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Abstract Edges are important cues for localizing object proposals. The recent progresses to this problem are mostly
driven by de�ning e�ective objectness measures based on edge cues. In this paper, we develop a new representation named
directional edges on which each edge pixel is assigned with adirection toward object center, through learning a directi on
prediction model with convolutional neural networks in a ho listic manner. Based on directional edges, two new objectness
measures are designed for ranking object proposals. Experiments show that the proposed method achieves 97:1% object
recall at an overlap threshold of 0:5 and 81:9% object recall at an overlap threshold of 0:7 at 1 000 proposals on the PASCAL
VOC 2007 test dataset, which is superior to the state-of-the -art methods.

Keywords object proposal, directional edge, convolutional neural n etwork

1 Introduction

Objectness estimation for object proposal gene-
ration that has been extensively used to accelerate the
detection process, is of broad interests from this com-
munity. With the rapid progresses in edge and object
boundary detection[1-5] and since contours always pos-
sess plentiful high-level information and simple repre-
sentation of objects, extracting object proposals with
contour cues becomes a promising direction. Bene�t-
ing from the observation that contour closure plays a
key role in determining whether an object exists at the
bounding box level, several approaches[6-9] have been
successfully presented. However, except contour clo-
sure, it appears to be extremely di�cult to seek other
e�ective objectness measures due to the diversity and
disorder of edges. For instance, BING[7] and Edge
Boxes[6] , the �rst contour-based approaches that use
contour closure as the main measure, are still top ob-

ject proposal generators at present.
In this paper, we propose an unconventional rep-

resentation named directional edges for measuring ob-
jectness and generating object proposals. The basic
idea is to associate each edge pixel with its inner nor-
mal (I-N) direction, which is perpendicular to its edge
tangent, and meanwhile toward the interior of an ob-
ject. Such so-called directional edges are able to provide
more informative cues to enhance the discriminative
power of edges in distinguishing between objects and
non-objects.

An example of directional edges is illustrated in
Fig.1. Apparently, directional edges contain more high-
level information than general edges, as they can in-
dicate which side is from an object or from back-
ground/other objects. Yet, how to robustly predict
the I-N direction of each edge pixel seems to be very
challenging. Inspired by recent image segmentation
and edge detection approaches with deep convolutional
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neural networks (CNNs)[5;10] that can well capture
both high-level (object features) and low-level cues
(e.g., textures[11] , junctions[12] , salience) in an image-
to-image fashion, we train the network to predict the
I-N directions instead of class labels in [5, 10]. Indeed,
learning a shape representation with deep learning is
not new[13-14] ; however, to the best of our knowledge,
this paper �rstly presents the concept of \edge direc-
tion".

(a) (b) (c)

Fig.1. (a) Input image. (b) Edge map generated by Structured
Edge[2] . (c) Visualization of the predicted I-N directions on edge
pixels by converting predicted labels to corresponding arr ows.

The second contribution of our paper is to utilize
the I-N directions for objectness measures. Two strate-
gies based on directional edges are presented. 1) Given
a candidate bounding box, we assume that an edge
segment on the object boundary often has the I-N di-
rections approximately pointing to the object centroid.
Such edge segments should be taken into account more
in scoring an objectness measure. We simply apply such
a strategy to the well-known Edge Boxes[6] through en-
hancing the magnitude of the edge segments whose I-N
directions are toward an object centroid. 2) Another
strategy is to design a novel edge completeness measure
based on the directional edge cues. The intuition is that
an edge-based proposal satisfying a closed contour of-
ten has the edge segments in all the directions referring
to the object center, and the I-N directions of the pixels
on the edge segments are meanwhile pointing to the in-
terior of the object. The experimental results show that
the proposed two strategies using directional edges yield
an obvious improvement over the state-of-the-art edge-
based method Edge Boxes. The proposed method is
evaluated on the PASCAL VOC 2007 dataset[15] , which
is widely used for object proposal detection in previous
work. The proposed method achieves 81:9% recall with
1 000 proposals on IoU (intersection-over-union) of 0:7,
which yields 2:5% of improvement over Edge Boxes.

2 Related Work

Object proposal, as a pre-processing of object detec-
tion, has attracted much attention recently. This con-
cept is �rstly proposed by Alexe et al.[16] Subsequently,

a vast amount of novel methods have been proposed.
These methods can be roughly divided into three cate-
gories: region-based methods, edge-based methods, and
mixture methods.

