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Abstract Knowledge graph embedding, which maps the entities and relations into low-dimensional vector spaces, has

demonstrated its effectiveness in many tasks such as link prediction and relation extraction. Typical methods include

TransE, TransH, and TransR. All these methods map different relations into the vector space separately and the intrinsic

correlations of these relations are ignored. It is obvious that there exist some correlations among relations because different

relations may connect to a common entity. For example, the triples (Steve Jobs, PlaceOfBrith, California) and (Apple

Inc., Location, California) share the same entity California as their tail entity. We analyze the embedded relation matrices

learned by TransE/TransH/TransR, and find that the correlations of relations do exist and they are showed as low-rank

structure over the embedded relation matrix. It is natural to ask whether we can leverage these correlations to learn

better embeddings for the entities and relations in a knowledge graph. In this paper, we propose to learn the embedded

relation matrix by decomposing it as a product of two low-dimensional matrices, for characterizing the low-rank structure.

The proposed method, called TransCoRe (Translation-Based Method via Modeling the Correlations of Relations), learns

the embeddings of entities and relations with translation-based framework. Experimental results based on the benchmark

datasets of WordNet and Freebase demonstrate that our method outperforms the typical baselines on link prediction and

triple classification tasks.
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1 Introduction

A knowledge graph represents the entities and re-

lations with nodes and edges, respectively. Popu-

lar knowledge graphs include WordNet[1], Freebase[2-3],

YAGO[4], etc., and they are now freely available

on the Internet. A great number of applications

have been advanced by using these knowledge graphs,

such as knowledge graph completion[5-6], document

understanding[7], and digital assistants. However,

knowledge graphs are commonly constructed and vali-

dated by human experts’ efforts based on different rig-

orous symbols and they usually contain millions of ver-

tices and billions of edges modeled as triples of the form

(head entity, relation, tail entity) (denoted as (h, r, t)).

It is difficult and inefficient to handle the applications

over the huge amount of elements for any inference,

query and computation. For example, when using Free-

base for link prediction, we need to deal with 68 million

of vertices and one billion of edges. Meanwhile, to query

a simple entity or relation over the huge amount of ele-

ments in a knowledge graph needs more understandable

and effective query language settings and techniques

than that in a knowledge graph with a small size[8].
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In recent years, knowledge graph embedding technique

has been proposed for representing the entities and re-

lations as latent numerical vectors and hiding the un-

derlying differences of knowledge graphs, while it can

preserve the intrinsic structures of the original graph.

The typical knowledge graph embedding methods in-

clude TransE[9], TransH[10], TransR[11], and so on.

In spite of their success in modeling knowledge

graphs, these methods map different relations into the

vector space separately and the intrinsic correlations

among these different relations are ignored. However,

it seems that there exist correlations among the diffe-

rent relations, because it is a common phenomenon that

different relations connect to a common entity. For ex-

ample, the triples (Steve Jobs, PlaceOfBrith, Califor-

nia) and (Apple Inc., Location, California) share the

same entity California as their tail entity. Statistics on

the dataset of FB15K indicate that 99.13% entities are

directly linked by two or more different relations.

Further analysis based on the embedded relation

matrix, consisting of relation vectors by column, indi-

cates that the correlations do exist and can be modeled

as a low-rank structure upon the embedded relation ma-

trix. To be specific, we first learn an embedded relation

matrix with the existing method of TransE, based on

the dataset of FB15K. Then, we conduct singular value

decomposition (SVD)[12-13] on the matrix. The result

shows that 80% of the energy can be captured by only

about 20%∼30% of the top dimensions. Similar phe-

nomena can also be observed from the matrices learned

by other embedding methods of TransH and TransR.

The results reveal that there exist correlations among

the relations and the correlations are showed as a low-

rank structure upon the embedded relation matrix.

It is natural to ask whether we can leverage the

correlations to learn better embeddings for the enti-

ties and relations in a knowledge graph. In this pa-

per, we propose a novel knowledge graph embedding

method, called TransCoRe (Translation-Based Method

via Modeling the Correlations of Relations), to learn

the relation embeddings by decomposing the embed-

ded relation matrix into two low-dimensional matrices

for characterizing the low-rank structure explicitly. In

this way, the problem of learning the embedded re-

lation matrix is converted into learning the two low-

dimensional matrices, and the correlations of relations

will be captured during training. With the proposed

method, we conduct experiments on the benchmark

datasets of WordNet and Freebase, and the results show

that our new method outperforms the typical methods

including TransE, TransH, and TransR on the tasks of

link prediction and triple classification.

