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Abstract In traditional crowdsourcing, workers are expected to provide independent answers to tasks so as to ensure the

diversity of answers. However, recent studies show that the crowd is not a collection of independent workers, but instead

that workers communicate and collaborate with each other. To pursue more rewards with little effort, some workers may

collude to provide repeated answers, which will damage the quality of the aggregated results. Nonetheless, there are few

efforts considering the negative impact of collusion on result inference in crowdsourcing. In this paper, we are specially

concerned with the Collusion-Proof result inference problem for general crowdsourcing tasks in public platforms. To that

end, we design a metric, the worker performance change rate, to identify the colluded answers by computing the difference of

the mean worker performance before and after removing the repeated answers. Then we incorporate the collusion detection

result into existing result inference methods to guarantee the quality of the aggregated results even with the occurrence of

collusion behaviors. With real-world and synthetic datasets, we conducted an extensive set of evaluations of our approach.

The experimental results demonstrate the superiority of our approach in comparison with the state-of-the-art methods.
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1 Introduction

Crowdsourcing aims at eliciting human intelligence

from the crowd to accomplish tasks that are com-

putationally expensive or even hardly solvable for

computers[1-2]. Its success has been witnessed in di-

verse applications, ranging from simple tasks, e.g., im-

age labeling[3], sentiment analysis[4], to complex tasks,

e.g., handwriting recognition[5-6], video description[7],

translation[8], and text editing[9].

To complete some crowdsourcing tasks, especially

complex tasks[10-11], workers are increasingly seeking

to collaborate with each other. Recent studies show

that there usually exist hidden collaborative networks

(CN)[12-13] among workers on a crowdsourcing platform

during task processing. Although most existing crowd-

sourcing platforms do not explicitly support collabo-

ration, workers can communicate with each other via

online social networks or even in person[14]. The mo-

tivations behind the collaboration among workers can

be two-fold. On one hand, some tasks are rather diffi-

cult; thus workers need the help from each other. On

the other hand, workers seek to obtain more monetary

rewards with little effort. Particularly, inspired by the

second motivation, some workers may collude with each

other to provide low-quality answers that are harmful

for the quality of crowdsourcing results. In the follow-

ing, we summarize three types of collusion behaviors in

collaborative crowdsourcing[15].

1) Duplicated Submission. On public crowdsourc-

ing platforms like Amazon Mechanical Turk[16], the re-

ward that a worker can obtain depends on the quality

of his/her work. Thus a group of workers may col-
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laboratively give the same answer to a task based on

the collective intelligence of the group[17]. To guaran-

tee that each member can obtain the reward, the group

members will submit duplicated answers to the tasks

that are processed by the group, which can damage the

result quality due to the reduced diversity of answers.

2) Group Plagiarism. There can be some workers

whose only objective is to earn as many rewards as pos-

sible; thus they are more prone to forming a group of

colluders[18]. When one worker finishes all the tasks,

others simply plagiarize his/her answers. In the worst

case, no workers in the group process the tasks care-

fully, and the members just randomly forge an answer

corresponding to a task.

3) Spam Accounts. Some workers can register mul-

tiple accounts within one crowdsourcing platform, and

then they can submit the same answer to a task for

multiple times with different accounts[19]. This is often

referred to as Sybil attacks, which was first introduced

in distributed systems[20].

All the three kinds of collusion will result in some

repeated answers being submitted, which will lower the

quality of result inference.

For instance, we consider an image labeling task,

in which each worker assigns one label to a picture.

Fig.1(a) illustrates the labels given by six workers for

a picture of a butterfly. For three of the six workers,

two of them plagiarized the answer of the third one,
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Fig.1. Two image labeling tasks. (a) With colluded answers.
(b) Without colluded answers.

and then these three workers submitted the incorrect

label Leaf. For the other three workers, two of them

reported the correct label Butterfly, and the other one

gave the label Bird. The voting algorithm consequently

infers the final answer as Leaf, and then there is no

chance to acquire the correct label Butterfly. Further-

more, it is easy to see that removing the two duplicated

answers, Leaf, will yield the correct result. However,

not all the repeated answers are generated by collu-

sion behaviors. When tasks are easy to be handled or

workers are with sufficient expertise, some of the labels

submitted by independent workers are also likely to be

correct and naturally the same as each other. For in-

stance, Fig.1(b) illustrates the labels given by six inde-

pendent workers for a picture of a hummingbird. Four

workers reported the label Hummingbird. The labels

Bee and Leaf are submitted by the other two work-

ers respectively. If the three labels of Hummingbird

are removed, the correct label Hummingbird cannot be

obtained with the voting algorithm. Thus, determin-

ing whether the repeated answers given by workers are

generated from collaboration or collusion is critical to

the result inference in crowdsourcing.

There have been some efforts[21-23] concerning the

collusion phenomenon in various domains. For in-

stance, [21] studies the collaboration of bidders in all-

pay auctions, but the authors only considered the col-

lusion behaviors in the perspective of socio-economic.

Literature [22] provides a detection method by comput-

ing the pairwise-similarity in the face of the collusion in

the e-commerce platforms; however, the method is only

limited to rating tasks. The work [23] is specially tar-

geted at spacial crowdsourcing for data collection. The

authors developed a statistical framework for collusion

detection according to the spacial feature of datasets.

However, the datasets from universal platforms (e.g.,

AMT or Crowdflower) do not contain this special fea-

ture. Thus, this method cannot be applied to tasks

in universal platforms. In universal platforms, the hot

spot is objectively grounded tasks, that is, the general

tasks, such as single choice or sentiment analysis[1,24-25].

Nonetheless, no work has been seen to provide a solu-

tion to address the result inference issue for general

tasks in crowdsourcing with collusion risks.