Generally, region-based methods start with segmen-
tations or superpixels, and generate object proposals
by adopting di�erent merging/segmentation strategies,
such as Selective Search[17] , which applies a hierarchi-
cal grouping algorithm to merge superpixels in diverse
ways. A learned grouping model is used in [18] to im-
prove Selective Search. Manenet al.[19] proposed to use
a randomized Prim algorithm to generate object pro-
posals on the connected graph of superpixels. A group-
ing method based on a metric learning is proposed in
[20], and Rantalankila et al.[21] proposed to combine
local and global cues when grouping superpixels. Di�e-
rent from the series of methods by merging superpixels,
many studies[22-29] directly segment object proposals
from images. In particular, multiscale combinatorial
grouping (MCG) [22] relies on a fast normalized cuts al-
gorithm and a hierarchical segmenter to combine multi-
scale regions into proposals. Kr•ahenb•uhl and Koltun[26]

proposed to generate object proposals by identifying
critical level sets in geodesic distance transforms.

There are much fewer edge-based methods com-
pared with region-based methods. In [7], the authors
proposed BING that uses a binary gradient feature with
a learned linear classi�er to score bounding boxes. This
method is extremely fast, but performs poorly in high
IoU setting. Zitnick and Doll�ar [6] proposed the Edge
Boxes algorithm, which achieves one of the best perfor-
mances by utilizing a high-quality contour detector[2]

and an e�cient contour closure measure for scoring pro-
posals. A new contour-based measure subject to the
completeness and tightness constraints has been pro-
posed in [8]. Qi et al.[9] proposed a perceptual edge
grouping algorithm to generate object proposals. Re-
cently, many e�cient contour detection methods have
been proposed. Examples are [1-2, 30-32] that are clas-
sically learned approaches, and [3-5, 33] that leverage
the recent success of deep learning in vision problems.
Since contours provide high-level information and sim-
ple representations for objects, the edge-based methods
are promising mainstream approaches for object pro-
posal detection.

Mixture methods combine several representations.
For instance, Alexeet al.[16] proposed to combine mul-
tiple cues with di�erent parameters scoring proposals.
This method has been further improved in [34] by us-
ing structured learning in a cascade framework. In [35],
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the authors proposed a data-driven semantic approach
for ranking object proposals using a fast CNN architec-
ture. CNN has also been adopted in [36] which gene-
rates object proposals over di�erent CNN layers with
an inverse cascade framework. Chenet al.[37] proposed
to re�ne object proposals' localization by measuring
the superpixel tightness of boxes. Based on [37] and
[7], Zhang et al.[38] proposed BING++. This method
combines edges and superpixels to re�ne the proposals
generated by BING[7] . In [39-40], the authors proposed
object adobes based on local regions within the enlarged
bounding boxes. Recently, He and Lau[41] proposed an
e�cient method to generate oriented object proposals.

Our proposed method is based on edges. In addi-
tional to classical edge cues, we introduce the direc-
tional cues of edge pixels to enhance the discriminative
power of object contours. The proposed directional
edge cues can be considered as a novel low-level feature
that is learned in a holistic manner with a covolutional
neural network based on edge maps.

3 Proposed Method

In this section, we describe the proposed method for
object proposal generation. Firstly, we present how to
estimate I-N directions by a fully convolutional network
in Subsection 3.1. Then, we detail in Subsection 3.2 our
two object proposal scoring strategies based on the pro-
posed directional edge cues. Finally, a post processing
used to re�ne the bounding boxes of object proposals
is introduced in Subsection 3.3.

3.1 Inner Normal Direction Prediction

3.1.1 Ground Truth Preparation

As illustrated in Fig.1, the estimated I-N direc-
tion provides richer geometric information than non-
directional edges, which facilitates object localization.
Yet, there is no dataset having the I-N direction annota-
tions of object boundaries. Alternatively, we compute
the I-N directions for the training data with the help of
the segmentation annotations. More precisely, we �rst
estimate the edge tangent direction for each pixel lying
on the object boundary. Then, its I-N direction is set
as the one which is perpendicular to the tangent, and
meanwhile toward the interior of the object according
to the binary mask. An example to compute the I-N di-
rection for pixels of an annotated boundary is depicted
in Fig.2. In some images, multiple objects may overlap
each other. In this case, the edges between two overlap-
ping objects are considered as reliable directional edges

for only one object, which are used to vote for this
object. But such edges are usually small parts of ob-
ject boundaries. Therefore, the lack of such edges does
not give too many negative a�ects to the extraction of
the other object. Following classical edge orientation
quantization used in many edge detection algorithms,
we quantize the I-N directions to a number of discrete
bins. More speci�cally, I-N directions from 0 to 2� are
quantized to 1; 2; : : : ; Nb .

