[1] Zhang S J, Du Z D, Zhang L, Lan H Y, Liu S L, Li L, Guo Q, Chen T S, Chen Y. CambriconX:An accelerator for sparse neural networks. In Proc. the 49th Annual IEEE/ACM International Symposium on Microarchitecture, Oct. 2016.
[2] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In Proc. the 26th Annual Conference on Neural Information Processing Systems, Dec. 2012, pp.11061114.
[3] Sun Y, Liang D, Wang X G, Tang X O. DeepID3:Face recognition with very deep neural networks. arXiv:1502.00873, 2015. http://arxiv.org/abs/1502.00873, Feb. 2017.
[4] Karpathy A, Li F F. Deep visualsemantic alignments for generating image descriptions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2015, pp.31283137.
[5] Eriguchi A, Hashimoto K, Tsuruoka Y. Treetosequence attentional neural machine translation. In Proc. the 54th Annual Meeting of the Association for Computational Linguistics, Aug. 2016.
[6] Ren S Q, He K M, Girshick R B, Sun J. Faster RCNN:Towards realtime object detection with region proposal networks. In Proc. Annual Conference on Neural Information Processing Systems, Dec. 2015, pp.9199.
[7] Farabet C, Poulet C, Han J Y, LeCun Y. CNP:An FPGAbased processor for convolutional networks. In Proc. the 19th International Conference on Field Programmable Logic and Applications, Aug.31Sept.2, 2009, pp.3237.
[8] Zhang C, Li P, Sun G Y, Guan Y J, Xiao B J, Cong J. Optimizing FPGAbased accelerator design for deep convolutional neural networks. In Proc. the ACM/SIGDA International Symposium on FieldProgrammable Gate Arrays, Feb. 2015, pp.161170.
[9] Chen T S, Du Z D, Sun N H et al. DianNao:A smallfootprint highthroughput accelerator for ubiquitous machinelearning. In Proc. the 19th ACM Int. Conf. Languages and Operating Systems, Mar. 2014, pp.269284.
[10] Chen Y, Luo T, Liu S et al. DaDianNao:A machinelearning supercomputer. In Proc. the 47th Annual IEEE/ACM Int. Symp. Microarchitecture, Dec. 2014, pp.609622.
[11] Liu S L, Du Z D, Tao J H et al. Cambricon:An instruction set architecture for neural networks. In Proc. the 43rd ACM/IEEE Annual Int. Symp. Computer Architecture (ISCA), Jun. 2016, pp.393405.
[12] Chakradhar S T, Sankaradass M, Jakkula V, Cadambi S. A dynamically configurable coprocessor for convolutional neural networks. In Proc. the 37th International Symposium on Computer Architecture, Jun. 2010, pp.247257.
[13] Chi P, Li S C, Xu C et al. PRIME:A novel processinginmemory architecture for neural network computation in ReRAMbased main memory. In Proc. the 43rd ACM/IEEE Annual Int. Symp. Computer Architecture (ISCA), Jun. 2016, pp.2739.
[14] Shafiee A, Nag A, Muralimanohar N et al. ISAAC:A convolutional neural network accelerator with InSitu analog arithmetic in crossbars. In Proc. the 43rd ACM/IEEE Annual International Symposium on Computer Architecture, Jun. 2016, pp.1426.
[15] Du Z D, Fasthuber R, Chen T S et al. ShiDianNao:Shifting vision processing closer to the sensor. In Proc. the 42nd Annual Int. Symp. Computer Architecture, Jun. 2015, pp.92104.
[16] Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E. cuDNN:Efficient primitives for deep learning. arXin:1410.0759, 2014. http://arxiv.org/abs/1410.0759, Feb. 2017.
[17] Abadi M, Barham P, Chen J et al. Tensorflow:A system for largescale machine learning. In Proc. the 12th USENIX Symp. Operating Systems Design and Implementation, Nov. 2016, pp.265283.
[18] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):22782324.
[19] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, Jun. 2015.
[20] Krizhevsky A. Cudaconvnet:Highperformance C++/CUDA implementation of convolutional neural networks. https://code.google.com/p/cudaconvnet, Feb. 2017.
[21] Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift. In Proc. the 32nd Int. Conf. Machine Learning, Jul. 2015, pp.448456.
[22] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, Jun. 2016, pp.770778.
[23] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition. arXiv:1409.1556, 2014. http://arxin.org/abs/1409.1556, Feb. 2017.