In this paper, we are concerned with obtaining high-

quality results for general tasks even with the exis-

tence of collusion behaviors in potentially collabora-

tive crowdsourcing. There are two major challenges

to tackle the problem. First, it is challenging to detect

the collusion behaviors. The collaboration of workers
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that take place on today’s crowdsourcing platforms can-

not be observed directly, and the only possible means

is to analyze the repeated answers submitted by work-

ers. However, according to our preliminary analysis

above, repeated answers do not necessarily imply collu-

sion behaviors. Second, the mixing of collaborative an-

swers and colluded answers will aggravate the difficulty

of improving the quality of result inference in crowd-

sourcing. To address these two challenges, we study

two issues in this paper, i.e., collusion detection and

Collusion-Proof result inference. The former is mainly

responsible for detecting the collusion behaviors by ob-

serving the result repetition and filtering out the re-

peated results introduced by collusive behaviors. The

latter aims at achieving high-quality aggregated results

using the output of collusion detection.

Specifically, in this paper, we introduce the worker

performance change rate to measure the impact of

the repeated answers on the quality of result infer-

ence. Then we develop a collusion detection mecha-

nism named Collusion-Proof to identify answers gene-

rated from collusion behaviors. Generally speaking, the

result inference methods fall into three categories: vot-

ing based methods, e.g., majority voting (MV)[26-27],

worker ability based methods, e.g., Dawid and Skene

model (DS)[28] and homogeneous Dawid and Skene

model (HDS)[29-30], and task difficulty and worker abi-

lity based methods, e.g., generative model of labels,

abilities, and difficulties (GLAD)[31]. By incorporat-

ing the results of collusion detection into majority vot-

ing (MV)[26-27], Dawid and Skene model (DS)[28], ho-

mogeneous Dawid and Skene model (HDS)[29-30], and

generative model of labels, abilities, and difficulties

(GLAD)[31], we propose C-MV, C-DS, C-HDS, and C-

GLAD respectively for result inference in potentially

collaborative crowdsourcing. To summarize, we make

the following contributions.

1) We introduce a novel method to detect the col-

lusion behaviors by computing the worker performance

change rate caused by the repeated answers.

2) We design four result inference approaches for

guaranteeing the quality of crowdsourcing results even

in the case of collusion. To the best of our knowledge,

this is the first attempt to provide a solution to the

result inference in the consideration of the collusion

among workers for general tasks.

3) We have conducted a set of experiments on both

synthetic and real datasets to demonstrate the effective-

ness and advantages of our approaches in comparison

with the-state-of-the-art result inference approaches.

The remainder of this paper is organized as follows.

Section 2 discusses related work. We formalize the stu-

died problem in Section 3. Section 4 describes the over-

all workflow of our approach. We introduce the collu-

sion detection mechanism and the four result inference

methods in Section 5. Section 6 presents the experi-

mental setup and results. We then discuss the open

issues of this work in Section 7 and make conclusions

in Section 8.

2 Related Work

Quality control is one of the core issues in crowd-

sourcing. Many studies on quality control mainly

concern task design and result inference[1-2]. There

are numerous result inference methods proposed to

obtain as high-quality aggregated results as possible

given the possibly noisy answers from crowd work-

ers, for instance, majority voting[26], Dawid and Skene

model[28], homogeneous Dawid and Skene model[29-30]

and generative model of labels, abilities, and difficulties

(GLAD)[31]. These methods are designed for aggregat-

ing answers from independent workers without the con-

sideration of collaboration among workers and thus are

not effective for the crowdsourcing tasks with colluders.

With the development of crowdsourcing, increas-

ingly more studies begin to leverage the collabora-

tion of workers to improve the quality of crowdsourc-

ing, particularly related to complex tasks, such as text

editing[9-11], software development[32]. In task design,

collaboration can boost the performance of the workers,

thereby improving the quality of task processing[14,33].

Here, workers mainly engage in two types of collabo-

ration. First, workers collaborate to deal with tasks

through multiple stages and/or rounds asynchronously.

Chang et al.[17] designed a system named Revolt which

enables groups of workers to collaboratively label data

through three stages: vote, explain and categorize for

creating high-quality training labels for machine learn-

ing. As early as 2009, Bernstein et al.[9] suggested a

framework for crowdwork that serves to decrease mis-

takes of handwriting recognition by structuring a multi-

round collaboration among workers. Similarly, Ambati

et al.[34] suggested a collaborative workflow model that

would better support crowdwork for translation tasks.

Their approach splits workflow between different sets

of workers. Teevan et al.[35] built the MicroWriter, a

system in which the microtasking and crowd work is

used to support collaborative writing within preexisting

groups. Second, workers interact with each other syn-

chronously via group-based cooperation. Rahman et
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al.[36] studied task assignment optimization in collabo-

rative crowdsourcing for translation. In their work, the

workers were asked to work collaboratively on Google

Docs and edited one another’s translation in order to

create an agreed-upon version. Salehi et al.[14] pre-

sented Huddler, a system that enables the assembly of

familiar crowd groups for creating short advertisements.

These studies improve the quality of crowdsourcing by

boosting the worker performance of task processing.

However, the collaboration among workers can

bring some collusive behaviors. Some litera-

ture[21-23,37-38] illustrates the threat of collusive beha-

viors to crowdsourcing in terms of investigation tasks.

Literature [22] provides a method of collusion detection

in the face of non-adversarial collusion in crowdsourc-

ing; however, the method is only effective for opinion-

based rating tasks. The authors of [23] developed a

statistical framework for collusion detection based on

the spatial location. However, this method cannot be

applied to the tasks of universal platforms since it is

closely related to spatial features such as latitude and

longitude that cannot be acquired in universal crowd-

sourcing platforms. As we have mentioned before, both

of them aim at solving the collusion detection problem

for specific types of crowdsourcing tasks, while gene-

ral tasks are the hot spot in universal crowdsourcing

platforms[1]. Additionally, [21] studies the collabora-

tion of bidders in all-pay auctions, and the authors

considered the collusion behaviors in crowdsourcing

contests. With the consideration of the characters of

collusive behaviors, [37] proposes a collusion resistant

worker selection method which aims at preventing the

selection of colluders in crowd sensing. [38] studies the

problem of distributing such tasks to workers with the

goal of maximizing task privacy even when workers col-

lude.