(a) (b) (c)

Fig.2. Example of computing I-N directions from segmentati on
annotations. (a) Input image. (b) I-N direction computatio n.
The object region and its boundary are in red and white, re-
spectively. The tangent and the I-N direction of the boundar y
pixel under consideration are denoted by a red dotted line an d
a green arrow, respectively. (c) I-N direction visualizati on.

3.1.2 Network Architecture

Estimating the I-N direction for an edge pixel is to
predict which bin the I-N direction falls into. Con-
sequently, the I-N direction prediction is formulated
as a classi�cation problem. Given an input image
X = f x i g

jX j
i =1 , wherex i denotes thei -th pixel in the im-

age, andjX j stands for the number of pixels contained
in X , our goal is to predict the quantized I-N direction
label map Z = f zi g

jZ j
i =1 having the same size withX ,

where z(n )
i 2 f 1; :::; Nbg is the label of the quantized

I-N direction for x i .
Since the fully convolutional network[10] (FCN) is

able to perform e�ciently per-pixel classi�cation in a
holistic way, we adopt FCN to e�ciently and accu-
rately predict I-N directions. Our network architec-
ture is depicted in Fig.3, which is derived from the
VGG-16 net[42] . Following [10], we replace the fully-
connected layers by convolutional layers, and add side
sub-networks after the �ve convolutional stages to take
multiscale learned features. Each sub-network consists
of a convolutional layer with 1� 1 kernel and an upsam-
pling layer. The upsampling factors are properly cho-
sen to produce feature maps having the same width and
height with the input image X . Such produced multi-
scale feature maps are then concatenated together along
the depth, and fed into the last convolutional layer with
1 � 1 kernel. Finally, a soft-max layer produces dense
probability predictions for all pixels by applying soft-
max operations along the depth axis.
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Fig.3. Illustration of our network architecture. The side s ub-networks output 16, 32, 64, 128, and 256 �ne to coarse feat ure maps,
respectively.

3.1.3 Training Phase

In the training phase, we aim at learning an I-
N direction prediction model that maps every edge
pixel x in an input image X to its quantized I-N di-
rection label z. The training dataset is denoted by
S = f (X (n ) ; Y (n ) ; Z (n ) )gN

n =1 , where N is the number
of training images, X (n ) denotes a raw input image,
Y (n ) = f y(n )

i j y(n )
i 2 f 0; 1gg is the ground truth edge

map (1 for edge pixel and 0 for non-edge pixel), and
Z (n ) stands for the ground truth label map of quan-
tized I-N directions.

Since we only consider the I-N directions of edge
pixels, the non-edge pixels should be ignored in train-
ing. For each training image, we propose to use the
following loss function:

L (n )
I (�) = � (

jX ( n ) jX

i =1

1(y(n )
i = 1)

N bX

j =1

1(z(n )
i = j ) �

log Pr(z(n )
i = j jx(n )

i ; �)) =(
jX ( n ) jX

i =1

1(y(n )
i = 1)) ;

where � is the model parameter, and Pr( z(n )
i =

j jx(n )
i ; �) is the probability of the quantized I-N di-

rection label of pixel x(n )
i being z(n )

i , outputted by the
learned model. Finally, the loss function for the whole
training dataset is given by:

L S (�) =
1
N

NX

n =1

L (n )
I (�) :

3.1.4 Testing Phase

In the testing phase, given an imageX = f x i g
jX j
i =1 ,

its quantized I-N direction label map Ẑ = f ẑi g
j Ẑ j
i =1 is

given by ẑi = arg max j 2 (1 ;:::;N b ) Pr(z = j jx i ; �). Note
that the ground truth edge map is no longer available
in the testing phase. Instead, we can compute an edge
map by any edge detection method reviewed in Sec-
tion 2, such as Structured Edge[2] or HED [5] . Then we
only predict the I-N directions for the detected edges
using our learned model.

