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Abstract The task assignment on the Internet has been widely applied to many areas, e.g., online labor market, online

paper review and social activity organization. In this paper, we are concerned with the task assignment problem related to

the online labor market, termed as ClusterHire. We improve the definition of the ClusterHire problem, and propose

an efficient and effective algorithm, entitled Influence. In addition, we place a participation constraint on ClusterHire.

It constrains the load of each expert in order to keep all members from overworking. For the participation-constrained

ClusterHire problem, we devise two algorithms, named ProjectFirst and Era. The former generates a participation-

constrained team by adding experts to an initial team, and the latter generates a participation-constrained team by removing

the experts with the minimum influence from the universe of experts. The experimental evaluations indicate that 1) Influ-

ence performs better than the state-of-the-art algorithms in terms of effectiveness and time efficiency; 2) ProjectFirst

performs better than Era in terms of time efficiency, yet Era performs better than ProjectFirst in terms of effectiveness.

Keywords task assignment, team formation, universal project-team map

1 Introduction

Due to the wide application of the task assignment

problem on the Internet, the team formation problem

and the social event organization problem attract many

researchers’ attention. They can be applied to the on-

line labor market (e.g., Guru and Freelancer) and the

social networking services (e.g., Meetup and Plancast)

respectively. The ClusterHire problem as a variant

of the team formation problem was proposed in [1].

Given a collection of projects and a group of experts,

it aims at finding a team of experts within the speci-

fied budget to maximize the total profit made by this

team. In practice, it can be employed to provide team-

hiring service to the company customers. Nonetheless,

the ClusterHire problem merely sets up a profit-

maximizing team for a group of projects, but fails to

specify a specific team for each project. This may cause

three results. 1) Some experts simultaneously join too

many projects, and therefore they may be exhausted;

2) some experts may apply their skills to too many

projects in parallel; 3) some experts may hold multiple

positions in the same project. Therefore, it is necessary

for us to improve the definition of the ClusterHire

problem so that each selected expert is assigned to a

specific team.

The authors of [1] first proved the complexity of

the ClusterHire problem via the SetCover prob-

lem [2]. Then, they proposed three heuristic algo-

rithms, called ExpertGreedy, ProjectGreedy and

CliqueGreedy. However, these three algorithms take

relatively simple strategies to select experts into the

final team. This causes the profits made by them

Regular Paper

The work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61472299, 61540008,
61672417 and 61602354, the Fundamental Research Funds for the Central Universities of China under Grant No. BDY10, the
Shaanxi Postdoctoral Science Foundation, and the Natural Science Basic Research Plan of Shaanxi Province of China under Grant
No. 2014JQ8359.

∗Corresponding Author

©2017 Springer Science +Business Media, LLC & Science Press, China



140 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

to be quite less than the optimal value. In this pa-

per, we employ an expert-skill-project tripartite graph

to describe the ClusterHire problem only for con-

venience. Then, we propose an efficient and effec-

tive algorithm, namely Influence, for forming a cost-

constrained profit-maximizing team. This approach

takes as input a universal project-team map which can

be viewed as a compressed version of the expert-skill-

project tripartite graph. It can be obtained from the

expert-skill-project tripartite graph. In the universal

project-team map, the expert with the minimum influ-

ence is removed until the total cost of the remaining

experts does not exceed the specified budget. Exper-

imental evaluation suggests that Influence performs

better than the state-of-the-art algorithms in terms of

both the effectiveness and the time efficiency. More-

over, we discover that some experts in the team formed

by the above method may participate in too many

projects simultaneously. This causes them to be ex-

hausted, because the amount of their work is beyond

their capacity. Note in particular that Golshan et al.

who proposed the ClusterHire problem also consi-

dered this scenario, and defined the t-ClusterHire

problem in [1]. The problem constrains the number of

projects for which an expert can utilize a skill. How-

ever, this constraint has the limitation of causing an

expert to participate in too many projects simultane-

ously under some extreme scenarios. For example, an

expert possesses 100 skills, which are required by 100

different projects respectively. Each project requires

one single skill, and is covered by the team yielded by

some algorithm. At this time, the expert will simul-

taneously join too many projects, and therefore be ex-

hausted. To overcome the limitation, we place a partici-

pation constraint on the ClusterHire problem, which

directly restricts the number of projects that each ex-

pert participates in. This is obviously distinct from the

constraint in t-ClusterHire.

The participation-constrained ClusterHire prob-

lem is also intractable, since its simplified version is

the ClusterHire problem. We devise two algo-

rithms, namely ProjectFirst and Era, for this prob-

lem. ProjectFirst spends less time on yielding a

profit-maximizing feasible team than Era, whereas

Era makes larger profit than ProjectFirst. Con-

cretely, ProjectFirst takes an order-first strategy to

merge sub-teams into the final team. Reversely, Era

yields a participation-constrained profit-maximizing

team within the specified budget by successively remov-

ing the minimum influence experts from the universe of

experts. Experimental evaluations suggest that 1) Era

performs better than ProjectFirst in terms of the

effectiveness, yet ProjectFirst performs better than

Era in terms of the time efficiency; 2) it is necessary for

us to propose the participation-constrained Cluster-

Hire problem, because load unbalance really occurs.

Contributions. Our main contributions are sum-

marized as follows. 1) We improve the definition of

the ClusterHire problem, and propose an effective

and efficient algorithm for the improved ClusterHire

problem. It not only produces a profit-maximizing

team within the specified budget, but also can specify

a team for each project. 2) We place a participation

constraint on the improved ClusterHire problem in

order to keep the experts from overworking. 3) We de-

vise two algorithms, namely ProjectFirst and Era,

for forming a participation-constrained team, and eva-

luate their effectiveness and efficiency.