2 Related Work

For the past few years, knowledge graph embed-

ding technique has received considerable attention, as

it can hide the underlying differences of knowledge

graphs by representing both the entities and rela-

tions as low-dimensional vectors in a continuous vec-

tor space. A great many methods for knowledge graph

embedding have been proposed by using this tech-

nique and they can be roughly divided into two major

categories, translation-based and tensor decomposition

based methods.

2.1 Translation-Based Methods

Inspired by the framework introduced in [14],

TransE[9] represents relations as translations in the em-

bedding space and assumes that h+ r = t, if (h, r, t) is

a golden triple (please note that we use the same letter

in boldface to represent their embedding vector). This

indicates that t should be a nearest neighbor of h+ r,

whereas t should be far away from h + r. TransE is

efficient and suitable well for 1-to-1 relations, but it

has problems for n-to-1, 1-to-n and m-to-n relations.

To overcome these problems, TransH[10] models a rela-

tion as a hyperplane together with a translation ope-

ration on it. Each relation is represented by two vec-

tors. One is the norm vector wr of the hyperplane,

and the other is the translation vector dr on the hyper-

plane. The embeddings for head entity h and tail entity

t are projected to the hyperplan of relation r, and the

projected vectors can be obtained h⊥ = h − w
T
r hwr

and t⊥ = t − w
T
r twr. Both TransE and TransH em-

bed the entities and the relations in the same vector

space. In fact, an entity may have different aspects, and

various relations focus on different aspects of entities.

Hence, it is intuitive that some entities should be close

to one another in a semantic space if they are similar,

while they may be far away in other different seman-

tic spaces. To model entities and relations in separate

spaces, TransR[11] is proposed to model entities and re-

lations in distinct spaces (i.e., entity space and multiple

relation spaces) and perform translation in the corre-

sponding relation space. In TransR, for each relation

r, a projection matrix Mr, and an embedding vector

r are set for it. For each triple (h, r, t), entities in the

entity space are first projected into r-relation space to

get hr = hMr and tr = tMr.
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2.2 Tensor Decomposition Based Methods

The category of tensor decomposition based em-

bedding methods are a well developed mathematical

tool for data analysis. Some notable studies belong-

ing to this category proposed in recently years, in-

clude RESCAL[15], TripleRank[16], TRESCAL[17], and

TUCKER[18]. RESCAL is a typical tensor decompo-

sition based method. Compared with other tensor de-

composition methods, the main advantage of RESCAL

is that it can exploit a collective learning effect when ap-

plied to relational data. RESCAL has shown very good

results in various canonical relational learning tasks

such as link predication.

TripleRank is similar to RESCAL, and it applies the

CP (CANDECOMP/PARAFAC)[19] tensor decompo-

sition to resource description framework (RDF) graphs

for faceted browsing. However, in contrast to the tensor

decomposition employed in RESCAL, CP is not capa-

ble of collective learning. TRESCAL can be viewed as

an extension of RESCAL, which tries to encode rules

into RESCAL. However, it focuses solely on a single

rule, i.e., the arguments of a relation should be entities

of certain types. TUCKER decomposition, also known

as high-order singular value decomposition, factorizes a

tensor into a core tensor multiplied by a matrix along

each dimension.

In addition to the above methods, there are also

many other energy-based methods that assign low en-

ergy to the plausible triples existing in a knowledge

graph, employing neural network for learning. For in-

stance, unstructured method[20-21] can be viewed as a

naive version of TransE without considering the diffe-

rences of relations, leading to score function fr(h, t) =

‖h− t‖22. Structured embedding (SE)[22] defines a pair

of relation-specific matrices (Mrh, Mrt) for head and

tail entity, and defines the score function as an L1

distance between the two projected vectors, namely,

fr(h, t) = ‖Mrhh − Mrtt‖l1 . Because SE has two

separate matrices for optimization, it cannot capture

the precise relationships between entities and relations.