3.2 Bounding Box Scoring

3.2.1 Basic Idea

We propose to score object proposals by taking into
account the predicted I-N directions based on the fol-
lowing two observations. 1) The I-N directions of ob-
ject contours should point to the interior of objects
(see Fig.1(c)). Consequently, for a given object pro-
posal, the edge pixels whose I-N directions are approx-
imately pointing to the box centroid are more reliable
than the others when voting for the objectness score.
Thus, we propose to measure the directivity (see Sub-
section 3.2.2) of an object proposal by �nding reliable
edge pixels de�ned in Subsection 3.2.2. 2) The edge
completeness measure has been demonstrated to be
very useful for distinguishing objects and non-objects
in [8]. Yet, in [8], one forces to �nd a complete edge
path within a proposal, which is an excessive require-
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ment of edge completeness, and consequently results in
poor performance at high IoU setting (e.g., 0:7). In
this paper, we propose a novel and e�ective strategy
(see Subsection 3.2.3) to measure the edge complete-
ness based on the reliable edge pixels.

3.2.2 Directivity Measure

The Edge Boxes[6] algorithm introduces an object-
ness scoring strategy for each object proposalb based
on the edge segments. The score function is de�ned as:

H (b) =

P
i

P j si j
j =1 wb(si )m(p( i )

j ) �
P

p2 bin m(p)

2(bw + bh)1:5 ; (1)

where si = f p( i )
j g is an edge segment,jsi j denotes the

number of edge segments in the image,wb(si ) 2 [0; 1] is
a continuous value, indicating whethersi is completely
contained in b (wb(si ) = 1) or not ( wb(si ) = 0), m is
the edge magnitude,bw and bh are the width and the
height of b respectively, and bin is the box centered in
b with the size of bw=2 � bh=2. More details about the
de�nition of this objectness score function are referred
to [6]. This objectness measure scores e�ciently the
object proposals. Yet, in an extracted edge map, there
are usually many chaotic edge segments, which are also
taken into account in (1). Intuitively, only the real ob-
ject boundaries should be used to vote for the object
score. Hopefully, the predicted I-N directions are infor-
mative cues which are able to distinguish object boun-
daries from chaotic edges, thanks to the introduction of
edge reliability and the notion of reliable edge detailed
in the following.

For an edge pixelp, let zp be its predicted I-N direc-
tion described in Subsection 3.1.4, and then the relia-
bility I (p) for p is de�ned based on the probability of
predicted I-N directions outputted by our FCN model.
Let zl = ( zp � 1 + Nb)%Nb and zr = ( zp + 1)%Nb be
the two closest I-N directions of the predicted onezp,
and we denote the probability Pr(z = zi jp; �) shortly
by Pr( zi ; p) for the simplicity and without ambiguity.
Then the reliability of I (p) is given by:

I (p) = Pr( zl ; p) + Pr( zp; p) + Pr( zr ; p):

We de�ne the reliability by taking the sum of probabi-
lities for three close I-N directions to reduce the risk of
imprecise I-N direction predictions.

We de�ne the edge pixels which are prone to be on
object boundaries as reliable edge pixels. More pre-
cisely, an edge pixelp on an edge segments is consi-
dered as a reliable edge pixel of a bounding boxb, if it

satis�es the following conditions:
8
><

>:

� � th 6 O(p; cb ) 6 � th ;

p =2 bin ;

wb (s) > 0;

(2)

where cb is the centroid of the bounding box b,
O(p; cb ) 2 (0; � ) is the angle between the predicted I-
N direction of p and the direction of �� *pcb (see Fig.4),
and � th is a threshold parameter. Put simply, the edge
pixels whose predicted I-N directions are approximately
pointing to the box centroid are considered as reliable
edge pixels. An example of reliable edge pixel detec-
tions is depicted in Fig.4.

(a) (b)

Fig.4. Example of reliable edge pixel detections. (a) Illus tration
of O(p; cb ) for the edge pixels in yellow. (b) Detected reliable
edge pixels in green and the others in red. The edge I-N direc-
tions are represented by yellow arrows.

We denote the set of reliable edge pixels of a bound-
ing box b by Gb . As reliable edge pixels are prone to lie
on object boundaries, high weights should be assigned
to them. Consequently, we introduce a novel object
scoring function H 0(b) given by:

H 0(b) =

P
i

P j si j
j =1 wb (si )m(p( i )

j )u(p( i )
j ) �

P
p2 bin m(p)

2(bw + bh)1:5 ;

(3)
where u(p) = �I (p) for all p 2 Gb , and u(p) = I (p) for
all p =2 Gb . The parameter � 2 [1; 1 ) is adjustable to
enhance the votes of reliable edge pixels.