Roadmap. The rest of this paper is organized as

follows. Section 2 introduces some work related to the

task assignment problem and the team formation prob-

lem. Section 3 gives some notations, definitions and the

problem statement. Section 4 gives a new approach to

solve the ClusterHire problem. Section 5 provides

two algorithms for the participation-constrained Clus-

terHire problem. Section 6 depicts the experimental

evaluation, and Section 7 concludes the paper.

2 Related Work

The team formation problem and the task assign-

ment problem have been studied for years. Below, we

provide an overview of the work related to them.

Socialized Team Formation. To the best of our

knowledge, the team formation was first studied in [3].

This paper proposed a structured and unified methodo-

logy for the team formation problem. Lappas et al. ex-

plored the team formation problem on social networks

in [4]. This paper studied the problem of finding a

team of experts with the minimum communication cost

to finish a given project. Since then, many researchers

extended this work. Anagnostonpoulos et al. presented

a general framework for the team formation problem on

social networks in [5], and studied the online team for-

mation problem on social networks in [6]. Kargar and

An explored the problem of discovering the top-k teams

of experts with/without a leader on social networks.

Datta et al.[8] considered the capacities of experts and

studied the problem of forming a capacitated team on

social networks. Roy et al.[9] associated group recom-
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mendations with group formation. Li et al.[10] proposed

fast algorithms for team member recommendation.

Social Activity Organization. Li and Shan[11] stu-

died the problem of automatically composing activity

groups in a social network according to user-specified

activity information. Li et al.[12] proposed the social

event organization (SEO) problem. This problem as-

signs a collection of events for a group of users to at-

tend, where users are embedded in a social network

and have innate levels of interest in the events. Feng et

al.[13] considered the problem of finding influential so-

cial organizers in online social networks. Shuai et al.[14]

formulated a new problem, named Willingness mAxi-

mization for Social Group (WASO) and devised an effi-

cient and effective randomized algorithm for it. She et

al.[15-16] studied the conflict-aware event-participant ar-

rangement problem and the utility-aware social event-

participant planning problem. Shen et al.[17] studied

the problem of maximizing the friend-making likelihood

for social activity organizations. Armenatzoglou et al.

developed a game-theoretic framework for the real-time

multi-criteria social graph partitioning in [18]. How-

ever, their objective function only considers the con-

nectivity and similarity among users. This is different

from our objective function which considers the profit of

projects and the cost of experts. Tong et al.[19] studied

the problem of recommending users to events on the

event-based social network under the bottleneck sce-

narios. They considered three influential recommenda-

tion strategies: spatial locations of events and users,

attribute similarities between events and users, and

friend relationships among users. We do not consider

the aforementioned factors in the settings of our prob-

lem, because we only focus on the online collaboration

of experts all over the world in the online labor market,

e.g., Guru and Freelancer.

Reviewer Assignment Problem. To the best of our

knowledge, Susan and Dumais first studied the auto-

matic assignment of submitted manuscripts to review-

ers in [20]. Karimzadehgan et al.[21] studied how to

model multiple aspects of expertise and assign review-

ers so that they together can cover all subtopics in the

document well. Kou et al.[22] proposed a generalized

framework for fair reviewer assignment. Mimno and

McCallum[23] evaluated several methods for measuring

the affinity of a reviewer to a paper.

3 Preliminaries

3.1 Notations

Let G = (X ,S,P , C, δ, F ) be an expert-skill-project

tripartite graph, where X is a set of experts, S is a

set of skills, and P is a set of projects. Note in par-

ticular that there are no edges between experts and

projects. ∀e ∈ X , C(e) denotes the cost of e when hir-

ing it and δ(e) denotes the capacity of e, which is the

maximum number of projects that it can participate in.

∀p ∈ P , F (p) denotes the profit of p upon completion.

∀v ∈ X∪S∪P , N(v) denotes the neighborhood of v and

d(v) denotes the degree of v. Obviously, d(v) = |N(v)|.

Especially, N(e) represents the set of skills that e pos-

sesses for any e ∈ X , and N(p) represents the set of

skills that p requires for any p ∈ P . For any s ∈ S,

NX (s) represents the set of experts that possess s and

NP(s) represents the set of projects that require s. Ob-

viously, N(s) = NX (s) ∪NP(s).

A subset T of X is called a team. A team T can

finish a project p ∈ P only when the skill set N(p) of

p is covered by the skill set N(T ) of T , where N(T )

denotes the set of skills that more than one expert

in T possesses. In addition, C(T ) denotes the to-

tal cost of T . Obviously, N(T ) =
⋃

e∈T N(e) and

C(T ) =
∑

e∈T C(e). ∀P ⊆ P , N(P ) denotes the set

of skills that more than one project in P requires and

F (P ) denotes the total profit of projects in P . There-

fore, N(P ) =
⋃

p∈P N(p) and F (P ) =
∑

p∈P F (p).

3.2 Problem Statement

Below, we define two problems on an expert-skill-

project tripartite graph G. They seek to find a set of

projects P = {pi1 , pi2 , · · · , pik} and a group of teams

{Ti1 , Ti2 , · · · , Tik} such that N(pis) ⊆ N(Tis) for any

i ∈ {1, 2, · · · , k}. Let T =
⋃k

s=1 Tis .

ImprovedCH. For any e ∈ X , the capacity of e is

set to an extremely large number. For simplification,

the expert-skill-project tripartite graph is denoted as

G = (X ,S,P , C, F ). The goal is to maximize the total

profit F (P ) of P under the cost constraint C(T ) 6 B,

where B is the specified budget.

PartConsCH. For any e ∈ X , n(e) denotes the ac-

tual number of projects that e participates in. The goal

is to maximize the total profit F (P ) of P under the cost

constraint C(T ) 6 B and the participation constraint

n(e) 6 δ(e), ∀e ∈ T .