Single Matching Energy (SME) model[21] aims to cap-

ture the correlations between entities and relations via

multiple matrix products and Hadamard product. SME

simply represents each relation using a single vector,

which interacts with entity vectors via linear matrix

products, with all relations sharing the same parame-

ters. Latent Factor Model (LFM)[23] encodes the en-

tity as a vector and assigns a matrix for each relation.

LFM incorporates the interaction of the two entity vec-

tors in a simple and effective way by defining a bilinear

score function fr(h, t) = h
T
Mrt. Single Layer Model

(SLM) is a naive baseline of NTN[24] by concatenat-

ing h and t as an input layer to a non-linear hidden

layer. Neural Tensor Network (NTN) extends SLM by

considering the second-order correlations in nonlinear

neural networks and defines an expressive score func-

tion as fr(h, t) = u
T
r f(h

T
Mrt +Mr1h +Mr2t + br).

However, the corresponding high complexity of NTN

may prevent it from efficiently applying on large-scale

knowledge graphs.

Despite the effectiveness of these aforementioned

methods, they ignore the intrinsic relationships of rela-

tions and learn the vector representations for relations

separately. In this paper, we test the hypothesis that

better representations can be obtained by capturing the

correlations of relations during training.

3 Analysis on Correlations of Relations

In this section, we firstly propose to analyze the

correlations among relations via applying SVD to a

learned embedded relation matrix. Specifically, given

an embedded relation matrix R ∈ R
d×Nr learned by a

state-of-the-art method, where Nr is the number of re-

lations and d is the dimension of embedded space. We

perform SVD on matrix R and sort the eigenvalues in

descending order. We calculate the percentages of the

energy being captured when different numbers of top

eigenvalues (dimensions) are kept. Fig.1 illustrates the

percentages of energy w.r.t. the number of dimensions.

In the analysis, three embedded relation matrices are

learned based on FB15K (containing Nr = 1 345 rela-

tions) by the methods of TransE, TransH, and TransR,

respectively. The embedded dimension d is set to 200

when learning these matrices (please note that d < Nr).
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Fig.1. Percentages of energy w.r.t. the number of kept dimen-
sions.
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From the results shown in Fig.1, we can see that

for the embedded relation matrix learned by TransE,

we can capture 80% of the energy with only 46 (23%)

top dimensions (the red curve in Fig.1). If we want to

capture 100% of the energy, we need 100% of the dimen-

sions. The results indicate that there exists a low-rank

structure over the learned embedded relation matrix,

which may result from the correlations of relations.

Similar phenomena can also be observed from the

embedded relation matrices learned by other methods.

For example, based on the learned embedded relations

matrix by TransH and TransR, we only need 25% and

30% of the top dimensions if we want to capture 80% of

the energy in the matrices (green curve and blue curve,

respectively).

In other ways, we also take the Pearson correlation

coefficient (PCC)[25] to demonstrate the existence of

correlations among relations. Firstly, we calculate the

PCCs between each relation pair based on the embed-

ded relation matrix R, and obtain a symmetric matrix

of PCCs denoted as P , where the values of the i-th

row (or column) vector represent the degree of the

correlation between the i-th relation and each of the

relation set, and the diagonal values are always 1.0.

Afterwards, we calculate the percentages of correlated

relations above the given threshold of PCC. Concretely,

for the i-th relation, if any value of the absolute entities

of the i-th row (or column) vector, excepting the i-th

entity, is greater than or equal to the given thresh-

old, the number of the correlated relations will be in-

creased by 1. Finally, we obtain the results illustrated

in Fig.2. From the results we can see that: 1) more than
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Fig.2. Percentages of correlated relations above different thresh-
olds of Pearson correlation coefficient (PCC). PCC which lies in
the intervals [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0] means
the degrees of correlation are very weak, weak, medium, strong
and very strong, respectively.

98% relations are weakly correlated (i.e., PCC > 0.2);

2) about 71% relations have medium correlations (i.e.,

PCC > 0.4); 3) there are 40% relations with strong

correlations (i.e., PCC > 0.6); 4) almost 13% relations

have very strong correlations (i.e., PCC > 0.8).

