[1] Tanenbaum A S, van Steen M. Distributed Systems:Principles and Paradigms (2nd edition). PrenticeHall, Inc., 2006.
[2] Nisan N, Roughgarden T, Tardos E, Vazirani V V. Algo?ithmic Game Theory. Cambridge University Press, 2007.
[3] Halpern J Y. Beyond Nash equilibrium:Solution concepts for the 21st century. In Proc. the 27th ACM Symp. Principles of Distributed Computing, August 2008.
[4] Manshaei M H, Zhu Q Y, Alpcan T, Baçsar T, Hubaux J P. Game theory meets network security and privacy. ACM Computing Surveys, 2013, 45(3):Article No. 25.
[5] Feldman M, Lai K, Stoica I, Chuang J. Robust incentive techniques for peertopeer networks. In Proc. the 5th ACM Conf. Electronic Commerce, May 2004, pp.102111.
[6] Feldman M, Papadimitriou C, Chuang J, Stoica I. Freeriding and whitewashing in peertopeer systems. IEEE Journal on Selected Areas in Communications, 2006, 24(5):10101019.
[7] Roughgarden T. Selfish Routing and the Price of Anarchy. The MIT Press, 2005.
[8] Koutsoupias E, Papadimitriou C. Worstcase equilibria. Computer Science Review, 2009, 3(2):6569.
[9] von Neumann J, Morgenstern O. Theory of Games and Economic Behavior. Princeton University Press, 2007.
[10] FajardoDelgado D, FernándezZepeda J A, Bourgeois A G. The bodyguard allocation problem. IEEE Trans. Parallel and Distributed Systems, 2013, 24(7):14651478.
[11] Nash J F Jr. Equilibrium points in nperson games. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36(1):4849.
[12] Dasgupta A, Ghosh S, Tixeuil S. Selfish stabilization. In Stabilization, Safety, and Security of Distributed Systems, Datta A K, Datta M (eds.), Springer, 2006, pp.231243.
[13] Cohen J, Dasgupta A, Ghosh S, Tixeuil S. An exercise in selfish stabilization. ACM Trans. Autonomous and Adaptive Systems, 2008, 3(4):Article No. 15.
[14] ZatarainAceves H, FernándezZepeda J A, Brizuela C A, FajardoDelgado D. A cascade evolutionary algorithm for the bodyguard allocation problem. Applied Soft Computing, 2015, 37:643651.
[15] Raidl G R, Julstrom B A. Edge sets:An effective evolutionary coding of spanning trees. IEEE Trans. Evolutionary Computation, 2003, 7(3):225239.
[16] Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439):509512.
[17] Erdös P, Rényi A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960, 5:1761.
[18] Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins A, Upfal E. Stochastic models for the web graph. In Proc. the 41st Annual Symp. Foundations of Computer Science, November 2000, pp.5765.
[19] Schulz A S, Moses N S. On the performance of user equilibria in traffic networks. In Proc. the 14th Annual ACMSIAM Symp. Discrete Algorithms, January 2003, pp.8687.
[20] Anshelevich E, Dasgupta A, Kleinberg J, Tardos E, Wexler T, Roughgarden T. The price of stability for network design with fair cost allocation. In Proc. the 45th Annual IEEE Symp. Foundations of Computer Science, October 2004, pp.295304.
[21] Blum C, Roli A. Metaheuristics in combinatorial optimization:Overview and conceptual comparison. ACM Computing Surveys, 2003, 35(3):268308.
[22] Eiben A E, Jelasity M. A critical note on experimental research methodology in EC. In Proc. Congress on Evolutionary Computation, May 2002, pp.582587.
[23] Crepinšek M, Liu S H, Mernik M. Replication and compa?ison of computational experiments in applied evolutionary computing:Common pitfalls and guidelines to avoid them. Applied Soft Computing, 2014, 19:161170.
[24] Lilliefors H W. On the KolmogorovSmirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 1967, 62(318):399402.
[25] Conover W J. Practical Nonparametric Statistics. Wiley Series in Probability and Statistics, John Wiley & Sons, 1980.