In form, the problem ImprovedCH is similar to

the problem ClusterHire proposed in [1]. However,



142 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

there still have some differences between them. Clus-

terHire aims to find a team T ⊆ X such that the

total profit of projects covered by T is maximized and

the total cost of T does not exceed B. Obviously, it

only finds a team of experts and a group of projects

covered by them, but does not specify a correspond-

ing team for each project. ImprovedCH is capable of

specifying a corresponding team for each project. In

fact, the optimal solution of ImprovedCH is identical

to that of ClusterHire.

Lemma 1. The problem ImprovedCH is equiva-

lent to the problem ClusterHire.

Proof. First, we prove that any optimal solution

of ImprovedCH is an optimal solution of Cluster-

Hire. Suppose that P = {pi1 , · · · , pik} and T =

{Ti1 , · · · , Tik} such that N(pis) ⊆ N(Tis) for any s ∈

{1, 2, · · · , k} is any optimal solution of ImprovedCH.

Below, we prove that T =
⋃k

s=1 Tis is the optimal so-

lution of ClusterHire. Obviously, N(P ) ⊆ N(T ).

Assume that T is not the optimal solution of Clus-

terHire. Without loss of generality, let T ′ 6= T be an

optimal solution of ClusterHire. Let P ′ be the set

of projects covered by T ′. Obviously, F (P ′) > F (P )

and C(T ′) 6 B. For any p ∈ P ′, let T ′(p) = {e ∈

T ′|N(e) ∩ N(p) 6= ∅}. We have N(p) ⊆ T ′(p) be-

cause N(P ′) ⊆ N(T ′). In addition,
⋃

p∈P ′ T ′(p) ⊆ T ′.

Therefore, P ′ and {T (p)|p ∈ P ′} are a solution of Im-

provedCH and C(
⋃

p∈P ′ T (p)) 6 C(T ′) 6 B. Obvi-

ously, this contradicts the fact that P and T are the

optimal solution of ImprovedCH. Therefore, any op-

timal solution of ImprovedCH is an optimal solution

of ClusterHire.

Likewise we can prove that any solution of Clus-

terHire is a solution of ImprovedCH. �

Lemma 2. The decision version of ImprovedCH

is NP-complete and NP-hard to approximate.

Proof. According to Lemma 1, ImprovedCH is

equivalent to ClusterHire. In [1], it has been proved

that the decision version of ClusterHire is NP-

complete and NP-hard to approximate. Therefore, the

decision version of ImprovedCH is NP-complete and

NP-hard to approximate. �

Lemma 3. The decision version of PartConsCH

is NP-complete and NP-hard to approximate.

Proof. According to the definitions of prob-

lem ImprovedCH and problem PartConsCH, Im-

provedCH is a simplified version of PartConsCH.

The decision version of ImprovedCH is NP-complete

and NP-hard to approximate according to Lemma 2.

Therefore, the decision version of PartConsCH is NP-

complete and NP-hard to approximate. �

Before proceeding, we first introduce a useful data

representation named a universal project-team map,

which is actually a compressed version of the original

expert-skill-project tripartite graph G. For a project

p ∈ P , p is accomplishable in the context of problem

ImprovedCH if we can find a team T to accomplish

p, i.e., N(p) ⊆ N(T ). In particular, p is accomplish-

able in the context of problem PartConsCH if we can

find a team T satisfying the participation constraint

to accomplish p, i.e., N(p) ⊆ N(T ). A team satisfies

the participation constraint, if the current workloads of

its members are less than their capacities. Below, we

give two preprocessing algorithms, named Uptma for

problem ImprovedCH and Preprocess for problem

PartConsCH, to get the universal project-team map.

Definition 1 (Universal Project-Team Map). An

universal project-team map is a set of entries, each of

which consists of an accomplishable project p and its

corresponding team T such that N(p) ⊆ N(T ).

Example 1. Ge = {Xe,Se,Pe, Ce, δe, Fe} is an

expert-skill-project tripartite graph, where Xe =

{e1, e2, e3}, Se = {s1, s2, s3, s4}, and Pe = {p1, p2, p3}.

The structure of the expert-skill-project tripartite

graph is shown in Fig.1. The budget is set to 9.

e e e

ssss

p p

  

  

p

Fig.1. Structure of the tripartite graph in example 1.

4 ImprovedCH Problem

In this section, we introduce an efficient algorithm

for the problem ImprovedCH. This algorithm takes a

universal project-team map as its input. Therefore, we

need to derive the universal project-team-map from the

expert-skill-project tripartite graph G = (X ,S,P , C, F )

via a preprocessing procedure. The procedure is based

on voting in project-skill-expert order, which is intro-

duced in Subsection 4.1, and assigning each skill to a

single expert, which is introduced in Subsection 4.2. It
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is worth noting that Subsection 4.2 needs to use the al-

gorithm depicted in Subsection 4.1. After obtaining the

universal project-team map via the algorithm depicted

in Subsection 4.2, we compute the influence of each ex-

pert which is the ratio of the total profit of his/her

influenced projects to his/her cost using Definition 7

in Subsection 4.3. The influenced projects of an ex-

pert are those that cannot be finished without this ex-

pert. Then, we remove the expert with the minimum

influence until the total cost of remaining experts does

not exceed B. This procedure is introduced in Subsec-

tion 4.3.

4.1 Voting

Before proceeding, we introduce some necessary

definitions that will be used in the following. All of

them are defined on an expert-skill-project tripartite

graph G. These definitions are used to assess the po-

tential of experts to participate in some projects. The

profits of projects are evenly distributed to the skills as-

sociated with them. Thereby, each skill obtains a score

that is used to assess the value of this skill. Further-

more, the potential of each expert can be defined using

the scores of the skills that he/she possesses and his/her

cost.