In summary, different from existing studies, this pa-

per not only concerns detecting collusion behaviors, but

also aims at providing a solution to address the result

inference issue for general tasks in crowdsourcing with

collusion risks.

3 Problem Formulation

In this section, we first introduce the notations used

in the paper as shown in Table 1, and then define the

collusion detection and the Collusion-Proof result infer-

ence problems.

Table 1. Symbols and Descriptions

Symbol Description

T Task set

W Worker set

L Answer set

Lk Repeated set

L−
k

Answer set without the repeated answers in Lk

R Inference result

Rk Inference result of L−
k

Pi Precision of worker i in L

P k
i Precision of worker i in L−

k

lij Answer of task j from worker i

E(P ) Expectation of P

C Number of alternative answers

V ar(P ) Variance of P

WPCRk Worker performance change rate

As for collusion detection, we aim at detecting and

filtering out the collusive answers which have a negative

impact on result inference. In collaborative crowdsourc-

ing, the repeated answers can be categorized into two

groups: collusive and independent. We use b which is

a boolean variable to denote the categories of answers:

b = 1 means collusive answers, while b = 0 means the

independent answers which are not involved with col-

lusion behaviors. The collusive answers are the out-

come of three kinds of behaviors: duplicated submis-

sion, group plagiarism, and spam accounts. Whereas,

not all the repeated answers are generated by collu-

sion behaviors. When tasks are easy to be handled

and workers are of high-expertise, some answers sub-

mitted by independent workers tend to be correct and

naturally the same as one another. First, we introduce

Definition 1.

Definition 1 (Collusion Detection Problem, CDP).

Let T = {tj|j ∈ IT }
1○ be the task set, and W = {wi|i ∈

IW } be the worker set. We denote the answer set as

L = {L1, L2, ..., Ln} where Li ∈ L consists of the an-

swers that worker i reports for T ′ ⊆ T , namely, for

∀wi ∈ W , we get the answer set Li = {lij |j ∈ IT }

from worker i. L′ ⊆ L denotes a collection of repeated

answers. The problem of CDP is to find a function

f : L′ → {0, 1}, which detects collusive answers from a

collection of repeated answers.

When collusive answers are detected and filtered

out, an important problem is to infer the final result

from the multiple unreliable answers as high-quality as

possible. Formally, we define the Collusion-Proof result

inference problem as follows.

1○Note IX is an index set of set X.
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Definition 2 (Collusion-Proof Result Inference

Problem, CRIP). Let T = {tj|j ∈ IT }
2○ be the task set,

W = {wi|i ∈ IW } be the worker set, and Ω = {xc|c ∈

IΩ} be the answer domain set. We denote the answer

set L = {L1, L2, ..., Lm} where Lj ∈ L consists of the

answers that workers report for tj, namely, for ∀tj ∈ T ,

we get the answer set Lj = {lij |i ∈ IW } from workers.

Let G = {g|g : Ω|T |×|W | → Ω|T |} be the universal set

of aggregation algorithms. Then with the well-defined

value function v : G → R which measures the quality of

the algorithms, we can formulate the problem of CRIP

so as to find a function g∗ ∈ G which can obtain the

maximum v(g∗).

4 Overview of the Workflow

In this section, we present the overview of our work-

flow as shown in Fig.2, where task scheduling, collabo-

rative crowdsourcing, and Collusion-Proof result infer-

ence are the three main steps.
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Scheduling

Result 
Aggregation

Answer 
Collection

Final Result

Collusion Detection

Crowdsourcing Platform

Collaborative Crowdsourcing  
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Fig.2. Collusion-Proof crowdsourcing workflow.

Task Scheduling. A requester publishes tasks to a

crowdsourcing platform, e.g., Amazon Mechanical Turk

in which requesters give the corresponding reward to

a worker according to the quality of his/her answers.

Tasks are assigned to workers according to the schedul-

ing policies and user-specified constraints of the plat-

form.

Collaborative Crowdsourcing. In practice, some

crowdsourcing tasks can be processed collaboratively

by a group of workers. Workers may collude with each

other behind the scenes. For example, via online fo-

rums, a worker plagiarizes others who also do the same

crowdsourcing work. After task processing, we collect

answers and eliminate some noisy answers, e.g., some

answers are apparently irrelevant to the picture in an

image labeling task.

Collusion-Proof Result Inference. This step involves

collusion detection and result aggregation. After col-

lecting all the labels from workers, we use a collusion

detection mechanism to detect the collusion behaviors,

and then filter out the repeated answers generated by

colluders. After the result filtering, we employ our re-

sult inference methods to infer the final result of each

task and submit them to the requester.

Different from the general crowdsourcing workflow,

the crowd in our workflow is not viewed as a collection

of independent workers, instead, workers may collude

with each other. In addition, we develop a collusion

detection mechanism to detect the collusive behaviors

of workers, and then employ our result inference meth-

ods to infer the high-quality result even in the case of

collusion.

5 Collusion-Proof Result Inference

This section studies the CDP problem given by

Definition 1 and the CRIP problem given by Defini-

tion 2. We mainly present Collusion-Proof to detect

collusive behaviors, and then we develop C-MV, C-DS,

C-HDS, and C-GLAD, which can filter out the repeated

answers generated by the collusion behaviors and ag-

gregate multiple unreliable answers to a credible one.

First, in Subsection 5.1, we study the relationship be-

tween the occurrence probability of repeated answers

and the ability of workers in collaborative crowdsourc-

ing. Second, we present a method named Collusion-

Proof to detect the collusion behaviors among workers

by introducing the worker performance change rate in

Subsection 5.2. Third, by incorporating detection re-

sults into MV, DS, HDS, and GLAD, we design C-MV,

C-DS, C-HDS, and C-GLAD for guaranteeing the qua-

lity of crowdsourcing results in Subsection 5.3.