4 Our Method

Based on the analysis in Section 3, we introduce our

method to characterize the correlations of relations. Let

us firstly introduce some notations. We use the triples

of form (h, r, t), where h and t denote the head en-

tity and the tail entity respectively, and r denotes the

relation from h to t, to model the facts in a know-

ledge graph. The sets of entity (including head and

tail entities) and relation are denoted by E and R re-

spectively, and Ne, Nr represent the size of E and R,

respectively. ∆ represents the set of positive triples

existing in the knowledge graph, and ∆′ represents the

set of negative triples corrupted from positive ones. Let

R = (r1, . . . , ri, . . . , rNr
) denote the embedded relation

matrix, where ri stands for the embedding vector of the

i-th relation r.

4.1 Modeling the Correlations of Relations

As analyzed in Section 3, the correlations of rela-

tions are shown as a low-rank structure over the em-

bedded relation matrix. We propose to learn the rela-

tion matrix R by decomposing it as a product of two

low-dimensional matrices. Let U ∈ R
d×k be the left

matrix consisting of column vectors (u1, . . . ,ui, . . . ,uk)

and V ∈ R
k×Nr be the right matrix consisting of col-

umn vectors (v1, . . . ,vj , . . . ,vNr
), where the dimen-

sion of column vector ui is d, that of vj is k, and k

(0 < k 6 min(d,Nr)) is a tunable parameter that rep-

resents the rank of R. We get that

R = UV .

As illustrated in Fig.3, each column vector r of R

can be written as a linear combination of the column

vectors of matrix U multiplied by the corresponding

vector v of coefficient matrix V . Namely, for each col-

umn vectors ri in R, we have

r1 = Uv1,

r2 = Uv2,

...

rNr
= UvNr

.
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That is to say, the column vectors of U are the ba-

sis of the relation space. Therefore, the problem of

learning relation embeddings is converted into that of

learning the two low-dimensional matrices. In this way,

the embedding vectors of all relations share the same

matrix U , and different relations have different vi for

i = 1, 2, . . . , Nr. In this sense, the matrix U captures

the common information of all relations.

=d

Nr k

k

N

R U V

...

... ... ...

Fig.3. Illustration of the embedded relation matrix decomposed
as a product of two matrices.

4.2 Translation-Based Method TransCoRe

Following the practices in [9], we adopt the

translation-based method for learning the embeddings

of entities and relations. Specifically, to determine the

embeddings of entities, the element values in matrix U

and vector v, we construct the score function fr(h, t)

for each triple (h, r, t):

fr(h, t) = ‖h+Uv − t‖22, (1)

where h, t are the embeddings for the head and tail

entities, respectively. Intuitively, (1) implies that Uv

is a translation from h to t since fr(h, t) = 0, when

h+Uv = t.

To further determine the parameters in f(h, r, t), we

minimize the following margin-based ranking loss func-

tion

L =
∑

(h,r,t)∈∆

∑

(h′,r,t′)∈∆′

[fr(h, t) + γ − fr(h
′, t′)]+, (2)

where [·]+ = max(0, ·) is the hinge function, γ is the

margin separating the positive triples from the nega-

tive ones, and

∆′ = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E},

is the set of random sampled negative triples. In prac-

tice, the set of negative triples ∆′ is constructed from

correct triple (h, r, t) by replacing the head entity h

and/or the tail entity t with h′ and/or t′. We follow

the practice in [10] and set different probabilities for

replacing the head and the tail entity depending on

the mapping property of the relation. In our experi-

ments, we adopt both of the popularly used strategies of

“unif” and “bern” to construct negative labels. “unif”

is the traditional sampling method that replaces h or t

with identical probabilities to obtain a corrupted triple,

and “bern” is the new method proposed in [10] which

replaces h or t with different probabilities. Addition-

ally, we enforce the following constraints in our training:

‖h‖2 6 1, ‖t‖2 6 1, ‖u‖2 = 1, where u is the column

vector of U .

In our experiments, all embeddings for entities and

relations are randomly initialized from U(− 6√
d
, 6√

d
) as

in [9] and jointly learned via minimizing the loss func-

tion (2) during training. Moreover, the stochastic gra-

dient descent (SGD) method is used during the opti-

mization process.