Definition 2 (Voting). For any p ∈ P, p votes
F (p)
d(p)

for each skill in N(p). This process is called voting.

Definition 3 (Vote). For any s ∈ S, s gets a

vote
F (p)
d(p) from each p ∈ NP(s). V(s) is a map con-

sisting of p ∈ NP(s) and the vote
F (p)
d(p) . Therefore,

V(s) =
{

(p, F (p)
d(p) )|p ∈ NP(s)

}

.

Definition 4 (Score). For any s ∈ S, Score(s) is

the sum of votes that s gets. That is,

Score(s) =
∑

(p,F (p)
d(p)

)∈V(s)

F (p)

d(p)
. (1)

Definition 5 (Potential). For any e ∈ X ,

Potential(e) is the ratio of the total score of s ∈ N(e)

to the cost of e, i.e.,

Potential(e) =

∑

s∈N(e) Score(s)

C(e)
. (2)

Now, we introduce a method of assessing the poten-

tials of experts to participate in some projects. This

method is based on voting in project-skill-expert or-

der. Concretely, each skill s gets votes V(s) from the

projects associated with it, and thereby is associated

with a score score(s). Each expert gets all these scores

of the skills associated with him/her, and thereby we

can compute his/her potential of participating in some

projects.

For any p ∈ P , p requires all of the skills in N(p).

That means the profit F (p) of p can be partitioned into

d(p) pieces, where d(p) = |N(p)|. Each skill in N(p)

gets F (p)
d(p) . In other words, each project p ∈ P votes

F (p)
d(p) for skills in N(p).

For each skill s ∈ S, s gets a vote F (p)
d(p) from each

p ∈ NP(s). All votes that s gets are denoted as V(s)

according to Definition 3. According to Definition 4,

each skill s ∈ S is associated with a score Score(s).

The larger Score(s) is, the more important s is.

For each expert e ∈ X , e possesses the skills in

N(e). This means e gets a vote Score(s) from s ∈

N(e). According to Definition 5, e is associated with

Potential(e). The larger Potential(e) is, the larger the

potential of e is.

Above all, we get the potential of e for any e ∈

X . Algorithm 1, termed as Voting, describes the

above procedure. After voting in project-skill-expert

order, each skill s is associated with a vote set V(s).

Below, we give a new problem on the expert-skill-

project tripartite graph G, in which each skill is as-

sociated with a vote set V(s). For any two different

skills s1 and s2, V(s1) + V(s2) is defined as V(s1) +

V(s2) = {(p, F (p)
d(p) )|p ∈ V(s1)−V(s2)}

⋃

{(p, 2×F (p)
d(p) )|p ∈

V(s1)
⋂

V(s2)}
⋃

{(p, F (p)
d(p) )|p ∈ V(s2) − V(s1)}. Let

S be a subset of S. ∀(p, x) ∈
∑

s∈S V(s), where

x = y×F (p)
d(p) , ∃y 6 |S|. p is called a complete project in

S if F (p) = x.

Algorithm 1. Voting

Input: expert-skill-project tripartite graph G = (X ,S,P, C, F ),
where n = |X |, m = |S| and l = |P|

Output: a potential set
1 potentialSet← ∅;
2 for each s in S do
3 V(s)← ∅;
4 for each p in NP (s) do

5 V(s)← V(s) ∪ {(p, F (p)
d(p)

)};

6 Compute Score(s) according to (1);
7 for each e in X do
8 Compute Potential(e) according to (2);
9 potentialSet← potentialSet ∪ {Potential(e)};
10 Return potentialSet;

Problem 1. G is an expert-skill-project tripartite

graph, in which each skill is associated with V(s). B is

a specified budget. Our goal is to find a team T within

the budget B such that the total profit of the complete

projects in
⋃

e∈T N(e) is maximized.
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Lemma 4. The optimal solution of problem Im-

provedCH is identical to that of problem 1.

Proof. We first prove that any optimal solution

of problem ImprovedCH is an optimal solution of

problem 1. Let {pi1 , · · · , pik} be a project set and

{Ti1 , · · · , Tik} be a group of teams such that Tis covers

pis , s = 1, 2, · · · , k. T =
⋃k

s=1 Tis is an optimal solution

of problem ImprovedCH. Obviously, C(T ) 6 B. Now,

we prove T is an optimal solution of problem 1 by con-

tradiction. Assume that T is not the optimal solution

of problem 1. Without loss of generality, let T ′ 6= T be

an optimal solution of problem 1. Therefore, the total

profit of the complete projects in
⋃

e∈T ′ N(e) is larger

than that of the complete projects in
⋃

e∈T N(e). In ad-

dition, C(T ′) 6 B. Therefore, T ′ is an feasible solution

of problem ImprovedCH. Obviously, this contradicts

the fact that T is the optimal solution of problem Im-

provedCH.

Likewise, we can prove any optimal solution of

problem 1 is also the optimal solution of problem Im-

provedCH. �

According to Lemma 4, we only need to solve prob-

lem 1. Therefore, we need to find a team T ⊆ X

such that the total profit of the complete projects in
⋃

e∈T N(e) is maximized. For this purpose, it is a rea-

sonable strategy to first get a universal project-team

map from the expert-skill-project tripartite graph and

then successively remove the expert with the minimum

influence until the total cost of the remaining experts

does not exceed the budget.

4.2 Mapping from Skills to Experts

Below, we introduce a preprocessing algorithm (Al-

gorithm 2), termed as Uptma, for generating a univer-

sal project-team map. It takes as input an expert-skill-

project tripartite graph and invokes algorithm Voting

to compute the potentials of experts. Then, the ex-

pert with the maximum potential value is selected to

undertake the skills associated with him/her. These

covered skills are removed from the expert-skill-project

tripartite graph. Repeat the above process until all

skills are covered. According to Definition 1, the univer-

sal project-team map is made up of an accomplishable

project and its corresponding team. Note that problem

ImprovedCH does not consider the capacity of each

expert. Therefore, each project in P can be potentially

accomplished.

