[1] Castano A, FernándezNavarro F, Hervás Martinez C. PCAELM: A robust and pruned extreme learning machine approach based on principal component analysis. Neural Processing Letters, 2013, 37(3): 377392.
[2] Chen H, Gong Y, Hong X. Online modeling with tunable RBF network. IEEE Transactions on Cybernetics, 2013, 43(3): 935947.
[3] Frénay B, Verleysen M. Using SVMs with randomised feature spaces: An extreme learning approach. In Proc. the 18th European Symposium on Artificial Neural Networks, Apr. 2010, pp.315320.
[4] Shin Y, Ghosh J. Approximation of multivariate functions using ridge polynomial networks. In Proc. International Joint Conference on Neural Networks, June 1992, pp.380 385.
[5] Park B J, Kim W D, Oh S K, Pedrycz W. Fuzzy setoriented neural networks based on fuzzy polynomial inference and dynamic genetic optimization. Knowledge and Information Systems, 2014, 39(1): 207240.
[6] Han F, Huang D S. Improved extreme learning machine for function approximation by encoding a priori information. Neurocomputing, 2006, 69(16/17/18): 23692373.
[7] Lin F J, Hung Y C, Ruan K C. An intelligent secondorder slidingmode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Transactions on Fuzzy Systems, 2014, 22(6): 15981611.
[8] Capizzi G, Capizzi C, Bonanno F. Innovative secondgeneration wavelets construction with recurrent neural networks for solar radiation forecasting. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(11): 18051815.
[9] Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2): 251257.
[10] Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6): 861867.
[11] Park J, Sandberg I W. Universal approximation using radialbasisfunction networks. Neural Computation, 1991, 3(2): 246257.
[12] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1/2/3): 489501.
[13] Huang G B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, Cybernetics, Part B (Cybernetics), 2012, 42(2): 513529.
[14] Wang S J, Chen H L, Yan W J, Chen Y H, Fu X L. Face recognition and microexpression recognition based on discriminant tensor subspace analysis plus extreme learning machine. Neural Processing Letters, 2014, 39(1): 2543.
[15] Liu D, Wu Y, Jiang H. FPELM: An online sequential learning algorithm for dealing with concept drift. Neurocomputing, 2016, 207(26): 322334.
[16] Han D H, Zhang X, Wang G R. Classifying uncertain and evolving data streams with distributed extreme learning machine. Journal of Computer Science and Technology, 2015, 30(4): 874887.
[17] Zhang T, Dai Q, Ma Z. Extreme learning machines' ensemble selection with GRASP. Applied Intelligence, 2015, 43(2): 439459.
[18] Nie L, Jiang H, Ren Z et al. Query expansion based on crowd knowledge for code search. IEEE Transactions on Services Computing, 2016, 9(5): 771783.
[19] Deng C W, Huang G B, Xu J et al. Extreme learning machines: New trends and applications. Science China Information Sciences, 2015, 58(2): 116.
[20] Jiang H, Nie L, Sun Z et al. ROSF: Leveraging information retrieval and supervised learning for recommending code snippets. IEEE Transactions on Services Computing, 2016. doi:10.1109/TSC.2016.2592909
[21] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 2006, 17(4): 879892.
[22] Wang N, Han M, Dong N, Er M J. Constructive multioutput extreme learning machine with application to large tanker motion dynamics identification. Neurocomputing, 2014, 128: 5972.
[23] Feng G, Huang G B, Lin Q, Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks, 2009, 20(8): 13521357.
[24] Wang N, Er M J, Han M. Parsimonious extreme learning machine using recursive orthogonal least squares. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(10): 18281841.
[25] Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OPELM: Optimally pruned extreme learning machine. IEEE Transactions on Neural Networks, 2010, 21(1): 158 162.
[26] Luo X, Liu F, Yang S, Wang X, Zhou Z. Joint sparse regularization based sparse semisupervised extreme learning machine (S3ELM) for classification. KnowledgeBased Systems, 2015, 73: 149160.
[27] Zhang R, Lan Y, Huang G B, Xu Z B. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2): 365371.
[28] Zhang R, Lan Y, Huang G B, Xu Z B, Soh Y C. Dynamic extreme learning machine and its approximation capability. IEEE Transactions on Cybernetics, 2013, 43(6): 20542065.
[29] Feng G, Lan Y, Zhang X et al. Dynamic adjustment of hidden node parameters for extreme learning machine. IEEE Transactions on Cybernetics, 2015, 45(2): 279288.
[30] Yang Y, Wu Q M J. Extreme learning machine with subnetwork hidden nodes for regression and classification. IEEE Transactions on Cybernetics, 2016, 46(12): 28852898.
[31] Huang G B, Chen L. Convex incremental extreme learning machine. Neurocomputing, 2007, 70(16/17/18): 30563062.
[32] Huang G B, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing, 2008, 71(16/17/18): 34603468.
[33] Xu Z, Yao M, Wu Z, Dai W. Incremental regularized extreme learning machine and it's enhancement. Neurocomputing, 2016, 174: 134142.
[34] Kolmogorov A N, Fomin S V. Elements of the Theory of Functions and Functional Analysis: Measure. Graylock Press, 1961.
[35] Kwok T Y, Yeung D Y. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks, 1997, 8(5): 11311148.
[36] Micchelli C A. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 1986, 2: 1122.
