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Abstract Photon mapping is a global illumination algorithm which is c omposed of two steps: photon tracing and photon
searching. During photon searching step, each shading point needs to search the photon-tree to �nd k-neighbouring photons
for re
ected radiance estimation. As the number of shading p oints and the size of photon-tree are dramatically large, th e
photon searching step is time consuming. We propose a parallel photon searching algorithm by using radiance estimation
approach for coherent shading points on the Intel r Many Integrated Core (MIC) Architecture. In order to e�cien tly use
single instruction multiple data (SIMD) units, shading poi nts are clustered by similarity �rst (every cluster contain s 16
shading-points), and an initial neighbouring scope is searched from the photon-tree for each cluster. Then we use 16-wide
SIMD units by performing k-NN searching from the initial neighbouring scope for those 16 shading-points in a cluster in
parallel. We use the method to simulate some global illumina tion scenes on Intelr Xeonr processors and Intelr Xeonr

PhiTM coprocessors. The comparison results with existing photon mapping techniques indicate that our method gives
signi�cant improvement in speed with the same accuracy.

Keywords photon mapping, parallel processing, SIMD

1 Introduction

Photon mapping is an extension of ray tracing
method that makes it able to e�ciently compute global
illumination e�ects, such as caustics, ambient occlu-
sion, color bleeding, soft shadows and soft indirect illu-
mination in participating media. The visual impact of
global illumination is essential for photo-realistic ren-
dering. Fast and high quality global illumination has
been the central goal of photo-realistic image synthesis
for a long time.

On modern programmable architectures such as
CPUs, GPUs and MICs, the key to reaching the goal
of speeding up is to e�ciently use those architectures'

SIMD units. Intel r Many Integrated Core (MIC) Ar-
chitecture Xeonr PhiTM coprocessors have the same
fundamentals of vectorization or bandwidth with main
processors. Therefore, a system using Intelr Xeonr

PhiTM coprocessors will have broader applicability than
a system using GPUs. In this paper, we propose a
parallel photon mapping algorithm using Intelr Xeonr

processors and Intelr Xeonr PhiTM coprocessors to
explore the acceleration of global illumination through
SIMD execution. In our parallel algorithm, we achieve
photon tracing and photon searching on Intelr Xeonr

PhiTM coprocessor, and SIMD instructions are both
used in the photon tracing and the photon searching
steps.
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The standard photon mapping method[1] in the sim-
plest way can be summarized in two main steps: photon
tracing and photon searching.

In the photon tracing step, photons are emitted
from the light sources, traced through the scene, and
stored in the photon maps. During this step, we follow
the ray tracing method proposed by Benthin et al.[2]

to trace photons. By using a bounding volume hierar-
chy (BVH) tree with a branching factor to store objects
in the scene, each photon can do intersection test with
four nodes of the BVH tree in parallel by using 16-wide
SIMD units of Intel r Xeonr PhiTM coprocessors. Af-
ter the photon-tracing step, a photon-tree (organized
as aK -D tree) can be constructed.

During the photon searching step, the radiance in-
formation needs to be estimated for each shading point
by searching thek-neighbouring photons in the photon-
tree. Considering the spatial coherence property of
shading points, a proper neighbouring scope of photons

can be shared by nearby shading points, and each shad-
ing point can �nd its explicit k-neighbouring photons
from this public photon scope. As the nearby shading
points and the photons in the public scope are both
with spatial coherence, the SIMD units of MIC can be
e�ciently used when we searchk-neighbouring photons.

The main contribution of this paper is a parallel
photon searching algorithm by a novel factorized radi-
ance estimation method to improve SIMD utilization.
By using a similarity-based merging clustering step for
shading points, 16 shading points can be organized in
a cluster. Then a central point can be selected for
each cluster to �nd an initial neighbouring scope of
the photon-tree for each cluster. Finally, a 16-widek-
NN searching for shading points in every cluster can be
easily implemented by SIMD. Thus the radiance infor-
mation of those 16 shading points in a cluster can be
calculated in parallel. In Fig.1, we show the rendering
results for di�erent scenes.