5.1 Analysis of Repeated Answers in

Collaborative Crowdsourcing

The performance of workers on tasks is closely re-

lated to the answer set submitted by workers. To iden-

tify the repeated answers to be either collusive or inde-

pendent, we start with studying the ability of indepen-

dent workers on a repeated answer set.

We assume the tasks are with C classes. Given the

answer set L = {L1, L2, ..., Ln}, where Li ∈ L consists

of the answers that worker i reports for T ′ ⊆ T, for

∀wi ∈ W , we get the answer set Li = {lij |j ∈ IT } from

worker i. Let ai be the ability of worker i.

2○Note IX is an index set of set X.
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Let zj be the ground truth of task j, and then if

worker i reports a correct label for task j, according

to the homogeneous Dawid and Skene model[29], the

probability that label lij submitted by worker i for task

j can be given as follows.

P (lij |zj, ai) =







ai, if lij = zj ,
1− ai

C − 1
, otherwise.

(1)

Here, the stronger the ability of a worker, the greater

the probability of correctly completing task. lij = zj

means that the worker submits a correct answer, while

lij 6= zj means that the worker submits an incorrect an-

swer. In this case, each worker’s ability is not changing

along with different tasks.

We assume the results submitted by workers con-

tain no collusive repeated answers, i.e., all workers in

W = {wi|i ∈ IW } independently perform tasks. We

assume that there are N workers in the worker set and

M tasks in the task set. The worker ability is assumed

as at least 0.5. When a worker’s ability is 0.5, this

means that the probability that his/her answer is true

is 0.5. This is a common assumption. To the best of

our knowledge, most result inference methods can be

viewed as the variants of majority voting. Literature

[26] suggests that the result quality after result infer-

ence is lower than that of the answer from the indi-

vidual worker when the worker ability is below 0.5. In

this case, the result inference methods based on ma-

jority voting will make no sense. With (1), we present

the following equation to formulate the relationship be-

tween the occurrence probability of repeated answers

and the ability of workers. We can give the probability

that r workers of ability ai report repeated answers for

M tasks.

Pr(M,C, ai) = (ari +
(1− ai)

r

(C − 1)r−1
)M .

Fig.3 plots Pr with varying worker ability when there

are 10 tasks and the number of alternative answers C

is 3. In the theoretical analysis, we can observe that

the occurrence probability of the repeated answer set

submitted by independent workers increases with the

worker ability. We consider two extreme situations.

When the worker ability is 0.5 and r = 2, the occurrence

probability of repeated answers is 1.3× 10−12 which is

a rather small value. This implies that the low-quality

independent workers can hardly generate repeated an-

swers. In this case, repeated answers are very likely to

be from colluders. Whereas when the worker ability is

1, the occurrence probability of repeated answers is 1.

In this case, repeated answers are all from independent

answers.

0.5 0.6

Worker Ability

O
c
c
u
rr

e
n
c
e
 P

ro
b
a
b
il
it
y

0.7

1.0

0.8

0.6

0.4

0.2

0.0

r/2
r/3
r/4

Fig.3. Occurrence probability of repeated answers with varying
worker ability.

Thus we can identify collusion behaviors via analyz-

ing repeated answers according to the worker ability,

and then remove collusive answers. For instance, Fig.4

presents the answers submitted by five workers for 10

tasks, and each worker’s ability is 0.6. With MV, the

aggregated result accuracy we can achieve is 0.6. We

can also observe that removing some repeated answers

from worker w1 to worker w3 will improve the accuracy

by 0.2.

A C A B B B C C A A 

A C A B B B C C A A 

A C A B B B C C A A 

B B B A B B A A B C 

A C B A A A A A B C 
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A B C Label A Label B Label C 
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Fig.4. Answers submitted by low-ability workers.

After the analysis of repeated answers, we learn that

the stronger the ability of workers, the greater the oc-

currence probability of repeated answers. When work-

ers are of low ability, the repeated answers are very

likely to be collusive. When workers have high quality,

most answers are correct and repeated. Even if some of

them are collusive, related studies[26,39] have suggested

that the impact of repeated answers on result inference

is little. Thus, the worker ability inferred by the ground

truth is an important factor to detect collusion. Actu-

ally, the ground truth is generally unknown. Therefore,
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we will propose a method which can detect collusion

behaviors without the ground truth.

5.2 Collusion Detection

In this subsection, we study the CDP problem given

by Definition 1, and then introduce a metric, the worker

performance change rate to develop a method named

Collusion-Proof with the purpose of collusion detection.

Many studies[26,39] suggested that the ability of

most workers in the crowd can be roughly considered

equally. As discussed above, although there is no col-

lusion, workers are much likely to provide repeated an-

swers close to the correct answer when each worker pos-

sesses a good performance on the work, i.e., workers are

of high ability. Sheng et al.[26] suggested that the per-

formance of a collection of independent workers on a

task set does not fluctuate too much when the worker

ability is great. Since an individual worker performs

pretty well and his/her answer set is very close to the

aggregated result. In this case, it is clear that task pro-

cessing with multiple workers is dispensable and remov-

ing some answers almost does not affect the closeness of

the answers to aggregated result. That is to say, when

some answers are removed in this case and the close-

ness of the answers to aggregated result varies little, the

answers are very likely to be normal. Even if some an-

swers are provided by high-quality collusive workers, it

does not affect the quality of aggregated answers. Thus

there is no need to filter out the consensus of the crowd

even if there exist collusive workers. Whereas, when the

closeness of answers to aggregated result changes obvi-

ously after removing some repeated answers, this means

that workers are of low ability. In this case, these work-

ers are much likely to be collusive. Consequently, we

introduce the performance change rate related to the

closeness of the answers to aggregated result.

Given answers L = {L1, ...,Lk, ...,Ln′}, where

Lk = (Lk1
, ..., Lki

, ..., Lk
n′′

) denotes the repeated an-

swers from worker k1 to worker kn′′ for task set T and

Lki
denotes the answers submitted by worker ki. Note

that kn′′ = 1 means Lk is generated by a single worker.

