[1] Kariv O, Hakimi S L. An algorithmic approach to network location problems. I:The pcenters. SIAM Journal on Applied Mathematics, 1979, 37(3):513538.
[2] Kariv O, Hakimi S L. An algorithmic approach to network location problems. Ⅱ:The pmedians. SIAM Journal on Applied Mathematics, 1979, 37(3):539560.
[3] Hakimi S L. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 1964, 12(3):450459.
[4] Minieka E. The mcenter problem. SIAM Review, 1970, 12(1):138139.
[5] Daskin M S. Network and Discrete Location:Models Algorithms and Applications. John Wiley & Sons, 1995.
[6] Daskin M S. A new approach to solving the vertex pcenter problem to optimality:Algorithm and computational results. Communications of the Operations Research Society of Japan, 2000, 45(9):428436.
[7] Ilhan T, Pinar M C. An efficient exact algorithm for the vertex pcenter problem. http://www.optimizationonline.org/DBHTML/2001/09/376.html, June 2017.
[8] Elloumi S, Labbé M, Pochet Y. A new formulation and resolution method for the pcenter problem. INFORMS Journal on Computing, 2004, 16(1):8494.
[9] AlKhedhairi A, Salhi S. Enhancements to two exact algorithms for solving the vertex pcenter problem. Journal of Mathematical Modelling and Algorithms, 2005, 4(2):129147.
[10] Hochbaum D S, Shmoys D B. A best possible heuristic for the kcenter problem. Mathematics of Operations Research, 1985, 10(2):180184.
[11] Martinich J S. A vertexclosing approach to the pcenter problem. Naval Research Logistics, 1988, 35(2):185201.
[12] Plesník J. A heuristic for the pcenter problems in graphs. Discrete Applied Mathematics, 1987, 17(3):263268.
[13] Mladenovi? N, Labbé M, Hansen P. Solving the pcenter problem with tabu search and variable neighborhood search. Networks, 2003, 42(1):4864.
[14] Hassin R, Levin A, Morad D. Lexicographic local search and the pcenter problem. European Journal of Operational Research, 2003, 151(2):265279.
[15] Caruso C, Colorni A, Aloi L. Dominant, an algorithm for the pcenter problem. European Journal of Operational Research, 2003, 149(1):5364.
[16] Pacheco J A, Casado S. Solving two location models with few facilities by using a hybrid heuristic:A real health resources case. Computers & Operations Research, 2005, 32(12):30753091.
[17] Davidovi? T, Ramljak D, Šelmi? M, Teodorovi? D. Bee colony optimization for the pcenter problem. Computers & Operations Research, 2011, 38(10):13671376.
[18] Yurtkuran A, Emel E. A modified artificial bee colony algorithm for pcenter problems. The Scientific World Journal, 2014, 2014:824196.
[19] Scaparra M P, Pallottino S, Scutellà M G. Largescale local search heuristics for the capacitated vertex pcenter problem. Networks, 2004, 43(4):241255.
[20] Cheng T C E, Kang L Y, Ng C T. An improved algorithm for the pcenter problem on interval graphs with unit lengths. Computers & Operations Research, 2007, 34(8):22152222.
[21] Krumke S O. On a generalization of the pcenter problem. Information Processing Letters 1995, 56(2):6771.
[22] Arostegui M A Jr, Kadipasaoglu S N, Khumawala B M. An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems. International Journal of Production Economics, 2006, 103(2):742754.
[23] Pullan W. A memetic genetic algorithm for the vertex pcenter problem. Evolutionary Computation, 2008, 16(3):417436.
[24] Laguna M, Marti R. GRASP and path relinking for 2layer straight line crossing minimization. INFORMS Journal on Computing, 1999, 11(1):4452.
[25] Aiex R M, Resende M G C, Pardalos P M, Toraldo G. GRASP with path relinking for threeindex assignment. INFORMS Journal on Computing, 2005, 17(2):224247.
[26] Ribeiro C C, Uchoa E, Werneck R F. A hybrid GRASP with perturbations for the steiner problem in graphs. INFORMS Journal on Computing, 2002, 14(3):228246.
[27] Aiex R M, Binato S, Resende M G C. Parallel GRASP with pathrelinking for job shop scheduling. Parallel Computing, 2003, 29(4):393430.