(a) (b) (c) (d)

Fig.1. Results rendered using our algorithm. (a) Metal ring scene is an experiment for caustic e�ect rendering, and (b) c ornell box
scene, (c) desk model, and (d) small insect scene are examples for global photon mapping test.

2 Background and Previous work

The idea of speeding up global illumination has been
explored by several researchers in the last few years. In
order to make better use of graphics hardware com-
puting power, di�erent calculation methods and data
structures are applied to the global illumination algo-
rithms, such as ray tracing, point-based global illumi-
nation (PBGI), and photon mapping (PM).

Ma and McCool[3] presented a neighbourhood-
preserving hashing algorithm that is low-latency and
has sub-linear access time on GPU in 2002. In 2003,
Purcell et al.[4] also presented a modi�ed photon map-
ping algorithm in which the photons are stored in a
grid-based photon map. In 2009, Fabianowski and
Dingliana[5] proposed a highly parallel photon mapping
algorithm that utilizes CUDA architecture, by handling

di�use re
ections using photon di�erentials. Gupte [6]

presented a hybrid photon-mapping approach for global
illumination using the spatial hashing method to store
and retrieve a photon map.

Wang et al.[7] used k-means to sample receiving
points and interpolate irradiance. Their approach im-
proves the �nal gather and photon mapping method, by
selecting a representative point to perform the gather
process and the others to perform the interpolation pro-
cess. In 2013, Wanget al.[8] similarly applied the idea
of receiving points coherence clustering to eliminate re-
dundant computations in PBGI.

Using e�cient GPU ray shooting and K -D tree
building, Zhou et al.[9] implemented e�cient photon
mapping based onK -D tree querying. Their approach
is similar to the original photon mapping idea, but us-
ing modern graphics hardware.
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Recently, the �rst GPU method of progressive pho-
ton mapping[10] has prevented constructingK -D tree
and standard spatial hashing data structures. Photon
mapping method can be used in volume rendering[11] ,
and Zhang et al.[12] proposed a real-time volume ren-
dering by using precomputed photon mapping.

After years of development in parallel rendering
technology, many researchers increasingly focus on
SIMD units with both CPUs and GPUs using ever
wider SIMD units: 8-wide AVX on Intel CPUs 1O , and
16-wide (or greater) SIMD units on GPUs[13] . Wald et
al.[14] proposed the �rst SIMD ray tracing that de�nes
the concept of packet tracing and works by traversing
N di�erent rays of a packet in parallel through sharing
one traversal stack. Singh and Faloutsos[15] presented
a novel photon mapping framework that uses SIMD
parallelism to accelerate the �nal gathering phase of
photo mapping. To implement SIMD photon gather-
ing, they used Intel SSE[16] instructions. Intel issued
the Xeonr PhiTM coprocessor which is based on MIC
Architecture 2O with the KNC instructions. The 
exi-
bility of an Intel r Xeonr PhiTM coprocessor provides
its suitability for complex parallel structure.

To improve SIMD utilization, Benthin et al.[2] used
a bounding-volume hierarchy with four branches as the
acceleration structure to e�ciently perform intersection
tests in parallel when the rays are incoherent. They im-
plemented their method on the Intelr MIC Architec-
ture which is designed for highly parallel applications
with the highest demands for compute power and mem-
ory bandwidth.

3 Algorithm Overview

By analyzing the performance of photon mapping
algorithm, we �nd that the photon tracing and the pho-
ton searching steps are most time consuming. Thus we
apply the idea of SIMD to accelerate these two steps
respectively. Fig.2 shows the working 
ow of our ren-
dering system. The photon tracing and radiance esti-
mation modules are implemented on the coprocessor.
The other modules are implemented on the host.

Compute Photon Map

Initialize
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Directions
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Photons

Build
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Fig.2. Working 
ow of our rendering system.
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Fig.3. (a) Take a 16-wide SIMD as four lanes and each lane is
composed of four elements. (b) Organize a QBVH tree.