We can get aggregated answer set R corresponding to

L with the inference methods as follows.

R = aggr method(L,W, T ), (2)

whereW = wi|i ∈ IW is the worker set, T = tj |j ∈ IT is

the task set, and aggre method(·) is a universal formula

for aggregation methods, such as majority voting[26],

Dawid and Skene model[28], homogeneous Dawid and

Skene model[29-30], and GLAD[31]. After removing the

repeated answers of Lk, we can obtain an answer set

L−
k . As for L−

k , we can use (2) to infer the final result

Rk.

Then the variance of the closeness of Li to R can

be used to formulate the performance change rate. If

the ground truth is known beforehand, we can obtain

the ability of a worker with respect to the closeness

of his/her answers to the ground truth. However, the

ground truth of tasks is generally unknown. Thus, we

roughly apply the precision of a worker to estimate

his/her worker ability and compute the precision of

worker i corresponding to L as follows.

Pi =
|Li ∩R|

|R|
.

Then we get the variance V ar(P ).

V ar(P ) =
1

|L|

|L|
∑

i=1

{Pi − E(P )}2,

where E(P ) is the expectation of P .

Similarly, after obtaining the precision of worker i

corresponding to L−
k , namely, P k

i = |Li∩Rk|
|Rk|

, we can get

the variance V ar(P k) as follows.

V ar(P k) =
1

|L−
k |

|L−

k
|

∑

i=1

{P k
i − E(P k)}2,

where E(P k) is the expectation of P k.

Finally, we define the performance change rate cor-

responding to L and L−
k .

WPCRk = |V ar(P k)− V ar(P )|.

When WPCRk is great, this means that repeated

answers are much likely to be collusive. While WPCRk

is small, this means that repeated answers are very

likely to be from independent workers. Thus, we can

use the worker performance rate to detect whether re-

peated answers are collusive or not.

An instance is presented in Fig.4. With answers

Li, we get that Pi of workers (from w1 to w5) is 1, 1, 1,

0.2, and 0.2 respectively. Then we obtain that V ar(P k)

is 0.56. When the repeated answers of workers (from

w1 to w3) are removed, with answers L−
k we get that

P k
i of each worker is 0.4, 0.4, 0.4, 0.8, and 0.8 respec-

tively. Then we obtain that V ar(P k) is 0.384. Finally,

we can obtain that WPCRk is 0.176. This is a large

value, and then repeated answers are filtered out. Af-

ter filtering the result accuracy is improved by 0.2, from
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0.6 to 0.8. Now we have introduced the worker perfor-

mance change rate which serves to measure the impact

of repeated answers on inferred results and used it as a

criterion to detect the collusive behaviors. Then result

quality can be improved by filtering the answers from

colluders based on collusion detection results.

5.3 Result Aggregation

In this subsection, by incorporating the detection re-

sults into MV, DS, HDS, and GLAD, we obtain C-MV,

C-DS, C-HDS, and C-GLAD. In practice, the answers

submitted by some collusive workers may not always be

the same for each task, which is also explained in [22].

However, most of the collusive answers should be the

same or very similar. Otherwise the collusion will be

meaningless. Therefore, we can still detect the collusion

behaviors by analyzing repeated answers.

Then, we can derive C-MV, C-DS, C-HDS, and C-

GLAD with Algorithm 1. Given an answer set L, the

decision can be made between two options: 1) filter-

ing out repeated answers generated by colluders in the

corresponding answer set; 2) preserving repeated an-

swers in the corresponding answer set, and then imple-

menting the result aggregation. Line 11 is the core of

this algorithm which computes the worker performance

rate of the answer set. threshold in line 12 determines

whether it is necessary to filter out repeated answers in

the corresponding answer set. In this paper, we con-

duct multiple experiments to set a proper threshold of

Algorithm 1. We plan to employ machine learning to

capture an optimal threshold in future work.

Algorithm 1. Result Inference Framework
Input: answer set L
Output: inferred result R from L

1 Initialization: R = ∅, R′ = ∅;
2 for each repeated answer set Lk ∈ L do
3 R← aggr method(L,W, T );

4 Rk ← aggr method(L−
k
,W, T );

5 for each answer set Li ∈ L do

6 Pi =
|Li∩R|

|R|
;

7 for each answer set Li ∈ L
−
k

do

8 P k
i = |Li∩Rk|

|Rk|
;

9 V ar(P ) = 1

|L|

∑|L|
i=1

(Pi − E(P ))2;

10 V ar(P k) = 1

|L−

k
|

∑|L−

k
|

i=1
(P k

i − E(P k))2;

11 WPCRk = |V ar(P k)− V ar(P )|;
12 if WPCRk > threshold then

13 Lk ← L
−
k
; % Filter out repeated answers

generated by colluders

14 R← aggr method(L,W, T );
15 return inferred result R;

6 Experiments

In this section, we present the evaluation results of

our proposed methods in comparison with the-state-of-

the-art methods with synthetic data and real datasets.

In experiments with the synthetic data, we evaluated

C-MV, C-DS, C-HDS, and C-GLAD with varying the

worker ability and the number of independent work-

ers. Based on the real data, we analyzed the existence

of repeated answers generated by suspected colluders,

evaluated Collusion-Proof, and evaluated C-MV, C-DS,

C-HDS, and C-GLAD 3○.

6.1 Experimental Setting

Due to the distributed and anonymous nature of

the workers from the crowdsourcing platforms (e.g.,

AMT or Crowdflower), it is difficult to capture a set

of workers of the same ability in the real world. In

simulation experiments, we aimed at exploring the ef-

fect of the threshold on the effectiveness of Algorithm 1

and exploring whether C-MV, C-DS, C-HDS, and C-

GLAD outperform the-state-of-the-art methods when

the worker ability changes. Moreover, we conducted

the experiment to evaluate C-MV, C-DS, C-HDS, and

C-GLAD with synthetic datasets of different numbers

of independent workers.