Let expertSkillMap be a map that associates an

expert with a set of skills. Let remainingSkillSet

be the set of skills that has not been selected. Ini-

tially, remainingSkillSet is set to S. potentialSet is

yielded by Voting. The entry consisting of the expert

e with the maximum potential and N(e) is added to

expertSkillMap. The skills in N(e) are removed from

remainingSkillSet. e and the edges adjacent to it are

removed from G. Below, we repeat the following pro-

cedure until remainingSkillSet is empty. We invoke

Voting on G and get a new potentialSet. Suppose

enew is the current expert with the maximum poten-

tial. Let value = N(enew) ∩ remainingSkillSet. The

entry (enew, value) is added to expertSkillMap. The

skills in value are removed from remainingSkillSet. In

addition, enew and the edges adjacent to it are removed

from G.

Algorithm 2. Uptma

Input: expert-skill-project tripartite graph G = (X ,S,P, C, F ),
where n = |X |, m = |S| and l = |P|

Output: a universal project-team map
1 Initialize two empty maps expertSkillMap and

projectTeamMap; remainingSkillSet← S; G′ ← G;
2 while remainingSkillSet 6= ∅ do
3 potentialSet← Voting(G′);
4 e← arg max

potential(e′)∈potentialSet
potential(e′);

5 value ← N(e) ∩ remainingSkillSet;
6 Add (e, value) to expertSkillMap;
7 remainingSkillSet← remainingSkillSet− value;
8 Remove e and the edges adjacent to e from G′;
9 for each p in P do
10 pTeam← ∅;
11 for each e in expertSkillMap do
12 if N(p) ∩ expertSkillMap(e) 6= ∅ do
13 pTeam← pTeam ∪ {e};
14 projectTeamMap(p) = pTeam;
15 Return projectTeamMap;

As a result, we get a universal project-team map,

namely projectT eamMap, where the keys are the

projects in P and the values are generated by the map

expertSkillMap. The algorithm Uptma describes the

above procedure.

4.3 Forming an Improved Team

Uptma, as a preprocessing procedure, yields a uni-

versal project-team map U . Without loss of generality,

let U = {(p1, T1), · · · , (ps, Ts)}, and T =
⋃s

i=1 Ti. Be-

low, we first give some useful definitions on U . These

definitions are used to assess the influence of each ex-

pert, i.e., the price paid for removing it.

Definition 6 (Dominated Project Set). For any

e ∈ T , D(e) is the set of projects dominated by e. That

is to say, all projects in D(e) cannot be finished when e

is absent from T . Therefore, D(e) = {p ∈ U |e ∈ U(p)}.
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Definition 7 (Influence). For any e ∈ TU ,

Influence(e) is the ratio of the total profit of projects

dominated by e to the cost of e. That is,

Influence(e) =

∑

p∈D(e) F (p)

C(e)
. (3)

According to Definition 7, the influence of experts in

T is used to evaluate the relative importance of experts.

The larger the influence is, the larger the possibility

that e is left is. Therefore, we successively remove the

expert with the minimum influence until the total cost

of remaining experts does not exceed B. At last, we

obtain a cost-constrained map that associates a project

with its corresponding team. The algorithm Influ-

ence (Algorithm 3) describes the above procedure.

In Algorithm 3 Influence, lines 2∼3 take O(|T |)

to compute the influence of each expert. Lines 5∼8

spend at most O(|T |2) on removing useless experts and

relevant projects. Lines 9∼12 take at most O(|U |) to

form a map whose entries consist of projects and corre-

sponding team. Therefore, the worst-case time comple-

xity of Influence is O(|T |2 + |U |). For Influence,

we only need to store the project-team entries in the

project-team map U . Therefore, the worst-case space

complexity of Influence is O(|U | +
∑n

i=1 |Ti|).

Therefore, the worst-case space complexityAlgorithm 3. Influence

Input: universal project-team map U , budget B

Output: a cost-constrained project-team map
1 T =

⋃n
i=1 Ti;

2 for each e in T do
3 Compute Influence(e) according to (3);
4 cost← C(T );
5 while cost > B do
6 e∗ = argmine∈T Influence(e);
7 T ← T − {e};
8 cost← C(T );
9 for each p in U do
10 tempT ← U(p);
11 if tempT 6⊆ T do
12 Remove (p, tempT ) from U ;
13 Return U ;

Below, we exemplify Influence with example 1.

Uptma, as a preprocessing procedure, is used to derive

a universal project-team map. It first assigns each skill

to a single expert. s1, s2 and s3 are assigned to e1, and

s4 is assigned to e3. Thus, the universal project-team

map is U = {(p1, {e1}), (p2, {e1, e3}), (p3, {e1, e3})}.

Then, the influence of each expert is computed accord-

ing to (3). The expert with the minimum influence is

removed until the total cost of remaining experts does

not exceed B. In this example, U is the final project-

team map, because C(e1) + C(e3) 6 B. The complete

process is shown in Fig.2.
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Fig.2. Illustration of algorithm Influence.
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5 PartConsCH Problem

The ImprovedCH problem does not consider the

workloads of experts. This gives rise to load unbalance,

and therefore is unfair for some experts with larger

workload. On account of the energy of each expert

and the fairness, we should constrain the number of

projects that each expert can participate in. This sce-

nario is modeled by problem PartConsCH.