4.3 Complexity Analysis

The space complexity of TrnasCoRe is O(Nem +

Nrk + nk), where m is the dimension of entity embed-

ding, n is the dimension of relation embedding, Nem is

used for storing the embeddings of entities, Nrk is used

for storing the linearly independent vectors, and nk is

used for storing the coefficient matrix.

We simply suppose the time complexity of operation

‖h+ r − t‖ is a unit as in [26]. For our method, to get

each element of the relation embedding vector rij needs

k operations. Therefore, the time complexity is

T (Nt) = Nt + kNt = O((1 + k)Nt),

where Nt is the number of triples in a knowledge graph.

Table 1 lists the complexities of several methods de-

scribed in related work. In practice, parameter k is not

greater than nNr/(n+Nr) for k, n,Nr are positive in-

tegers and Nr > 2, and thus our method has the lowest

space complexity. From the last column of Table 1, we

could see that the time complexity of our method is

slightly higher than those of TransE and Unstructured

which are O(Nt), but lower than those of other base-

lines.

5 Experiments and Analysis

In order to evaluate against existing methods, we

conduct experiments on two tasks: link prediction[22]

and triple classification[9-11]. Next, we show the experi-

mental results and their analysis.
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Table 1. Complexity Analysis

Method Space Complexity Time Complexity

Unstructured O(Nem) O(Nt)

SE O(Nem+ 2Nrn
2)(m = n) O(2m2Nt)

SME(linear) O(Nem+Nrn+ 4ml + 4l)(m = n) O(4mlNt)

SME(bilinear) O(Nem+Nrn+ 4mls+ 4l)(m = n) O(4mlsNt)

LFM O(Nem+Nrn
2)(m = n) O(m(1 +m)Nt)

SLM O(Nem+Nr(2l + 2ln))(m = n) O(l(2m + 1)Nt)

NTN O(Nem+Nr(n2s+ 2ns+ 2s))(m = n) O((l(2m + 1) +ms(1 +m))Nt)

TransE O(Nem+Nrn)(m = n) O(Nt)

TransH O(Nem+ 2Nrn)(m = n) O(2mNt)

TransR O(Nem+Nr(1 +m)n) O(2mnNt)

Proposed TransCoRe O(Nem+Nrk + nk)(m = n) O((1 + k)Nt)

Note: Nt denotes the number of triples in a knowledge graph. m is the dimension of the entity embedding vector and n is the dimension
of the relation embedding vector. l is the number of hidden nodes of a neural network and s is the slice number of a tensor.

5.1 Datasets

The link prediction and triple classification tasks

are implemented on two typical knowledge graphs:

WordNet[1] and Freebase[3]. WordNet is a large lexical

knowledge graph which provides semantic knowledge

of words. In this paper, we employ two subsets from

WordNet: WN18 used in [9] and WN11 used in [24].

Freebase is a large collaborative knowledge graph con-

sisting of a large number of world facts, and we also

employ two subsets from Freebase: FB15K used in [9]

and FB13 used in [24]. The statistics of these datasets

are listed in Table 2.

Table 2. Statistics of Datasets

Dataset #Relation #Entity #Train #Valid #Test

WN18 18 40 943 141 442 5 000 5 000

FB15K 1 345 14 951 483 142 50 000 59 071

WN11 11 38 696 112 581 2 609 10 544

FB13 13 75 043 316 232 5 908 23 733

Note: “#” stands for “the number of”.

5.2 Link Prediction

The goal of link prediction is to complete a triple

(h, r, t) by predicting the missing entity h or t when

given (r, t) or (h, r). Similar to [9, 22], we conduct

the link prediction task on the same two datasets, i.e.,

WN18 and FB15K used in [9].

We adopt the identical evaluation methodology

Hits@10 used in [9]. In the testing phase, for each test

triple (h, r, t), we remove the head or tail entity and

then replace it with the entity in the knowledge graph

to construct a corrupted triple (h′, r, t) or (h, r, t′). By

ranking the entities in ascending order with respect to

the dissimilarity scores calculated by the score func-

tion, we get the rank of the original triple in the sorted

list. We report the proportion of correct entities ranked

in the top 10, denoted as Hits@10. For the corrupted

triples may also exist in the knowledge graphs, they

should be regarded as correct triples. Therefore, we fil-

ter out the corrupted triples included in the train and

valid datasets before ranking. This operation is denoted

as “filter”. Otherwise, it is denoted as “raw”. It is clear

that a good predictor should achieve a higher Hits@10.