In experiments with real datasets, we aim to per-

form the evaluation: 1) whether there exist repeated

answers yielded by suspected colluders in real-world

datasets; 2) whether colluders can be effectively de-

tected by Collusion-Proof; 3) how C-MV, C-DS, C-

HDS, and C-GLAD can improve the result quality with

varying number of collusive groups and the collusion

proportion.

We used precision, accuracy, and recall for evaluat-

ing the performance of Collusion-Proof and utilized the

accuracy of aggregated answers after result inference

to evaluate the performance of C-MV, C-DS, C-HDS,

and C-GLAD. A baseline collusion detection method

named Findcolluders and four baseline result inference

methods (i.e., MV, DS, HDS, and GLAD) were also

implemented.

Findcolluders. For the e-commerce platform, [22]

detects collusive behaviors by computing the pairwise-

similarity.

MV. It is the simplest and the most popular strat-

egy. MV counts the votes for each alternative answer,

and then assigns the majority answer as the final result

for each task[26-27].

3○We have released our code on https://github.com/cplzyangbuaa/collusion-proof.git, Oct. 2017.
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DS. This inference method is an implementation of

the approaches designed for single choice tasks and it

assumes that the alternative answers are the same for

different tasks[28].

HDS. This is a variation of DS[29-30].

GLAD. It estimates workers’ performance by consi-

dering their expertise levels and the difficulty levels of

tasks[31].

Since we are concerned with the general tasks like

multi-class label task, for which DS is a typical method,

the comparisons of aggregated accuracy obtained with

DS and C-DS are presented with figures in the subsec-

tions concerning the evaluation of the effectiveness of

result reference methods, i.e., Subsections 6.2.3, 6.2.4

6.3.4, and 6.3.5. For the sake of clear presentation,

the comparisons of aggregated accuracy obtained with

the other methods (i.e., MV, C-MV, HDS, C-HDS,

GLAD, and C-GLAD) are presented with tables (i.e.,

Table 2∼Table 7).

6.2 Experiments with Synthetic Data

6.2.1 Generation of Synthetic Data

We generated synthetic data roughly modeled to

have the same properties as the real dataset. We first

simulated a set of tasks: multi-class label tasks which

embrace four alternative answers and only one of them

is true (the alternative answers do not vary in different

tasks). The number of tasks is set to 2 000. DS is a typ-

ical and effective model designed for multi-class label

tasks[28,30]. To measure the quality of each worker, it

endows each worker i with a latent “confusion matrix”,

which gives the probability that worker i will classify

the object into category k when presented with an ob-

ject of true class j. We used the performance functions

with respect to “confusion matrix” in the DS model to

simulate the task processing of workers. We simulated

a set of workers and used the proportion c of diagonal

entries of the confusion matrix to characterize their ave-

rage ability. When a set of workers are of great c, their

average ability is strong. We assumed that the distri-

bution of the ground truth z follows the uniform dis-

tribution among candidate answers, and then we could

obtain the simulated datasets. The performance of a

collusion group follows a uniform distribution, which

means our simulations can cover the three types of col-

lusion behaviors described in Section 1. Moreover, some

additional repeated answer sets were added to simulate

the impact of colluders on answers. In this case, the

number of answer sequences in an added repeated an-

swer set corresponds to the number of colluders in a

group and the number of added repeated answer sets

corresponds to the number of collusive groups. The

number of groups and the number of colluders in each

group could be set according to the specific experimen-

tal scenario.

6.2.2 Threshold of Algorithm 1

We conducted 50 rounds of experiments to explore

the effect of the threshold on the effectiveness of Algo-

rithm 1. On the basis of the experimental results, we

can determine an empirical value for the threshold. The

total number of workers was 9 and three of them were

colluders in a group. With Algorithm 1, the collusion

detection results were incorporated into MV, and then

C-MV were derived. Fig.5 plots the result accuracy

with varying the threshold of Algorithm 1. We can ob-

serve that the accuracy grows with the increase of the

threshold when the threshold is close to 0. The reason

is that almost all the repeated answers will be viewed

as collusive answers, even if some answers are from nor-

mal workers. As the threshold continues to grow, the

accuracy decreases no matter how the average ability of

workers varies. This is because a larger threshold means

that more likely repeated answers will be regarded as

normal answers even when some of them are collusive.

We can also observe that when the worker ability is

0.85, the fluctuation of curves is relatively small. Be-

cause, when workers are of high expertise, removing

or preserving repeated answers does not have a signif-

icant influence on the inference result. With multiple

rounds of experiments on varying threshold values, the

threshold is ultimately set to 0.028. As a result, most

independent answers are preserved and almost all the

collusive answers are removed. Since we adopted the
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Fig.5. Accuracy with varying threshold.
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similar settings for the rest of experiments, the thresh-

old was set to 0.028 as well. As we have mentioned, in

future, we will employ machine learning approaches to

find the optimal threshold of Algorithm 1.

6.2.3 Effectiveness of Result Inference with Varying

Worker Ability

In this experiment, there was one collusion group

containing three colluders and each task was assigned

to five workers. We evaluate the result accuracy of the

eight inference methods.

Fig.6 and Table 2 illustrate the accuracy of the in-

ferred results of these result inference methods with

the increasing worker ability c. As the worker abi-

lity c grows, the accuracy of all the methods increases.

C-MV, C-DS, C-HDS, and C-GLAD outperform the

other four without collusion detection. In particular,

the performance of C-DS is the best, which is 13.4%,

22.3%, 8.1%, and 23.2% better than that of MV, DS,

HDS and GLAD on average respectively. The reason

is that C-MV, C-DS, C-HDS, and C-GLAD can filter

out repeated answers generated by the colluders, and

C-DS model better targets the multi-class label setting

in comparison with others.
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Fig.6. Accuracy with varying worker ability (DS, C-DS).