Firstly, in the photon-tracing step, photons are
emitted from the light sources, and directions are ran-
domly assigned according to properties of the light
sources. Then, these photons are traced through the
scene, which means tracingN independent rays. There
are many performance challenges associated with the
parallel N independent rays algorithm. The main one
is that it needs local storage forN independent rays and
temporary variables. Especially when rays are totally
incoherent, the performance of the parallelN indepen-
dent rays algorithm degrades signi�cantly.

We implement the parallel N independent photons
tracing algorithm on MIC based on the work of Benthin
et al.[2] which takes the 16-wide SIMD hardware of MIC
as four lanes of four elements, and uses this to process
four nodes intersection test in parallel. To realize this
e�ciently, a four-wide BVH (also called Quad-BVH or
QBVH) should be organized for single ray traversal (see
Fig.3). In this step, we launch a beam of photons each
time, and load these photon rays onto MIC for the in-
tersection in parallel. As di�erent kinds of behavior
may happen on the surfaces after the �rst bounce, the
intersection results should be returned and we reorga-
nize these bundles of photon rays after the �rst bounce
behavior. Then, data will be loaded onto MIC to inter-
sect until reaching the maximum depth.

Meanwhile, in the photon searching step, each shad-
ing point needs to search the photon-tree to �nd k-
neighbouring photons for re
ected radiance estimation.
It is true that k-NN searching in a K -D tree can be
simply implemented in parallel. However, K -D tree
searching requires random read and write frequently.
Therefore, parallel K -D tree algorithms do not have
good performance on graphics hardware generally. In

1O http://software.intel.com/en-us/avx, Mar. 2015.
2O http://download.intel.com/pressroom/archive/referen ce/ISC 2010 Skaugen keynote.pdf, Mar. 2015.
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this case, we propose a two-stepK -D tree searching ap-
proach, and make it run in parallel on the Intel MIC ar-
chitecture e�ciently by organizing shading points into
clusters. In order to better use wide-SIMD capability,
shading points are clustered by similarity. We should
make sure that each cluster contains 16 shading-points,

and we search an initial neighbouring scope from the
photon-tree for each cluster. Then we use 16-wide
SIMD by performing k-NN searching from the initial
neighbouring scope for those 16 shading-points in a
cluster in parallel. A 
ow of this step is illustrated
in Fig.4.
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Fig. 4. Flow of photon searching step. (a) Cluster shading po ints. (b) Find an initial neighbouring scope from the photon -tree for
each cluster. (c) Find k-NN for 16 shading-points in a cluster in parallel. P: photon .

4 Parallel Radiance Estimation

Our basic assumption is that shading points with
spatial coherence have similark-neighbouring photons.
We propose a clustering strategy to collect coherent
shading points into a cluster, and points in a cluster
can use their spatial coherence to e�ciently use SIMD
units when doing radiance estimation. Each cluster can
work independently and run in parallel.

4.1 Shading-Points Clustering

Shading points are those intersection points of rays
and the scene in ray tracing pass. As rays are traced
by bundles with similar directions, shading points lo-
cated on the same object are with spatial coherence.
Thus we divide the shading points into di�erent groups
according to the objects they located on. Then, we di-
vide each group to clusters according to the similarity
of shading points. We de�ne the similarity of shading
points with their positions and normals.

D (x1; x2) = kpx 1 � px 2 k2 + � � k nx 1 � nx 2 k2;

with x1 and x2 being two points, p being their position,
and n being their normal in the 3D geometric space.
The weight � trades cluster 
atness for spatial extent.
We typically set it to 1.

Then, we cluster shading points based on this simi-
larity by a hierarchical aggregation method. And each
cluster contains 16 shading-points.

1) We initialize a random cluster list f C1, C2, . . . ,
Cm g with m shading points and assign one point for
each cluster.

2) We merge the �rst unclassi�ed cluster with its
most similar cluster and calculate their center position
and normal for the next level clustering.

3) We repeat 2) until we get 16 shading-points in
each cluster.