According to Lemma 3, the decision version of

PartConsCH is NP-complete and NP-hard to ap-

proximate. We propose two algorithms, termed as

ProjectFirst and Era, to form a participation-

constrained profit-maximizing team within the speci-

fied budget. They all use the greedy algorithm for the

SetCover problem which is introduced in [2], termed

GreedySetCover.

5.1 ProjectFirst Algorithm

This Subsection introduces an effective algo-

rithm (Algorithm 4), named ProjectFirst, to form

a participation-constrained profit-maximizing team

within the specified budget. We first initialize a map

projectT eamMap that associates a project with its

corresponding team. For each project p ∈ P , the

nonredundant team T that covers p is computed by

GreedySetCover. Let ratio(p) = F (p)
C(T ) for any

project p. We select the project p∗ and its correspond-

ing team T ∗ such that F (p∗)
C(T∗) = maxp∈P

F (p)
C(p) . The entry

consisting of p∗ and T ∗ is added to projectT eamMap.

The capacities of experts in T ∗ decrease by 1. p∗ is

removed from P . (p∗, T ∗) is viewed as a seed to merge

with other project-team tuples.

For each project p ∈ P , the expert e such that

c(e) > 0 and N(e) ∩ N(p) 6= ∅ is added to the can-

didate expert set pce of p. The irredundant team T

that covers p is computed by greedySetCover. If

T = None, p cannot be accomplished. Otherwise, let

ratio(p) = F (p)
C(T ) for any available project p. At this

time, we take an order-first selection strategy which is

to select the first project-team tuple (p∗, T ∗) guaran-

teeing that the total cost of the union of all selected

teams does not exceed B, after sorting the tuples in

descending order of mergingRatio.

Algorithm 4. ProjectFirst

Input: expert-skill-project tripartite graph G = (X ,S,P, C, δ, F ), where n = |X |, m = |S| and l = |P|, B
Output: a project-team map

1 Initialize an empty map projectTeamMap, temp← P, cost← 0;
2 c(e)← δ(e), for each e ∈ X ;
3 while cost 6 B and temp 6= ∅ do
4 Initialize an empty map tptm;
5 for each p in temp do
6 pce← {e ∈ X|c(e) > 0, N(e) ∩N(p) 6= ∅};
7 T ← GreedySetCover({N(e)|e ∈ pce}, N(p));
8 if T 6= None do
9 tptm← tptm ∪ {(p, T )};
10 else
11 p← None;
12 temp← {p ∈ temp|p 6= None};
13 if projectTeamMap = ∅ do

14 F (p∗)
C(T∗)

← max(p,T )∈tptm
F (p)
C(T )

;

15 Add (p∗, T ∗) to projectTeamMap;
16 cost← C(T ∗), temp← temp − {p∗}, c(e)← c(e)− 1, for any e ∈ T ∗;
17 else
18 curProject← ∅, curTeam← ∅;
19 for each (p′, T ′) in projectTeamMap do
20 curProject← curProject∪ {p′}, curTeam← curTeam ∪ T ′;
21 for each (p, T ) in tptm do

22 mergingRatio(p, T )←
F (curPorject∪{p})
C(curTeam∪{T})

;

23 Sort the tuple (p, T ) in tptm in descending order of mergingRatio(p, T );
24 Select the first tuple (p∗, T ∗) from tptm with C(curTeam ∪ {T ∗}) 6 B;
25 if (p∗, T ∗) 6= None do
26 Add (p∗, T ∗) to projectTeamMap;
27 c(e)← c(e)− 1, for any e ∈ T ∗;
28 cost← C(curTeam ∪ {T ∗}), temp← temp − {p∗};
29 else
30 Break
31 Return projectTeamMap;
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In ProjectFirst, lines 6∼12 spend at most

O(mnl) on obtaining project-team tuples because the

worst-case time complexity of greedySetCover is

O(mn) according to the conclusion in [2]. Lines

14∼18 spend no more than O(l) on generating a

seed. Lines 20∼22 spend no more than O(l) on com-

puting mergingRatio of each (p, T ). Lines 23∼24

spend at most O(l log l) on selecting the first feasi-

ble tuple via the order-first selection strategy. Above

all, lines 4∼30 take at most O((mn + log l)l) to

get a participation-constrained profit-maximizing team.

Therefore, the worst-case time complexity of Project-

First is O((mn+log l)l). For ProjectFirst, we only

need to store the members in X , the skill sets associated

with projects in P and the experts in X . Therefore,

the worst-case space complexity of ProjectFirst is

O(n+ml + nm).

5.2 Expert-Removing Algorithm

This subsection is on an expert-removing approach

to form a profit-maximizing feasible team. It takes a

universal project-team map as its input. Therefore, we

first obtain the universal project-team map through a

preprocessing procedure which is introduced in Subsec-

tion 5.2.1. Then, we select experts from the universal

project-team map according to their influence defined

in Definition 7. Note in particular that the partici-

pation constraint is considered when constructing the

universal project-team map. Therefore, we do not need

to consider it in the selection process.

5.2.1 Preprocessing

We first initialize projectT eamMap that associates

a project with its corresponding team. For each project

p ∈ P , the expert e such that c(e) > 0 and N(e) ∩

N(p) 6= ∅ is added to the candidate expert set pce of

p. The nonredundant team T that covers p is com-

puted by GreedySetCover. If T = None, p can-

not be finished. Otherwise, let ratio(p) = F (p)
C(T ) for

any available project p. We select (p∗, T ∗) such that
F (p∗)
C(T∗) = maxp∈P

F (p)
C(T ) . The entry (p∗, T ∗) is added to

projectT eamMap. At this time, p∗ is accomplishable.

The capacities of experts in T ∗ decrease by 1. This

loop does not end until all accomplishable projects are

traversed. The algorithm Preprocess (Algorithm 5)

describes this preprocessor procedure.