Table 2. Accuracy with Varying Worker Ability (the Others)

c MV HDS GLAD C-MV C-HDS C-GLAD

0.60 0.713 0.698 0.598 0.757 0.701 0.689

0.65 0.763 0.741 0.630 0.811 0.778 0.749

0.70 0.794 0.820 0.690 0.906 0.851 0.853

0.75 0.820 0.862 0.730 0.930 0.871 0.888

0.80 0.827 0.870 0.762 0.941 0.895 0.912

0.85 0.872 0.905 0.826 0.958 0.919 0.951

0.90 0.874 0.911 0.827 0.961 0.923 0.959

0.95 0.875 0.912 0.826 0.964 0.925 0.961

6.2.4 Effectiveness of Result Inference with Varying

Number of Independent Workers

In this experiment, there were three colluders con-

tained in a group and the number of independent work-

ers varied from 2 to 5, which means the total number

of workers ranged from 5 to 8.

The results are in Fig.7 and Table 3, and we can

observe that more independent workers yield higher ac-

curacy. C-MV, C-DS, C-HDS, and C-GLAD outper-

form their corresponding original methods, i.e., MV,

DS, HDS, and GLAD. In particular, C-DS can obtain

11.4%, 25.1%, 24.9%, and 23.8% higher accuracy than

MV, DS, HDS, and GLAD on average respectively.
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Fig.7. Accuracy with varying number of independent workers
(DS, C-DS).

Table 3. Accuracy with Varying Number of

Independent Workers (the Others)

MV HDS GLAD C-MV C-HDS C-GLAD

1 0.666 0.621 0.632 0.713 0.719 0.703
2 0.708 0.637 0.634 0.872 0.812 0.764
3 0.811 0.703 0.699 0.898 0.864 0.897
4 0.840 0.749 0.746 0.906 0.878 0.905
5 0.857 0.759 0.753 0.925 0.899 0.918

6.3 Experiments with Real Datasets

6.3.1 Real Datasets

We utilized two well-known real-world datasets, i.e.,

ducks 4○[40] and adult2 5○[41]. The task in dataset ducks

is to identify whether an image contains a duck or not.

It contains 39 tasks, each of which is answered by 108

workers, and each worker answers 39 tasks. The dataset

adult2 contains the categories (G, PG, R and X) of

websites labeled by workers on MTurk. It contains 333

tasks. The average number of answers of each task is

10, and the number of tasks answered by each worker

is 12.

4○https://github.com/welinder/cubam/tree/public/demo/bluebirds, Jan. 2018.
5○https://github.com/ipeirotis/Get-Another-Label/tree/master/data, Jan. 2018.
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6.3.2 Analysis of Repeated Answers Yielded by

Suspected Colluders

In crowdsourcing platforms, since the collusive

behaviors are behind the scenes, it is difficult to de-

tect the collusion during the task processing. Yielding

repeated answers is an important feature of collusion.

As we have mentioned, repeated answers can be bro-

ken down into two camps, i.e., collusive answers and

naturally repeated answers. In order to explore the ex-

istence of these suspected collusive answers in the prac-

tical answer set, we analyzed the repeated answers in

original real dataset adult2. Consequently, we found

21 groups of repeated answers on the statistical result.

Based on our detection result, we identified 11 groups

of repeated answers as suspected collusive answers since

the accuracy of result inference is obviously improved

after filtering as shown in Fig.8. The main reason is

that the side-effects of collusion on result inference are

relieved. In addition, since Findcolluders is only effec-

tive for opinion-based rating tasks, and lots of normal

answers are deleted based on this method, we found

that the result quality after filtering based on Findcol-

luders is the lowest.
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Fig.8. Accuracy with varying methods.

6.3.3 Effectiveness of Collusion Detection

In order to further evaluate the performance of

Collusion-Proof on detecting collusion behaviors, we

added some repeated answers generated by colluders

into real-world datasets and implemented our detection

method (i.e., Collusion-Proof) in comparison with the

baseline method Findcolluders. We set the number of

groups and the number of colluders in a group to 1 and

10 respectively.

As illustrated in Fig.9 and Fig.10, Collusion-Proof

maintains a higher precision, accuracy, and recall than

Findcolluders. As for Collusion-Proof, the precision

of the dataset ducks is higher than that of dataset

adult2. This is because the tasks completed by each

worker of dataset ducks are more than those of dataset

adult2, and the performance change rate can be esti-

mated more accurately. As for Findcolluders, the pre-

cision of dataset ducks is lower than that of dataset

adult2. The main reason is that the tasks of dataset

ducks are easier to be performed, and the answers from

dataset ducks are closer to the ground truth. In this

case, workers exhibit high ability and normal repeated

answers in dataset ducks are more than those in the

dataset adult2. These normal answers are easily iden-

tified as collusive answers by Findcolluders based on

similarity.
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6.3.4 Effectiveness of Result Inference with Varying

Collusion Proportion

On two real-world datasets, we utilized the accu-

racy of aggregated answers after result inference to eva-

luate the performance of C-MV, C-DS, C-HDS, and C-

GLAD. There was one collusion group in the crowd and

the collusion proportion changed from 0 to 1. We eva-

luate how collusion proportion affects the result quality.

As shown in Figs.11 and 12, Table 4, and Table 5,

we can observe that the accuracy of all the methods de-

creases with the increasing collusion proportion. This is

because the larger collusion proportion brings more re-

peated answers and makes the inferred result converge
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Fig.12. Accuracy with varying collusion proportion in adult2
(DS, C-DS).