In step 2, the center positionpc and the normal nc

of a cluster C with Nc points are updated as follows
respectively:

pc =
1

Nc

N cX

i =1

pi ;

nc =
P N c

i =1 ni

k
P N c

i =1 ni k;

where Nc is the number of shading points contained in
a cluster. When a cluster contains more than one point,
we use its center position and normal to measure the
cluster's similarity with others.

We perform this classi�cation algorithm before K -D
tree searching when we receive a set of shading points.
Then we searchk-NN photons for every point in a clus-
ter using SIMD.

4.2 Factorized k-Neighbor Photons Searching

To achieve high SIMD utilization, we propose a fac-
torized (two-step) K -D tree searching method. Firstly,
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we search an initial neighbouring scope from the
photon-tree for each cluster. We call this step range
searching by using an initial search radiusR0. The ra-
dius R0 should be conservative such thatk nearest pho-
tons for every point in the cluster are within this radius
and the radius remains as small as possible. Fig.5(a)
shows theR0 we use, and the formula is:

R0 = r0 + distance; (1)

with r0 being the initial search range for one shading
point, and distance being the farthest distance from the
center point to shading points in the cluster. Di�erent
clusters are with di�erent search radius valuesR0. The
initial neighbouring scope of photons can be searched
for each center point of a cluster with searching radius
R0.
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Fig.5. (a) Components of the initial searching radius R0 for a
cluster in (1). (b) Searching radius r i for one point in a cluster
in (2).

Secondly, we implement our parallelk-NN searching
algorithm from the initial neighbouring scope for those
16 shading-points in a cluster following Zhouet al.[9]

The key idea is that instead of using a priority queue, we
try to �nd every shading point's k-NN photons within
radius r i through the range histogram. r i is set asR0 in
areas with dense photons. During the iteration, we con-
struct a two-dimensional (2D) histogram for 16 di�erent
shading points synchronously. By splitting the search-
ing radius r i for each shading point to di�erent radius
ranges, the number of photons is counted in di�erent
radius ranges. The horizontal axis of the histogram
shows the radius ranges and the longitudinal axis in-
dicates the number of photons located in each range.
The k-NN photons can be searched iteratively accord-
ing to the histogram, and the 16 shading-points can be
processed in parallel. The following is the searching
process which starts from the initial neighboring scope.

1) Calculate every shading point's searching radius
r i . Divide r i into multi-ranges to construct the shading

point's histogram, and initialize the number of photons
in each radius range as 0.

2) For every photon in the initial neighbouring
scope, calculate its distance to the 16 shading points in
a cluster in parallel, and this photon can be classi�ed
into proper range in each shading point's histogram.

3) For each shading point, �nd the �rst range which
contains the k-th photon based on its histogram, and
then divide this range into multi-ranges again. Then
2) is repeated until the speci�ed maximum number of
iterations are reached.

4) Searchk-neighbor photons in the range contain-
ing the k-th photon with a priority queue.

We achieve SIMD through organizing the data of
16 points in a cluster into several vectors to use MIC's
vector calculation unit. Fig.6 illustrates the organiza-
tion of position vectors, with spx , spy , spz being the
position vectors of a cluster andpx i , py i , pz i being
the position vectors of the i -th photon. In spx , the
respective components from 0 to 15 equal the value of
the x-coordinate from the 0th to the 15th points in a
cluster. However, in px i , the values of the respective
components from 0 to 15 are the same, and equal the
i -th photon's x-coordinate value. The organization is
similar for another two position vectors of y-coordinate
and z-coordinate and the normal vectors. Then, we
can compute the distance of the 16 shading points with
a photon through one distance calculation. A 2D his-
togram also contains several 16-wide vectors for count-
ing and saving range radius of di�erent points. Thus,
we achieve computing 16 shading points by using the
16-wide SIMD units.

4.3 Hybrid Scheme in Sparse Area

The factorized radiance estimation scheme is more
suitable for SMID than k-NN searching with a priority
queue, but excess calculations make the results lack of
accuracy in the place with sparse photon distribution.
In these areas, we determine the query radiusr i directly
for every shading point in the cluster by (2). With the
same formula, we computek-NN photons from the ini-
tial neighbouring scope using the 16-wide SIMD units
to compute distance in parallel.

r i = r0 + distance � di ; (2)

wherer0 is the initial search range for the center point,
distance is the farthest distance from the center point
to shading points in the cluster, and di is the distance
from the center point to the i -th shading point. Fig.5(b)
illustrates the value of r i .
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Fig.6. We use a 16-wide SIMD unit in our method. It shows that t he organization of shading-point's position vector and pho ton's
position vector.