3.2.3 Completeness Measure

Completeness is an important characteristic for ob-
ject contours. As described in Subsection 3.2.2, the re-
liable edge pixels are usually on object boundaries. We
introduce a novel edge completeness measure based on
the reliable edges. An intuitive de�nition of complete-
ness requires the edge pixels connecting to each other
to form a closed curve. Based on this intuition, we pro-
pose a projection method to measure the completeness.
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As illustrated in Fig.5(a), for the reliable edge pix-
els of a given object proposal boxb, a straightforward
strategy is to project all the reliable edge pixels to the
circumcircle of box b based on its centroid. Then the
completeness can be measured based on the shadow
length ` and the circumcircle's perimeter L , which is
given by `=L . Yet, such a completeness measure per-
forms not well, because a proposal usually contains only
a part of the object contour. In addition, the projection
process is time consuming.

(a) (b)

d8=7

d7=13

d6=2

d5=9 d4=3

d3=9

d2=7

d1=2

bh

bw

Fig.5. Intuitive illustration of the completeness measure com-
putation for edges (in yellow) within the object proposal bo x
(in blue). (a) Computation on a continuous space based on pro -
jected shadow (in green). (b) Computation on the discrete sp ace
divided into several divisions by pink dashed lines. A divis ion
is marked in a solid green arc if it is reliable. Otherwise, it is
marked by a dashed red arc.

To overcome the above two problems, we propose
to approximate the projected shadow length by the
number of reliable edge pixels in discrete spatial di-
visions. More precisely, we �rst divide equally the pro-
posal b into Nd divisions by the vectors starting from
the box center. Then we replace the projected shadow
length ` by the number of reliable edge pixels within
each division. The i -th spatial division is considered
to be reliable if the number di of reliable edge pixels
projected into it is more than an adaptive threshold:
2� (bh + bw )=Nd , where � is an adjustable parameter.
Based on this relaxation, the proposed completeness
measure is de�ned as follows:

C(b) =

P N d
i =1 1(di > 2�

N d
(bh + bw ))

Nd
: (4)

Finally, by combining the directivity measure in (3) and
the completeness measure in (4), the proposed object-
ness score for an object proposal boxb is de�ned as:

S(b) = H 0(b) � C(b):

3.3 Proposal Re�nement

Inspired by the post-processing step introduced in
[37], we also propose a re�nement strategy to extract
accurate proposals. For a given proposalb with its re-
liable edge pixel setGb , we de�ne a re�ned box �b as
following:

8
>>>>>>><

>>>>>>>:

�bx = min
p2G b

px ;

�by = min
p2G b

py ;

�bw = max
p2G b

px � min
p2G b

px + 1 ;

�bh = max
p2G b

py � min
p2G b

py + 1 ;

where px and py are x-coordinate and y-coordinate of
pixel p respectively, �bx , �by , �bw , �bh are the x-coordinate,
the y-coordinate, the width and the height of box �b re-
spectively. If S(�b) > S (b), we choose the re�ned box.
Otherwise, we reserve the non-re�ned one.

4 Experimental Results

The tested dataset and involved performance
evaluation measures are shortly described in Subsec-
tion 4.1. Subsection 4.2 is dedicated for the imple-
mentation details of the proposed method Directional
Edge Boxes (DEB). A comprehensive comparison to
the state-of-the-art methods is then provided in Subsec-
tion 4.3. In Subsection 4.4, we discuss the performance
under di�erent parameter and objectness measure set-
tings.

4.1 Datasets and Evaluation Measures

To compare with other state-of-the-art methods, we
have evaluated the proposed method on the PASCAL
VOC 2007 dataset[15] , which consists of 9 963 natural
images with several types of annotations, such as ob-
ject labels, object localization and segmentations. This
dataset is divided into the training set (2 501 images),
the validation set (2 510 images), and the testing set
(4 952 images). In our experiments, the training set
and the validation set are used to train our I-N direction
prediction model. We have also evaluated the proposed
method compared with Edge Boxes[6] on the PASCAL
VOC 2012 validation set and the MS COCO valida-
tion set[43] , which demonstrates the generality of the
proposed method.