[28] Oliveira C A S, Pardalos P M, Resende M G C. GRASP with pathrelinking for the quadratic assignment problem. In Proc. the 3rd Int Workshop on Experimental and Efficient Algorithms, May 2004, pp.356368.
[29] Festa P, Pardalos P M, Resende M G C, Ribeiro C C. Randomized heuristics for the maxcut problem. Optimization Methods and Software, 2002, 17(6):10331058.
[30] Huang W Q, Lv Z P, Shi H. Growth algorithm for finding low energy configurations of simple lattice proteins. Physical Review E, 2005, 72(1):016704.
[31] Zou P, Zhou Z, Wan Y Y, Chen G L, Gu J. New metaheuristic for combinatorial optimization problems:Intersection based scaling. Journal of Computer Science and Technology, 2004, 19(6):740751.
[32] Xu H Y, Lv Z, Cheng T C E. Iterated local search for singlemachine scheduling with sequencedependent setup times to minimize total weighted tardiness. Journal of Scheduling, 2014, 17(3):271287.
[33] Xu H Y, Lv Z P, Yin A H, Shen L J, Buscher U. A study of hybrid evolutionary algorithms for single machine scheduling problem with sequencedependent setup times. Computers & Operations Research, 2014, 50:4760.
[34] Glover F. Tabu searchpart I. ORSA Journal on Computing, 1989, 1(3):190206.
[35] Huang W Q, Zhang D F, Wang H X. An algorithm based on tabu search for satisfiability problem. Journal of Computer Science and Technology, 2002, 17(3):340346.
[36] Lai X J, Lv Z P. Multistart iterated tabu search for bandwidth coloring problem. Computers & Operations Research, 2013, 40(5):14011409.
[37] Wu J, Rosin P L, Sun X F, Martin R R. Improving shape from shading with interactive tabu search. Journal of Computer Science and Technology, 2016, 31(3):450462.
[38] Glover F. Tabu search and adaptive memory programmingAdvances, applications and challenges. In Interfaces in Computer Science and Operations Research. Operations Research/Computer Science Interfaces Series, Barr R S, Helgason R V, Kennington J L (eds.), Springer 1997, pp.175.
[39] Glover F. Multistart and strategic oscillation methodsPrinciples to exploit adaptive memory. In Computing Tools for Modeling Optimization and Simulation Operations Research/Computer Science Interfaces Series, Laguna M, Velarde J L G (eds.), Springer, 2000 pp.123.
[40] Glover F, Laguna M, Martí R. Fundamentals of scatter search and path relinking. Control and Cybernetics, 2000, 29(3):653684.
[41] Peng B, Lv Z P, Cheng T C E. A tabu search/path relinking algorithm to solve the job shop scheduling problem. Computers & Operations Research, 2015, 53:154164.
[42] Reinelt G. TSPLIBA traveling salesman problem library. ORSA Journal on Computing, 1991, 3(4):376384.
[43] Floyd R W. Algorithm 97:Shortest path. Communications of the ACM, 1962, 5(6):Article No. 345.
[44] Lourenço H R, Martin O C, Stützle T. Iterated local search. In Handbook of Metaheuristics, Glover F, Kochenberger G A (eds.), Springer, 2003, pp.320353.
[45] Boese K D. Cost versus distance in the traveling salesman problem. Technical report TR950018 UCLA CS Department, 1995.
[46] Stützle T, Dorigo M. ACO algorithms for the quadratic assignment problem. In New Ideas in Optimization, Corne D, Dorigo M, Glover F et al. (eds.), McGrawHill Ltd., 1999, pp.3350.
[47] Merz P, Freisleben B. Fitness landscapes, memetic algorithms, and greedy operators for graph bipartitioning. Evolutionary Computation, 2000, 8(1):6191.
[48] Misevicius A. An improved hybrid genetic algorithm:New results for the quadratic assignment problem. KnowledgeBased Systems, 2004, 17(2/3/4):6573.
[49] Benlic U, Hao J K. A multilevel memetic approach for improving graph kpartitions. IEEE Trans. Evolutionary Computation, 2011, 15(5):624642.
[50] Geiger M J. On operators and search space topology in multiobjective flow shop scheduling. European Journal of Operational Research, 2007, 181(1):195206.