Since the datasets we used are the same with our

baselines (shown in Table 3) on this task, we directly

compare their results reported in [9-11] with our re-

sults. During the training of our proposed method, we

select learning rate λ in {0.1, 0.05, 0.001, 0.000 5}, the

margin γ in {1.0, 2.0, 4.0}, the embedding dimension of

entities and relations d in {20, 50, 100, 200}, the rank k

Table 3. Evaluation Results on Link Prediction

Method WN18 FB15K

Hits@10(%) Hits@10(%)

Raw Filter Raw Filter

Unstructured 35.3 8.2 4.5 6.3

RESCAL 37.2 52.8 28.4 44.1

SE 68.5 80.5 28.8 39.8

SME(linear) 65.1 74.1 30.7 40.8

SME(bilinear) 54.7 61.3 31.3 41.3

LFM 71.4 81.6 26.0 33.1

TransE 75.4 89.2 34.9 47.1

TransH(unif) 75.4 86.7 42.5 58.5

TransH(bern) 73.0 82.3 45.7 64.4

TransR(unif) 78.3 91.7 43.8 65.5

TransR(bern) 79.8 92.0 48.2 68.7

PTransE(ADD, 2-step) - - 51.8 83.4

TransCoRe(unif) 81.0 94.6 51.1 80.5

TransCoRe(bern) 81.5 94.6 53.6 76.7
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is an integer that belongs to the interval (0,min(d,Nr)],

and the batch size B in {20, 120, 480, 1 440, 4 800}. The

optimal parameters are determined on the validation

set. 1) Under the “unif” setting, the optimal configura-

tion is: λ = 0.001, d = 100, k = 10, B = 1 440, γ = 2.0

and taking L1 as dissimilarity on WN18; λ = 0.000 5,

d = 200, k = 85, B = 1 440, γ = 1.0 and taking L1

as dissimilarity on FB15K. 2) Under the “bern” set-

ting, the optimal configuration is: λ = 0.001, d = 100,

k = 9, B = 1 440, γ = 1.0 and taking L1 as dissimila-

rity on WN18; λ = 0.000 5, d = 200, k = 45, B = 1 440,

γ = 1.0 and taking L1 as dissimilarity on FB15K. For

both datasets, we traverse all the training triples for

500 rounds.

Experimental results on both WN18 and FK15K

are shown in Table 3. From the table we can conclude

the followings. 1) On WN18, TransCoRe is effective

and achieves the best performance compared with the

baselines. Specifically, our method improves the ac-

curacy of Hits@10 on “filter” by 5.4% compared with

TransE, 2.9%(unif)/2.6%(bern), and achieves 94.6% on

both “unif” and “bern” compared with TransR. 2) On

FB15K, the performance of our proposed method is the

best on “raw”. Meanwhile, our method improves the

accuracy of Hits@10 on “filter” by 15% on “unif” com-

pared with TransR. Yet the method of PTransE[27] out-

performs our method on “filter” for considering the re-

lation paths that can provide a good supplement for

knowledge graph embedding. Therefore, one piece of

possible future work is to incorporate the relation paths

in our proposed method just as PTransE.

For the comparison of Hits@10 of different kinds of

relations, Table 4 shows the detailed results for rela-

tions with different mapping properties 1○ on FB15K.

From Table 4, we can see that TransCoRe is superior

to the baselines.

5.3 Triple Classification

Triple classification is to predict whether a given

triple (h, r, t) is positive or negative, which is a binary

classification task on triples. We use three datasets

in this task. The two datasets of WN11 and FB13

are released by [24]. Both datasets contain a small

number of relations and we also choose the dataset of

FB15K which contains more relations. Following the

same methodology used in NTN, the evaluation of clas-

sification needs negative labels. The datasets of WN11

and FB13 already contain negative triples released by

[24], and each corrupted triple is built from a golden

triple. For FB15K, we follow the same way used in

[24] to generate negative labels for WN11 and FB13.

The performance of triple classification is evaluated as

follows. For a triple (h, r, t), if the dissimilarity score

obtained by fr is less than a relation-specific threshold,

then the triple is classified to be positive, and negative

otherwise. The relation-specific threshold σr is deter-

mined by maximizing the classification accuracy on the

validation dataset.