Consistent with most state-of-the-art approac-
hes[6-7;19;22] , the detection rate (DR) curve and recall
are adopted for performance evaluation and comparison
at di�erent IoU thresholds.
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4.2 Implementation Details

To train the proposed I-N direction prediction
model, we set the number of direction binsNb to 8.
Similar to [5, 10], we �ne-tune the pre-trained VGG-16
network[42] by classical stochastic gradient descent algo-
rithm with 20 � 105 iterations. The learning rate starts
from 10� 5, and is divided by 10 when training iterations
come up to 10� 105 and 15� 105. We use a weight decay
of 0:000 1 and a momentum of 0:9. For simplicity, we do
not use dropout or batch normalization in our network.
Though the PASCAL VOC 2007 dataset contains 5 011
natural images for training and validation, only 422 im-
ages of them have segmentation annotations. We rely
on random rotations and 
ips to augment the number
of training images, which yields one million images for
training. This CNN model for I-N direction prediction
is implemented with Torch7.

To speed up the object proposal generation, we �rst
extract the top 104 proposals using Edge Boxes for each
image, and then the proposed directional edge-based
objectness score is used to re-rank such proposals. In all
experiments, the corresponding parameters are set by
� th = �= 4; � = 2 ; and Nd = 8. All experiments are con-
ducted on a Linux 64-bit workstation with a 2.0 GHz
8-core CPU, 64G RAM, and one GTX TitanX.

4.3 Comparison with State-of-the-Art
Methods

We have compared the proposed method DEB
with some state-of-the-art methods: Edge Boxes[6] ,
BING [7] , Selective Search[17] , Randomized Prim's
(RP) [19] , MCG [22] , Endres[23] , GoP[26] , Objectness[44] ,
CSVM[45] and LPO[46] on the PASCAL VOC 2007
test dataset. For all compared algorithms, the author-
released implementations with default parameter set-
tings are used.

Some qualitative examples of object proposal gene-
ration compared with Edge Boxes are given in Fig.6.
Some quantitative comparisons are depicted in Ta-
ble 1. DEB signi�cantly outperforms state-of-the-art
algorithms except the running time, which is also on
par with the fastest method. MCG, Selective Search,
and Edge Boxes result in comparable accuracy, but they
need many more proposals to achieve 75% recall than
DEB. Therefore, DEB is more e�cient for object de-
tection task, as many irrelevant proposals are removed
thanks to the proposed directional edge cues.

Fig.7(a) and Fig.7(b) show the comparison based
on detection rate curves when varying the number of

object proposals at IoU of 0:5 and 0:7 respectively. As
depicted in Fig.7, the proposed method achieves com-
petitive or higher detection rate across all quantity of
object proposals. More speci�cally, for 1 000 object pro-
posals, the proposed method achieves a detection rate
97:1% at IoU of 0:5, which is about 1:2% higher than
Edge Boxes. When the IoU is set to 0:7, our method
improves the state-of-the-art result to 81:9%, which is
2:5% higher than that of Edge Boxes. Fig.7(c) illus-
trates the detection rate across a variety of IoU thresh-
olds when the number of extracted object proposals is
set to 1 000. Our DEB achieves the best performances
for IoU from 0:5 to 0:75.

Note that some other state-of-the-art algorithms:
Rathu [34] , LPO [46] , Rantalankila [21] , Endres[23] ,
BING++ [38] use a di�erent detection rate measure
for evaluation. They average the detection rates at the
category level. In order to provide a fair comparison,
we have also evaluated DEB in such a metric as shown
in Table 2. Although DEB does not rank the �rst for a
small number (1 or 10) of extracted object proposals,
it achieves the best results for a reasonable amount of
proposals. Speci�cally, at IoU of 0:5, DEB yields the
superior detection rate of 86:8% and 98:0% given 100
and 1 000 proposals respectively when compared with
all the other methods. For IoU of 0:7, DEB also gets
the superior detection rate of 64:5% and 86:5% for 100
and 1 000 proposals.

We have also compared the proposed method with
Edge Boxes on the PASCAL VOC 2012 validation set
and the MS COCO validation set[43] . Note that the
I-N prediction model used for these two datasets is the
model trained on the PASCAL VOC 2007 dataset. As
shown in Fig.8, the proposed method achieves 81:6%
detection rate at IoU of 0:7 for 1 000 proposals on the
PASCAL VOC 2012 dataset, and is about 2:4% higher
than that of Edge Boxes. For the MS COCO dataset
(shown in Fig.9), the proposed method has a detection
rate of 45:2% at IoU of 0:7 for 1 000 proposals, which
improves Edge Boxes by 3:1%.

