[1] Garey M R, Johnson D S. Computers and Intractability:A Guide to the Theory of NPCompleteness. Freeman and Company, 1979, pp.190203.
[2] Mohanty J P, Mandal C, Reade C, Das A. Construction of minimum connected dominating set in wireless sensor networks using pseudo dominating set. Ad Hoc Networks, 2016, 42:6173.
[3] Han B, Jia W J. Clustering wireless ad hoc networks with weakly connected dominating set. Journal of Parallel and Distributed Computing, 2007, 67(6):727737.
[4] Katsaros D, Dimokas N, Tassiulas L. Social network analysis concepts in the design of wireless ad hoc network protocols. IEEE Network, 2010, 24(6):2329.
[5] Ma T H, Zhou J J, Tang M L Tian Y, AlDhelaan A, AlRodhaan M, Lee S. Social network and tag sources based augmenting collaborative recommender system. IEICE Trans. Information and Systems, 2015, E98D(4):902910.
[6] Wu P, Wen J R, Liu H, Ma W Y. Query selection techniques for efficient crawling of structured Web sources. In Proc. the 22nd Int. Conf. Data Engineering, April 2006.
[7] Zheng Y H, Jeon B, Xu D H, Wu Q M J, Zhang H. Image segmentation by generalized hierarchical fuzzy Cmeans algorithm. Journal of Intelligent & Fuzzy Systems, 2015, 28(2):961973.
[8] Li J, Li X L, Yang B, Sun X M. Segmentationbased image copymove forgery detection scheme. IEEE Trans. Information Forensics and Security, 2015, 10(3):507518.
[9] Kennedy J, Eberhart R C. Particle swarm optimization. In Proc. IEEE Int. Conf. Neural Networks, Nov.27Dec.1, 1995, pp.19421948.
[10] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. In Proc. Int. Conf. Systems Man and Cybernetics, October 1997, pp.41044108.
[11] Jolai F, Taghipour M, Javadi B. A variable neighborhood binary particle swarm algorithm for cell layout problem. The International Journal of Advanced Manufacturing Technology, 2011, 55(1/2/3/4):327339.
[12] Luh G C, Lin C Y, Lin Y S. A binary particle swarm optimization for continuum structural topology optimization. Applied Soft Computing, 2011, 11(2):28332844.
[13] Wang B, Peng Q K, Zhao J, Chen X. A binary particle swarm optimization algorithm inspired by multilevel organizational learning behavior. European Journal of Operational Research, 2012, 219(2):224233.
[14] Wang H S, Yan X F. Optimizing the echo state network with a binary particle swarm optimization algorithm. KnowledgeBased Systems, 2015, 86:182193.
[15] Zhao X C, Lin W Q, Hao J L, Zuo X Q, Yuan J H. Clustering and pattern search for enhancing particle swarm optimization with Euclidean spatial neighborhood search. Neurocomputing, 2016, 171:966981.
[16] Bansal J C, Deep K. A modified binary particle swarm optimization for Knapsack Problems. Applied Mathematics and Computation, 2012, 218(22):1104211061.
[17] Qin J, Li X, Yin Y X. An algorithmic framework of discrete particle swarm optimization. Applied Soft Computing, 2012, 12(3):11251130.
[18] Xu L, Qian F, Li Y P, Li Q M, Yang Y W, Xu J. Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM system. Neurocomputing, 2016, 173:12501256.
[19] Chen G L, Guo W Z, Chen Y Z. A PSObased intelligent decision algorithm for VLSI floorplanning. Soft Computing, 2010, 14(12):13291337.
[20] Coit D W, Smith A E, Tate D M. Adaptive penalty methods for genetic optimization of constrained combinatorial problems. INFORMS Journal on Computing, 1996, 8(2):173182.
[21] Handoko S D, Keong K C, Ong Y S. Using classification for constrained memetic algorithm:A new paradigm. In Proc. IEEE Int. Conf. Systems Man and Cybernetics, October 2008, pp.547552.
[22] Kubiak M, Wesolek P. Accelerating local search in a memetic algorithm for the capacitated vehicle routing problem. In Evolutionary Computation in Combinatorial Optimization, Cotta C, Van Hemert J (eds.), SpringerVerlag, 2007, pp.96107.
[23] Lin G, Zhu W X, Ali M M. An effective hybrid memetic algorithm for the minimum weight dominating set problem. IEEE Trans. Evolutionary Computation, 2016, 20(6):892907.
[24] Alon N, Moshkovitz D, Safra M. Algorithmic construction of sets for krestrictions. ACM Trans. Algorithms, 2006, 2(2):153177.
[25] Zou F, Wang Y X, Xu X H, Li X Y, Du H W, Wan P J, Wu W L. New approximations for minimumweighted dominating sets and minimumweighted connected dominating sets on unit disk graphs. Theoretical Computer Science, 2011, 412(3):198208.
[26] Zhu X, Wang W, Shan S, Wang Z, Wu W L. A PTAS for the minimum weighted dominating set problem with smooth weights on unit disk graphs. Journal of Combinatorial Optimization, 2012, 23(4):443450.
[27] Li J, Jin Y F. A PTAS for the weighted unit disk cover problem. In Automata Languages and Programming, Halldórsson M M, Iwama K, Kobayashi N, Speckmann B (eds.), SpringerVerlag, 2015, pp.898909.
[28] Wang Z, Wang W, Kim J M, Thuraisingham B, Wu W L. PTAS for the minimum weighted dominating set in growth bounded graphs. Journal of Global Optimization, 2012, 54(3):641648.
[29] Jovanovic R, Tuba M, Simian D. Ant colony optimization applied to minimum weight dominating set problem. In Proc. the 12th WSEAS Int. Conf. Automatic Control Modelling & Simulation, May 2010, pp.322326.
[30] Potluri A, Singh A. Hybrid metaheuristic algorithms for minimum weight dominating set. Applied Soft Computing, 2013, 13(1):7688.
[31] Chaurasia S N, Singh A. A hybrid evolutionary algorithm with guided mutation for minimum weight dominating set. Applied Intelligence, 2015, 43(3):512529.
[32] Bouamama S, Blum C. A hybrid algorithmic model for the minimum weight dominating set problem. Simulation Modelling Practice and Theory, 2016, 64:5768.
[33] Hedar A R, Ismail R. Simulated annealing with stochastic local search for minimum dominating set problem. International Journal of Machine Learning and Cybernetics, 2012, 3(2):97109.
[34] García S, Molina D, Lozano M, Herrera F. A study on the use of nonparametric tests for analyzing the evolutionary algorithms' behaviour:A case study on the CEC' 2005 Special Session on Real Parameter Optimization. Journal of Heuristics, 2009, 15(6):617644.
[35] Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 2011, 1(1):318.
[36] Mladenovic N, Urosevic D, PérezBrito D, GarcíaGonzález C G. Variable neighbourhood search for bandwidth reduction. European Journal of Operational Research, 2010, 200(1):1427.
[37] Guan J, Lin G. Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem. European Journal of Operational Research, 2016, 248(3):899909.
[38] Kothari R, Ghosh D. An efficient genetic algorithm for single row facility layout. Optimization Letters, 2014, 8(2):679690.