In Preprocess, we only consider the participation

constraint and ignore the cost constraint. Hence, the

map yielded by Preprocess is a universal project-

team map. Thereby, the influence of each expert in

projectT eamMap can be computed according to (3).

Below, we introduce an algorithm, which takes a univer-

sal project-team map as input, to form a participation-

constrained profit-maximizing team.

5.2.2 Forming a Balanced Team

Preprocess yields a universal project-team map

projectT eamMap. According to Definition 1, each

project in the map is covered by a unique spe-

cified team. Without loss of generality, let U =

{(p1, T1), · · · , (ps, Ts)} and T =
⋃s

i=1 Ti.

Below, we repeat the following procedure until the

total cost of the current T exceeds B. First, we com-

pute the influence of each expert e ∈ T by (3). Then,

the expert e∗ with the minimum influence is selected,

and correspondingly the entry (pi, Ti) such that e∗ ∈ Ti

is removed from U . T is updated by the union of the

teams in the current U . Algorithm Era (Algorithm 6)

describes this procedure.

Lines 2∼3 spend at most O(|U |) on computing the

set of experts in U . Lines 5∼15 spend no more than

Algorithm 5. Preprocess

Input: expert-skill-project tripartite graph G = (X ,S,P, C, δ, F ), where n = |X |, m = |S| and l = |P|
Output: a project-team map

1 Initialize an empty map projectTeamMap, temp← P, c(e)← δ(e) for each e ∈ X ;
2 while temp 6= ∅ do
3 for each p in temp do
4 pce← {e ∈ X|c(e) > 0, N(e) ∩N(p) 6= ∅};
5 T ← GreedySetCover({N(e)|e ∈ pce}, N(p));
6 if T 6= None do

7 ratio(p)←
F (p)
C(T )

;

8 else
9 p← None;

10 temp← {p ∈ temp|p 6= None},
F (p∗)

C(T ∗)
← max

p∈temp

F (p)

C(T )
;

11 Add (p∗, T ∗) to projectTeamMap, c(e)← c(e)− 1 for any e ∈ T ∗, temp← temp − {p∗};
12 Return projectTeamMap;
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Algorithm 6. Era

Input: universal project-team map projectTeamMap

Output: a project-team map
1 expertSet← ∅;
2 for each p in projectTeamMap do
3 expertSet← expertSet ∪ projectTeamMap(p);
4 cost← C(expertSet);
5 while cost > B do
6 Initialize an empty dominated project set D;
7 for each e in expertSet do
8 for each p in projectTeamMap do
9 if e ∈ projectTeamMap(p) do
10 D(e)← D(e) ∪ {p};
11 Compute influence(e) according to (3);
12 e∗ ← arg min

e∈expertSet
influence(e); Remove each p ∈ D(e∗) and its value from projectTeamMap;

13 expertSet← ∅, and update expertSet with the experts in projectTeamMap;
14 cost← C(expertSet);
15 Return projectTeamMap;

O(|T | × |U |2) on generating a cost-constrained map

that associates a project with its corresponding team.

Therefore, the worst-case time complexity of Era is

O(|T | × |U |2). For Era, we only need to store the

projects in U and the expert sets associated with them.

Therefore, the worst-case space complexity of Era is

O(|U |+
∑s

i=1 |Ti|).

Below, we exemplify algorithm Era with exam-

ple 1. The complete process is shown in Fig.3.

The project-team map yielded by Preprocess is

{(p1, {e1}), (p2, {e1, e3})}. This is a universal project-

team map satisfying the participation constraint for the

example in Fig.1. Then, we remove the entry (p, T )

such that the expert with the minimum influence is in

T until the total cost of remaining experts does not ex-

ceed B. In this example, the participation-constrained

profit-maximizing within the specified budget B is the

universal project-team map yielded by Preprocess,

because C(e1) + C(e3) 6 B.

6 Experimental Evaluation

In this section, we conduct some experiments to

evaluate the performance of our algorithms, includ-

ing effectiveness evaluation, feasibility evaluation and

scalability evaluation. Python is used to implement

our algorithms on the laptop with Intelr CoreTM i3

2.53 GHz CPU and 2.99 G memory.

6.1 Datasets

We conduct these experiments on two real datasets.

Their profiles are shown in Table 1. Freelancer is col-

lected from www.freelancer.com and Guru is collected

from www.guru.com. For the PartConsCH problem,

the capacities of experts on these datasets are a random

integer ranging from 1 to 3.

Table 1. Two Real-World Datasets

Freelancer Guru

|X | 1 160 4 650

|P| 408 671

|S| 464 4 183

6.2 Load Analysis

ImprovedCH aims to find a profit-maximizing

team whose cost does not exceed the specified budget

B. Obviously, it does not consider the loads of ex-

perts. This may lead to the overwork of some experts.

Algorithm Influence is used to solve the problem Im-

provedCH. It can specify a corresponding team for

each project. Thereby, we can compute the load of each

expert. Table 2 and Table 3 illustrate the minimum and

the maximum loads of experts in the team yielded by

algorithm Influence on Freelancer and Guru as B in-

creases respectively.

Table 2. Load Analysis on Freelancer as B Increases

B Min Load Max Load

50 7 38

65 10 42

80 9 47

95 15 72

110 13 78

Table 3. Load Analysis on Guru as B Increases

B Min Load Max Load

50 25 171

100 7 280

150 5 318

200 3 353

250 3 389
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Fig.3. Illustration of algorithm Era.

According to Table 3, the minimum load is equal

to the specified load 3 when B = 200, 250, whereas the

maximum load is far larger than 3 whatever B equals.

This suggests that there are always some experts in

the final team assigned to too many projects simultane-

ously. This means the load unbalance always happens.