A qualitative example of the proposed method on
the PASCAL VOC 2012 validation set is given in Fig.4.
The enhanced edge points (yellow points) cover the ob-
ject boundary, demonstrating that our method has the
ability to distinguish the boundary edge points from
noisy ones. Some more qualitative examples are shown
in Fig.10. By leveraging the enhanced edge points and
two measurements, the proposed method detects more
objects than Edge Boxes.
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(a) (b) (c) (d)

Fig.6. Selected examples of object proposals on the PASCAL V OC 2007 test dataset. (a) and (c) are the results of our method . (b) and
(d) are the results of Edge Boxes. Red bounding boxes denote t he ground truth objects, and green ones are the generated pro posals
that are closest to the corresponding ground truth objects.

4.4 Impact of Parameters and Objectness
Measure Settings

Fig.11 depicts the performance evaluation based on
detection rate curve with respect to four di�erent in-
volved parameters: the enhancement ratio� of reliable
pixels in (3), the threshold of the angle � th assessing
whether a pixel is reliable in (2), the number of spa-
tial divisions Nd in (4), and the adjustable parameter

� used for determining the completeness in (4). As
shown in Fig.11(a), the proposed method has the same
detection rate when � varies from 1:5 to 3. Increasing
� > 3 leads to a slight decreasing of detection rate. This
demonstrates that the impact of parameter� is relative
small in a wide range. Concerning about parameter� th ,
the proposed method obtains the worst detection rate
with � th =

�
8

. A high detection rate is achieved for



Xiang Bai et al.: Directional Edge Boxes: Exploiting Inner Normal Directio n Cues 709

Table 1 . Comparison with Other Object Proposal Methods on the PASCA L VOC 2007 Dataset Based on AUC and the
Number of Required Proposals with Recall Being 25%, 50% and 7 5%, Respectively for IoU = 0 :7

AUC N @25% N @50% N @75% Recall Time (s)

BING [7] 0.20 292 - - 29 0.003
Objectness[44] 0.27 27 - - 39 3.900
Randomized Prim's (RP) [19] 0.35 42 349 3 023 80 0.800
Selective Search[17] 0.40 28 199 1 434 87 10.600
CADM [20] 0.42 18 179 1 100 78 22.600
MCG [22] 0.48 10 81 871 83 18.900
Edge Boxes[6] 0.47 12 108 800 87 0.300
DEB (ours) 0.50 10 72 491 88 0.420

Note: The \recall" column denotes the recall for 5 000 boxes. The best results are in bold.
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Fig.7. Comparisons with state-of-the-art methods on the PA SCAL VOC 2007 dataset based on detection rate curves. (a) Wit h respect
to the number of proposals at IoU = 0 :5. (b) With respect to the number of proposals at IoU = 0 :7. (c) With respect to di�erent IoU
thresholds at 1 000 proposals per image.

Table 2 . Comparison Based on Another Detection Rate Measure on the P ASCAL VOC 2007 Test Dataset
When 1, 10, 100, 1 000 Object Proposals Are Extracted Respect ively

Method Number of Proposals, IoU = 0 :5 Number of Proposals, IoU = 0 :7 Time (s)
1 10 100 1 000 1 10 100 1 000

Rathu [34] 7.0 32.7 64.7 83.5 2.5 15.8 44.7 70.1 3.800
Objectness[35] 17.3 49.5 75.8 92.0 7.4 23.4 37.6 43.1 3.900
CSVM [45] 17.4 33.5 65.1 91.2 5.4 14.8 20.8 27.1 0.060
Selective Search[17] 9.7 37.3 71.5 93.5 4.1 19.7 49.0 80.0 10.600
Randomized Prim's [19] 8.6 35.0 70.4 90.3 3.5 17.3 45.1 73.4 0.800
Endres[23] 20.9 55.2 82.8 90.1 11.5 35 .0 58.0 73.0 11.700
BING [7] 18.2 37.3 73.0 95.2 7.3 16.9 24.5 29.1 0.003
Rantalankila [21] 0.1 0.9 16.2 85.6 0.0 0.4 8.5 67.5 23.700
GoP [26] 2.4 13.8 60.2 94.2 1.3 7.7 35.1 77.8 1.300
Edge Boxes[6] 17.8 45.8 75.4 95.1 9.5 30.9 60.8 85.1 0.300
MCG [22] 18.5 44.2 65.7 86.5 9.4 26.9 49.1 70.1 18.900
LPO [46] 18.5 38.0 75.3 95.3 7.0 18.1 47.2 78.1 1.430
CADM [20] 16.3 37.2 61.5 93.6 7.7 25.0 49.3 80.5 22.600
BING++ [38] 16.7 42.2 76.1 95.3 8.1 21.1 51.0 81.4 0.009
DEB (ours) 16.5 55.4 86 .8 98 .0 9.1 31.8 64.5 86 .5 0.420