We directly use the experimental results of several

baselines reported in [9-10, 24] since they use the same

datasets of WN11 and FB13 on this task. As mentioned

in [11], for a fair comparison, all reported results are

without combination with word embedding. For the

dataset of FB15K is built by ourselves, we use the code

released by [24] for NTN and [11] for TransE, TransH

and TransR to evaluate on FB15K.

Table 4. Evaluation Results on FB15K by Mapping Properties of Relations (%)

Method Predicting Head (Hits@10) Predicting Tail (Hits@10)

1-to-1 1-to-n n-to-1 m-to-n 1-to-1 1-to-n n-to-1 m-to-n

Unstructured 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6

SE 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME(linear) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME(bilinear) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH(unif) 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8

TransH(bern) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

TransR(unif) 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

TransR(bern) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 71.1

TransCoRe(unif) 84.5 82.9 65.7 84.7 85.4 56.0 83.9 82.4

TransCoRe(bern) 87.6 94.3 51.7 80.6 88.1 39.3 94.7 77.4

1○Mapping properties of relations follows the same rules in [9].
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For TransCoRe, we select learning rate λ in

{0.01, 0.05, 0.001, 0.005}, the margin γ in {1.0, 2.0, 4.0},

the embedding dimension of entities and relations d in

{20, 50, 100, 200}, and the rank k is an integer that be-

longs to the interval (0,min(d,Nr)], and the batch size

B in {20, 120, 480, 1 440, 4 800}. The best configuration

is determined according to the accuracy in validation

dataset. 1) Under the “unif” setting, the optimal con-

figuration is: λ = 0.01, γ = 4.0, d = 20, k = 9, B = 480

and taking L1 as dissimilarity on WN11; λ = 0.005,

γ = 1.0, d = 100, k = 10, B = 480 and taking L1

as dissimilarity on FB13. 2) Under the “bern” set-

ting, the optimal configuration is: λ = 0.05, γ = 4.0,

d = 20, k = 10, B = 480 and taking L1 as dissimila-

rity on WN11; λ = 0.001, γ = 2.0, d = 100, k = 10,

B = 480 and taking L1 as dissimilarity on FB13. For

both datasets, we also traverse all the training triples

for 500 rounds.

Experimental results of triple classification are

shown in Table 5. On WN11, the results show that

our method achieves a comparable performance with

TransR and outperforms all the other baseline meth-

ods. This is because the category number of relations

is small and the relationships among relations are weak

on dataset WN11. On FB13, although the accuracy of

TransCoRe is improved greatly than those of TransE,

TransH and TransR, it still has almost two percen-

tage points less than the most expressive model NTN.

On the larger dataset of FB15K, 1 345 relations and

99.13% entities are directly linked by two or more dis-

tinct relations indicating the correlations among rela-

tions are much stronger. Results also show that TransE,

TransH and TransR are much better than NTN, while

TransCoRe performs the best.

Table 5. Evaluation Results of Triple Classification (%)

Method WN11 FB13 FB15K

SE 53.0 75.2 -

SME(linear) 70.0 63.7 -

SLM 69.9 85.3 -

LFM 73.8 84.3 -

NTN 70.4 87.1 67.3

TransE(unif) 75.6 70.9 79.5

TransE(bern) 75.9 81.5 80.1

TransH(unif) 77.7 76.5 81.8

TransH(bern) 78.8 83.3 81.7

TransR(unif) 85.5 74.7 83.5

TransR(bern) 85.9 82.5 83.6

TransCoRe(unif) 86.1 76.0 87.9

TransCoRe(bern) 85.5 85.8 88.2

5.4 Discussions on the Correlations of

Relations

In order to illustrate the effectiveness of correlations,

we analyze the results for each relation on the task of

link prediction on WN18 in detail. We plot the distri-

bution of triples related to different relations as shown

in Fig.4. It shows that the numbers of related triples

vary sharply with relations. Specifically, the number

of triples related to hyponym is 34 832, while only 903

for synset domain region of. This phenomenon indi-

cates that the triples for each relation are unevenly dis-
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Fig.4. Triple distribution over relations.
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tributed in the training data. Intuitively, the relation

with sufficient triples will be learned better, and the

performance on these relations may be better than that

with limited triples on link prediction task.