Table 4. Accuracy with Varying Collusion Proportion in

ducks (the Others)

MV HDS GLAD C-MV C-HDS C-GLAD

0.0 0.759 0.583 0.685 0.757 0.583 0.685
0.1 0.759 0.522 0.583 0.755 0.562 0.583
0.2 0.722 0.422 0.556 0.750 0.553 0.565
0.3 0.639 0.359 0.513 0.742 0.543 0.554
0.4 0.556 0.324 0.324 0.732 0.556 0.539
0.5 0.324 0.324 0.324 0.759 0.434 0.437
0.6 0.324 0.324 0.324 0.722 0.432 0.431
0.7 0.324 0.324 0.324 0.324 0.324 0.422
0.8 0.324 0.324 0.324 0.324 0.324 0.410
0.9 0.324 0.324 0.324 0.324 0.324 0.324
1.0 0.324 0.324 0.324 0.324 0.324 0.324

Table 5. Accuracy with Varying Collusion Proportion in

adult2 (the Others)

MV HDS GLAD C-MV C-HDS C-GLAD

0.0 0.757 0.721 0.706 0.757 0.721 0.721

0.1 0.655 0.594 0.583 0.670 0.655 0.676

0.2 0.586 0.572 0.580 0.670 0.649 0.658

0.3 0.556 0.345 0.345 0.578 0.628 0.646

0.4 0.532 0.345 0.345 0.580 0.616 0.637

0.5 0.531 0.345 0.345 0.535 0.585 0.637

0.6 0.498 0.345 0.345 0.535 0.559 0.631

0.7 0.453 0.309 0.309 0.529 0.559 0.622

0.8 0.399 0.309 0.309 0.414 0.405 0.610

0.9 0.330 0.309 0.309 0.384 0.300 0.598

1.0 0.297 0.297 0.297 0.297 0.297 0.297

to answers generated by an individual worker, which

lowers the quality of the inferred result. In particular,

when the collusion proportion is 0, the performances

of C-MV, C-DS, C-HDS, and C-GLAD are identical

with those of their original versions without collusion

detection mechanism. This is because the workers are

independent and their answers contain no collusive re-

peated answers. When the collusion proportion is 1, we

can observe that the curves of all the methods overlap

with one another. This is because all workers are col-

luders and contained in a group. No matter whether

or not the repeated answers are filtered out, the final

result is generated by a single worker of average abi-

lity in multiple experiments. In most cases, we can

also observe that no matter how the collusion propor-

tion changes, C-MV, C-DS, C-HDS, and C-GLAD can

achieve a higher accuracy than those without collusion

detection mechanism.

6.3.5 Effectiveness of Result Inference with Varying

Number of Groups

In this experiment, the number of collusive groups

varied from 1 to 5, and each group had five members.

As shown in Figs.13 and 14, Table 6, and Table 7,

the accuracy of all methods decreases with the increas-

ing number of groups. The reason is that more groups

will submit more repeated answers and these repeated

answers greatly damage the quality of results. Still,

we can also observe that C-MV, C-DS, C-HDS, and C-

GLAD generate higher accuracy than their original ver-

sions without collusion detection. Among them, C-MV

outperforms all the probabilistic methods (i.e., HDS,

GLAD, C-HDS, and C-GLAD). This is because all the

probabilistic inference methods entail learning parame-

ters (e.g., the worker ability) according to the answers

submitted by workers. However, in dataset adult2, the

number of tasks completed by each worker is small, and

the parameters cannot be accurately acquired.
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Fig.13. Accuracy with varying number of groups in ducks (DS,
C-DS).
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Table 6. Accuracy with Varying Number of Groups in

ducks (the Others)

MV HDS GLAD C-MV C-HDS C-GLAD
1 0.712 0.583 0.556 0.719 0.583 0.583
2 0.611 0.583 0.556 0.704 0.582 0.583
3 0.481 0.556 0.556 0.667 0.576 0.556
4 0.426 0.556 0.556 0.593 0.572 0.565
5 0.370 0.519 0.463 0.500 0.565 0.556

Table 7. Accuracy with Varying Number of Groups in

adult2 (the Others)

MV HDS GLAD C-MV C-HDS C-GLAD
1 0.718 0.664 0.658 0.760 0.733 0.721
2 0.709 0.658 0.652 0.733 0.721 0.709
3 0.688 0.653 0.645 0.739 0.720 0.727
4 0.687 0.649 0.634 0.730 0.700 0.685
5 0.685 0.640 0.624 0.712 0.691 0.676

7 Discussion

In this section, regarding result inference in collab-

orative crowdsourcing, we discuss some research chal-

lenges and opportunities.

First, collaboration changes the performance of

workers in groups during the task processing. For in-

stance, a worker may turn to others for help via online

forums, and then he/she can submit an answer of higher

quality than the one completed independently. Related

literature[29-30] suggested that the worker performance

affects the result inference. In this case, a problem con-

cerning how to estimate the worker performance in the

case of collaboration to infer high-quality result rises.

Second, the accuracy of the inferred results can be

improved by detecting and filtering out some repeated

answers submitted by collusive workers. However, the

optimization of detection algorithm for collaborative

crowdsourcing is still an important problem, e.g., how

to determine the threshold in Algorithm 1 is still an

open problem. In this paper, a proper threshold is cap-

tured by using the empirical analysis which is a widely-

adopted approach. Moreover, we plan to employ ma-

chine learning methods to capture the optimal thresh-

old.

Third, it is difficult to capture the collaboration re-

lationship among workers in hidden collaborative net-

work on the real-world crowdsourcing platforms. Yin

et al.[13] mapped the entire communication network of

workers on a widely-used platform, Amazon Mechani-

cal Turk by a self-reported method. While this work

shows that the communication network exists, it is still

an open problem to obtain the specific type of the col-

laboration among workers such as group plagiarism and

sybils. It is of paramount importance to continue this

study and to develop new techniques for a better un-

derstanding of the collaboration among crowdsourcing

workers.

8 Conclusions

Although crowdsourcing is originally expected to so-

licit independent contributions from unknown workers,

the collaboration among workers is becoming a known

fact even on public crowdsourcing platforms. As an

unexpected type of collaboration, the collusion among

workers will damage the quality of crowdsourcing re-

sults. This work studied the Collusion-Proof result in-

ference problem concerning crowdsourcing applications

where there can be potentially collaboration among

workers. We first designed a method to detect the col-

lusion behaviors, and then incorporated the collusion

detection results into existing result inference methods.

The experimental results confirmed the effectiveness of

our approaches.
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