� th 2 [
�
4

;
�
2

]. This shows that an appropriate tolerance

for determining the reliable pixels is necessary. For the

impact of Nd depicted in Fig.11(c), the best perfor-

mance is achieved withNd = 8. For a small division

number Nd = 4, the spatial division is too coarse, and

the division is too �ne for a large Nd which is extremely

strict with uncompleted object contours. Both of them

decrease the distinguishability of edges. As shown in
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Fig.10. Selected examples of detected objects in the PASCAL VOC 2012 validation set. Red rectangles are ground truth obj ects, and
green rectangles are the detected bounding boxes. Yellow po ints represent enhanced edge points.
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Fig.11. Impact of di�erent parameters involved in the propo sed method. Detection rate curve with respect to (a) � , (b) � th , (c) Nd ,
and (d) � respectively.

Fig.11, the optimal setting for � is 0:4. To summa-
rize, the detection rate curves in Fig.11 demonstrate
that DEB is relatively robust to the change of involved
parameters.

The impact of the two proposed scoring strategies:
the directivity in Subsection 3.2.2 and the complete-
ness in Subsection 3.2.3, and that of re�nement strate-
gies described in Subsection 3.3 are summarized in Ta-
ble 3. The baseline results are directly generated by
Edge Boxes. As for 1 000 object proposals, the three
strategies obtain 0:8, 1:1, and 0:7 recall improvement,
respectively. At 100 object proposals, these strategies
have more signi�cant recall improvements: 1:4, 2:6 and
0:7 respectively. At 10 object proposals, the scoring
strategy based only on directivity reduces the recall by
2:4. Yet, the �nal result of integrating all strategies is
still better than that of Edge Boxes.

The performance evaluation with respect to di�e-
rent edge detectors on which the proposed method relies
is depicted in Table 4. The proposed method achieves
better performance than Edge Boxes under both di�e-
rent edge detectors: Structure Edge[2] and HED[5] . The

proposed method performs better using Structure Edge
than relying on HED. The same observation also holds
for Edge Boxes. This is because PASCAL VOC 2007
contains many small objects, and HED is more likely
to miss the contours of small objects than Structure
Edge. Another interesting observation is that the im-
provement o�ered by the proposed method when using
Structure Edge as an edge detector is higher than that
of using HED. The main reason for this is that HED
has much fewer false positive contour points than Struc-
ture Edge, which reduces the importance of directivity
measure of the proposed method.

Table 3. Performance Comparisons with Respect to

Di�erent Proposal Strategies

Baseline Dir. Dir.+Com. Dir.+Com.+Ref.

Recall@10 23.3 20.9 25.3 25.8
Recall@100 50.5 51.9 54.5 55.2
Recall@1000 79.3 80.1 81.2 81.9

Note: Dir.: directivity only; Dir.+Com.: directivity + com -
pleteness; Dir.+Com.+Ref.: directivity + completeness + r e-
�nement. The performance measure is the recall at IoU = 0 :7
for 10, 100, and 1 000 object proposals, respectively.
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Table 4. Performance Comparisons at IoU = 0 :7 and 1 000

Proposals Using Di�erent Edge Detectors

Structure Edge HED

Edge Boxes 79.4 79.0

DEB (ours) 81.9 80.4

5 Conclusions

In this paper, we presented a novel representation
named directional edges. The inner normal direction of
each edge pixel is robustly predicted by learning a holis-
tic CNN model. Bene�ting from the directional cues,
the proposed method shows promising improvement in
edge-based object proposal generation. Though this pa-
per only focuses on generating object proposals, we be-
lieve that directional edges can be further utilized in en-
hancing the performances of other relevant tasks such as
object matching using Hough Transform[47] or Cham-
fer matching[48] , shape-based object detection, which
are worthy to be studied in the future.
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