As shown in Table 2, the minimum load is larger than

the specified load 3 whatever B equals. Therefore, all

of the experts in Freelancer are assigned to too many

projects.

6.3 Effectiveness Analysis

Influence is used to solve problem ImprovedCH.

ProjectFirst and Era are used to solve PartCon-

sCH. In this experiment, we evaluate the effectiveness

of these algorithms in terms of the profits and the cost

performance made by our proposed algorithms. Note

in particular that the cost performance equals F (P⋆)
C(T⋆) ,

where T ⋆ is the team yielded by our proposed algo-

rithms and P ⋆ is the profit made by T ⋆.

6.3.1 For Influence

According to Lemma 1, ImprovedCH is equiva-

lent to ClusterHire. Therefore, the existing algo-

rithms for ClusterHire, including ExpertGreedy

and ProjectGreedy, and CliqueGreedy, can be

viewed as the baseline. Fig.4 shows the profits and

the cost performances made by these algorithms on the

two real datasets under different budgets B. Figs.4(a)

and 4(b) indicate that the profits and profit-cost ratios

made by Influence are larger than those made by the

others on Freelancer. Figs.4(c) and 4(d) indicate that

the profits and profit-cost ratios made by Influence

are higher than those made by the others on Guru. In

summary, Influence is better than the three state-of-

the-art algorithms in terms of the profits and the cost

performance (the profit-cost ratios).

6.3.2 For ProjectFirst and Era

This paper provides two algorithms for PartCon-

sCH, namely ProjectFirst and Era and Fig.5 shows

the comparisons of these two algorithms. Figs.5(a) and

5(b) show the profits and profit-cost ratios under diffe-

rent B on Freelancer, and Figs.5(c) and 5(d) show the

profits and profit-cost ratios under different B on Guru.

They demonstrate that algorithm Era performs better

than algorithm ProjectFirst in terms of the profits

and the cost performance (profit-cost ratios).

Fig.6 shows the profits and the cost performances

of Era and ProjectFirst under different sizes

for |X |, |S| and |P| respectively. The profits are

shown in Figs.6(a)∼6(c), and the ratios are shown

Figs.6(d)∼6(f). According to these figures, Era is bet-

ter than ProjectFirst in terms of the profits and ra-
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tios. In addition, we discover that the profits and ratios

of Era under different |X | have a little fluctuation.

6.4 Time Efficiency Analysis

In this subsection, we analyze the time efficiency of

our proposed algorithms under different B, |X |, |S| and

|P|.

6.4.1 For Influence

Fig.7 shows the comparison of the running time of

Influence and the existing algorithms on Guru. Note

that the running time of algorithm Uptma has been in-

corporated into that of Influence. Fig.7 reveals that

the running time of Influence is still lower than that

of the others under different B, |X |, |S| and |P|, even

if it includes the running time of Uptma.

Combining the effectiveness of Influence in Sub-

section 6.3.1, we conclude that Influence performs

better than the state-of-the-art algorithms either in

terms of the effectiveness or in terms of the time ef-

ficiency.

6.4.2 For ProjectFirst and Era

Fig.8 shows the comparison of the running time of

ProjectFirst and Era. It reveals the running time

of ProjectFirst and Era under different B, |X |, |S|

and |P|. Note that the running time of Preprocess

has been incorporated into the running time of Era.

Fig.8(a) demonstrates that the running time of Pro-

jectFirst is larger than that of Era as B = 200, 250.

In Figs.8(b)∼8(d), the running time of Era is always

longer than that of ProjectFirst. This is because

Preprocess spends too much time on computing the

universal project-team map. Combining the conclusion

in Fig.6, we know Era performs better than Project-

First in terms of the profit and the cost performance,

whereas it takes more time than the latter. That is to

say, they focus on different aspects. One is the time

efficiency and the other is the effectiveness.

6.5 Memory Usage Analysis

In this subsection, we analyze the memory usage

of our proposed algorithms line by line on Freelancer.

The python module “memory profiler” is used to moni-

tor the memory consumption of the algorithms as well

as the line-by-line analysis of memory consumption for

each algorithm.

Figs.9(a)∼9(d) show the line-by-line memory con-

sumption of Influence, ExpertGreedy, Project-

Greedy and CliqueGreedy respectively. According
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Fig.9. Line-by-line memory usage of (a) Influence, (b) ExpertGreedy, (c) ProjectGreedy, (d) CliqueGreedy, (e) Era and (f)
ProjectFirst.

to them, the memories of Influence and the state-of-

the-art algorithms are not very volatile. They fluctuate

from 121 MiB to 125 MiB (Mega Binary Byte). This is

because their space complexity only depends on the size

of the expert-skill-project tripartite graph. Figs.9(e)

and 9(f) show the line-by-line memory consumption of

Era and ProjectFirst respectively. According to

them, the memories of these two algorithms are not

very volatile. They fluctuate from 124.8 MiB to 125

MiB. This is because their space complexity only de-

pends on the size of the expert-skill-project tripartite

graph.

7 Conclusions

In this paper, we studied the problem of forming a

cost-constrained profit-maximizing team without par-

ticipation constraint, termed ImprovedCH, and the

problem of forming a participation-constrained profit-

maximizing team within the specified budget, termed

PartConsCH. We proved that ImprovedCH was

equivalent to problem ClusterHire, and proposed an

efficient and effective algorithm for it, which was based

on an expert-removing strategy on a universal project-

team map. To the best of our knowledge, the problem

PartConsCH was first proposed by us. We proved

that its decision version was NP-complete and NP-hard

to approximate, and devised two algorithms, named

ProjectFirst and Era for it. The former takes the

order-first selection strategy. The latter takes a univer-

sal project-team map as input, and removes the expert

with the lowest influence until the total cost is less than

the specified budget.
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