We analyze the accuracies for each relation on the

link prediction task by using TransE, TransH, TransR

and TransCoRe, respectively. From the results shown

in Fig.5, we can see that: 1) on the whole, the ac-

curacies for each relation are increasing by the meth-

ods TransE, TransH, TransR and TransCoRe; 2) for

each method, the accuracies for different relations vary

sharply. In particular, under the “unif” case, the ac-

curacies on TransE are fluctuated ranging from 61.6%

to 100% (see Fig.5(a)). The similar phenomena can be

observed when using the methods TransH and TransR.

TransCoRe achieves the accuracies ranging from 83.4%

to 100% in Fig.5(a) and the gap between the maximum

accuracy and the minimum accuracy is narrower than

that of the baselines. Under the “bern” case, similar

findings can be observed in Fig.5(b).

An obvious reason for these phenomena is that the

triples for each relation are unevenly distributed in the

training data. For these baselines, the embeddings

of different relations are learned separately. The em-

beddings for relations with adequate triples would be

learned well, whereas for those with few triples would

not. In our method, this issue can be addressed by

leveraging the correlations of relations, for the learning

process of each relation embedding is associated with

the same matrix U which captures the common infor-

mation of all relations. As a result, the relations with

few triples could share the common information with

other relations and better embeddings can be learned

during training.

For further investigation, we continue to conduct

experiments on part of training data which has few
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Fig.5. Comparisons on the results for each relation on link prediction under the settings of (a) “unif” and (b) “bern”.
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examples. For simplicity and without loss of genera-

lity, we choose the dataset WN18 and randomly extract

10%∼100% (stepped by 10%) triples from it as our ex-

perimental data. Afterwards, we use the code released

by [11] to evaluate the methods of TransE, TransH and

TransR on these datasets. For a fair comparison, all of

the baseline methods and our method do not use pre-

trained embeddings. The results are shown in Fig.6

with the configuration: λ = 0.001, γ = 1, d = 80,

B = 480, and the rank k is set to 11 in our proposed

method.
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Fig.6. Results on link prediction by using 10%∼100% triples of
WN18 under the settings of (a) “unif” and (b) “bern”, respec-
tively.

From Fig.6, we observe that our method consis-

tently and significantly outperforms these baselines on

all datasets under the settings of both “unif” and

“bern”. For instance, on the dataset containing 50%

triples of WN18, our method surpasses TransE, TransH,

and TransR on the prediction accuracy by 2.7%, 6.3%

and 16.9% respectively. The main reason is that our

method can capture the common information of all

relations to learn better embeddings for the relations

with few triples during training. On the contrary, these

baselines learn embeddings for relations separately and

would not get better embeddings for the relations with-

out enough training data. In addition, an amazing find

can be seen from the results is that TransR performs

the worst, and the performance of TransE is better than

that of both TransH and TransR. One reason is that no

pre-trained embeddings are used to initialize the vec-

tors of TransR. Moreover, the complexity of TransR is

higher than that of TransE and TransH, which means

that more corpora are needed for training.

6 Conclusions

In this paper, we firstly analyzed the embedded re-

lation matrices learned by the typical baselines via ap-

plying SVD on them. Analysis results indicated that

the correlations do exist among relations and they were

shown as low-rank structure over the relation embed-

ding vectors. Then, based on the analysis, we proposed

a novel knowledge graph embedding method to learn

better embeddings for entities and relations by captur-

ing these correlations. Furthermore, extensive experi-

ments conducted on the standard benchmark datasets

of WordNet and Freebase demonstrated that our pro-

posed method outperforms the typical baselines on the

tasks of link prediction and triple classification. Fi-

nally, we investigated the effectiveness of correlations

on the results of link prediction on WN18 in detail and

the results proved that our proposed method can solve

the unevenly distributed issues of triples and keep the

improvements in the case of having few training data.

For future work, it might be interesting to apply the

knowledge graph embedding technique to other impor-

tant scenarios, e.g., text classification, document clus-

tering, semantic question answering. For instance, it is

worth leveraging knowledge graph for better represen-

tation of documents or texts.
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