? 智能处理器的评测基准
Journal of Computer Science and Technology
Quick Search in JCST
 Advanced Search 
      Home | PrePrint | SiteMap | Contact Us | Help
 
Indexed by   SCIE, EI ...
Bimonthly    Since 1986
Journal of Computer Science and Technology 2018, Vol. 33 Issue (1) :1-23    DOI: 10.1007/s11390-018-1805-8
Computer Architecture and Systems << | Next Articles >>
智能处理器的评测基准
Jin-Hua Tao1,2,3, Zi-Dong Du1,3,4, Qi Guo1,3,4, Member, CCF, Hui-Ying Lan1,3, Lei Zhang1,3, Sheng-Yuan Zhou1,3, Ling-Jie Xu5, Cong Liu6, Hai-Feng Liu7, Shan Tang8, Allen Rush9, Willian Chen9, Shao-Li Liu1,3,4, Yun-Ji Chen1,2,3, Distinguished Member, CCF, Tian-Shi Chen1,3,4
1 State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China;
2 School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Intelligent Processor Research Center, Institute of Computing Technology, Chinese Academy of Sciences Beijing 100190, China;
4 Cambricon Ltd., Beijing 100190, China;
5 Alibaba Infrastructure Service, Alibaba Group, Hangzhou 311121, China;
6 Iflytek Co., Ltd., Hefei 230088, China;
7 Beijing Jingdong Century Trading Co., Ltd., Beijing 100176, China;
8 RDA Microelectronics, Inc., Shanghai 201203, China;
9 Advanced Micro Devices, Inc., Sunnyvale, CA 94085, U.S.A
BENCHIP: Benchmarking Intelligence Processors
Jin-Hua Tao1,2,3, Zi-Dong Du1,3,4, Qi Guo1,3,4, Member, CCF, Hui-Ying Lan1,3, Lei Zhang1,3, Sheng-Yuan Zhou1,3, Ling-Jie Xu5, Cong Liu6, Hai-Feng Liu7, Shan Tang8, Allen Rush9, Willian Chen9, Shao-Li Liu1,3,4, Yun-Ji Chen1,2,3, Distinguished Member, CCF, Tian-Shi Chen1,3,4
1 State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China;
2 School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Intelligent Processor Research Center, Institute of Computing Technology, Chinese Academy of Sciences Beijing 100190, China;
4 Cambricon Ltd., Beijing 100190, China;
5 Alibaba Infrastructure Service, Alibaba Group, Hangzhou 311121, China;
6 Iflytek Co., Ltd., Hefei 230088, China;
7 Beijing Jingdong Century Trading Co., Ltd., Beijing 100176, China;
8 RDA Microelectronics, Inc., Shanghai 201203, China;
9 Advanced Micro Devices, Inc., Sunnyvale, CA 94085, U.S.A

摘要
参考文献
相关文章
Download: [PDF 1433KB]  
摘要 目的:提供针对智能处理器的评测基准负载和方法创新点:1.提出微基准和宏基准用作评测负载,相比之前提出的一些测试负载更具有代表性和多样性,涵盖更多的计算模式和应用领域;2.微基准用于针对智能处理硬件设计的性能/功耗等瓶颈分析,比以前的测试负载提供更多的关于性能/功耗/面积等相关的设计指导;3.宏基准用于针对不同硬件平台的性能对比,相对之前的测试负载更具有公平性;4.提供使用简便且高效的软件环境,输入为与caffe,tensorflow等开源框架兼容的模型文件,输出为针对硬件的性能/功耗等评测结果。方法:1.通过对多种神经网络算法进行特征分析、相关性分析以及应用领域分析,选出涵盖不同计算模式和不同应用领域的代表性算法结构,作为微基准和宏基准;2.提供简便且高效的软件环境和基准评测负载模型,提供通用api。用户可以重载api以及自定义运行次数和决定使用微基准负载还是宏基准负载。软件会根据用户设置,运行并得到相应的性能/功耗等结果,用于发现设计瓶颈或性能比较。结论:通过简便且高效的软件环境和基准评测负载,便于用户使用这些负载来发现硬件设计的性能等瓶颈和跟别的硬件平台进行公平的性能比较;同时还提供通用的api,便于用户自定义自己的库文件,方便对不同硬件平台进行测试。同时,根据面向不同领域的基准负载所反映的结果可以方便设计针对特定领域的智能硬件。
关键词深度学习   智能处理器   基准程序     
Abstract: The increasing attention on deep learning has tremendously spurred the design of intelligence processing hardware. The variety of emerging intelligence processors requires standard benchmarks for fair comparison and system optimization (in both software and hardware). However, existing benchmarks are unsuitable for benchmarking intelligence processors due to their non-diversity and nonrepresentativeness. Also, the lack of a standard benchmarking methodology further exacerbates this problem. In this paper, we propose BenchIP, a benchmark suite and benchmarking methodology for intelligence processors. The benchmark suite in BenchIP consists of two sets of benchmarks:microbenchmarks and macrobenchmarks. The microbenchmarks consist of single-layer networks. They are mainly designed for bottleneck analysis and system optimization. The macrobenchmarks contain state-of-the-art industrial networks, so as to offer a realistic comparison of different platforms. We also propose a standard benchmarking methodology built upon an industrial software stack and evaluation metrics that comprehensively reflect various characteristics of the evaluated intelligence processors. BenchIP is utilized for evaluating various hardware platforms, including CPUs, GPUs, and accelerators. BenchIP will be open-sourced soon.
Keywordsdeep learning   intelligence processor   benchmark     
Received 2017-09-10;
本文基金:

This work is partially supported by the National Key Research and Development Program of China under Grant No. 2017YFB1003101, the National Natural Science Foundation of China under Grant Nos. 61472396, 61432016, 61473275, 61522211, 61532016, 61521092, 61502446, 61672491, 61602441, 61602446, 61732002, and 61702478, Beijing Science and Technology Projects under Grant No. Z151100000915072, the Science and Technology Service Network Initiative (STS) Projects of Chinese Academy of Sciences, and the National Basic Research 973 Program of China under Grant No. 2015CB358800.

About author: Jin-Hua Tao received his B.S. degree in statistics from University of Science and Technology of China, Hefei, in 2013. He is currently a Ph.D. student at Institute of Computing Technology, Chinese Academy of Sciences, Beijing. His research interests include computer architecture and computational intelligence.
引用本文:   
Jin-Hua Tao, Zi-Dong Du, Qi Guo, Hui-Ying Lan, Lei Zhang, Sheng-Yuan Zhou, Ling-.智能处理器的评测基准[J]  Journal of Computer Science and Technology , 2018,V33(1): 1-23
Jin-Hua Tao, Zi-Dong Du, Qi Guo, Hui-Ying Lan, Lei Zhang, Sheng-Yuan Zhou, Ling-Jie Xu, Cong Liu, Hai-Feng Liu, Shan Tang, Allen Rush, Willian Chen, Shao-Li Liu, Yun-Ji Chen, Tian-Shi Chen.BENCHIP: Benchmarking Intelligence Processors[J]  Journal of Computer Science and Technology, 2018,V33(1): 1-23
链接本文:  
http://jcst.ict.ac.cn:8080/jcst/CN/10.1007/s11390-018-1805-8
Copyright 2010 by Journal of Computer Science and Technology