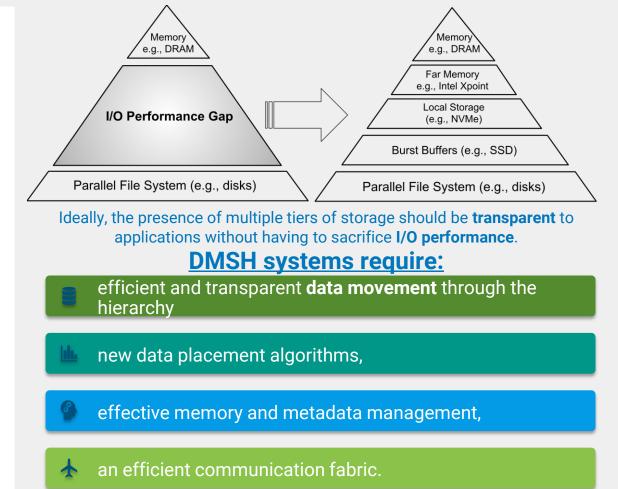


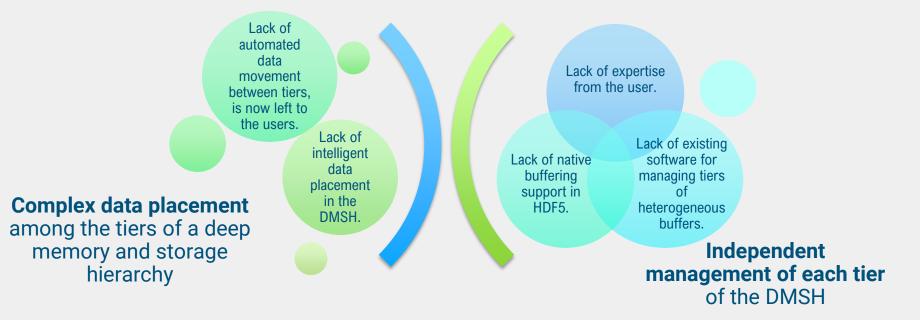
Kougkas A, Devarajan H, Sun XH. I/O acceleration via multi-tiered data buffering and prefetching. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35(1): 92–120 Jan. 2020. DOI 10.1007/s11390-020-9781-1

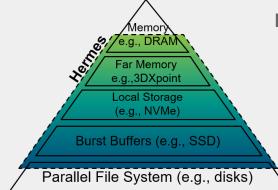


A Multi-Tiered Distributed I/O Buffering System

Anthony Kougkas, Hariharan Devarajan , and Xian-He Sun akougkas@iit.edu, hdevarajan@hawk.iit.edu, sun@iit.edu

Deep Memory and Storage Hierarchy (DMSH)


- New storage system designs incorporate nonvolatile burst buffers between the main memory and the disks.
- HPC hierarchical storage systems with burst buffers (BB) have been installed at several HPC sites.
- Multiple levels of memory and storage in a hierarchy, called **DMSH**.



Anthony Kougkas, PhD akougkas@iit.edu ILLINOIS INSTITUTE

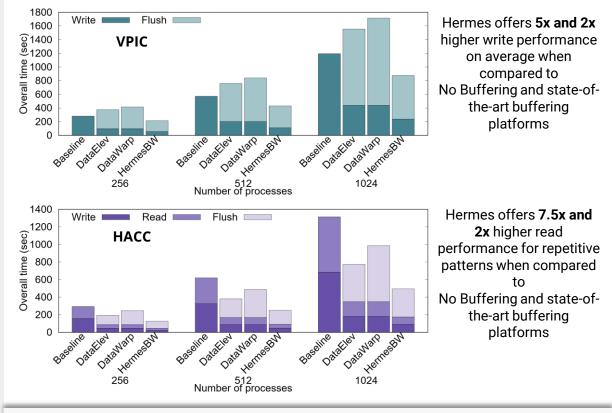
Hermes in a snapshot

SCALABLE COMPUTING

SOFTWARE LABORATORY

Hermes is a new, multi-tiered, distributed buffering platform that:

- Enables, manages, and supervises I/O operations in the Deep Memory and Storage Hierarchy (DMSH).
- Offers selective and dynamic layered data placement.
- Is modular, extensible, and performance-oriented.
 - Supports a wide variety of applications (scientific, BigData, etc.,).


akougkas@iit.edu

ILLINOIS INSTITUTE

Evaluation Results

- Vector Particle-In-Cell (VPIC):
 - Uses HDF5 files
- Hardware Accelerated Cosmology Code (HACC):
 - MPI I/O Independent
- Strong scaled up to 1024 ranks
- 16-time steps
- Metric:
 - Total I/O time (write + read + flush)

- Hermes hides data movement between tiers behind compute
- Hermes leverages the extra layers of the DMSH to offer higher BW
- Hermes utilizes a concurrent flushing overlapped with compute

Advance

the state-of-the-art high level I/O libraries with new buffering algorithms and mechanisms that address the challenges of a DMSH system.

Enhance

the HDF5 core library with intelligent buffering, caching, and prefetching techniques based on machine learning algorithms.

Facilitate

an agile architecture that will allow the evolution of next generation I/O and will address the increasingly challenging scale and complexity of future systems.

<u>Support</u>

new scientific and engineering methodologies and computational requirements allowing applications to immediately take advantage of DMSH.