When the number of photons in the initial neigh-
bouring scope is less than the searching numberk, we
start out with the simple calculation process for query
radius r i by (2). Fortunately, we can easily derive a
threshold through the distance and the number. The
basic assumption is that photon density is a constant
within a small area, and it is inversely proportional to
the query radius r i .

K c = b� k;

b = ( R0=r0)2;

where K c is the threshold and k the number for k-NN
searching.

5 Results

We implement our algorithm in the Pixie Ren-
derer. Performances are measured on a server equipped
with an Intel r Xeonr CPU E5-2609 at 2.50 GHz with
16 GB of main memory and an Intelr MIC Architec-
ture Xeonr PhiTM coprocessor SC7110P at 1.10 GHz
with 8 GB of shared memory. Images are rendered with
our method at a 960� 720 pixels resolution (except for
the cornell box, at 720� 720).

In all experiments, we test our method's computa-
tional e�ciency using 120 threads in a process of calcu-
lation, which contains a set of shading points and has
the maximum capacity of 2 000. Then, we classify the
shading points, and each thread is allocated to process
a cluster with SIMD.

In Fig.1, we show the rendering results for di�er-
ent scenes, both caustic photon map and global pho-
ton map have been tested. In Fig.1(a), there is a metal

ring, and the scene generates 8 MB caustic photon map
which takes about 150 thousand photons in the map.
In addition, we measure radiance estimation with the
photon's searching number being 50. Fig.1(b), Fig.1(c)
and Fig.1(d) show global illumination in a cornell box
scene, a desk model, and an insect scene respectively.
Global photon map contains the number of enormous
photons with respect to the caustic photon map. It
takes more than 10 million photons in the map, and
2 000 is used as the search value,K .

In Table 1, we report the total time (T time) and the
searching time (S time) for the four di�erent examples
shown in Fig.1, where MES is the mean squared er-
ror. Here, we can assess the bene�t of our approach for
caustic e�ect rendering, with a speed-up ratio for the
total rendering time ranging from 1.2 to 1.3 compared
with the original photon mapping algorithm. Mean-
while, in the speci�c portion of the algorithm that we
target (radiance-estimation), the speed-up ratio ranges
from 8.5 to 8.8. In the experiments using global pho-
ton map, accelerating e�ect is more prominent. The
speed-up ratios range from 3.7 to 10.1 and from 8.4 to
25.6, corresponding to total rendering time and search-
ing time respectively. Additionally, in the photon trac-
ing step, the acceleration rate is about four times.

Table 1. Time Comparison and Error Analysis

for the Four Di�erent Experiments

Scene CPU T CPU S MIC T MIC S MES
Time (s) Time (s) Time (s) Time (s)

Metal ring 3 121 3 062 103 007 0.584
Cornell box 3 448 3 352 117 032 0.268
Desk 3 574 3 536 153 064 0.669
Insect 3 930 3 767 389 147 0.078
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We compare the di�erence between our coherent ra-
diance estimation and the original photon mapping al-
gorithm. Overall, we observe a negligible error, both
from the visual detail comparison of Fig.7 and the nu-
merical error with MES in Table 1. The values of
MES prove that our classi�cation and factorized search
are e�ective. We also check the coherence for shading
points in a cluster. For each shading pointpi , the mini-
mum distance betweenpi and other shading points in a
cluster is signed asdpi . If dpi < � , where � is the mean
distance of all clusters, we consider the points in a clus-
ter are with spatial coherence. If all points in a cluster
are coherent, we consider the cluster with spatial coher-
ence. By using the checking standard, the percentage
of coherence clusters is about 99% in our experiments.

We also analyze the in
uence of the number of pho-
tons for our method, both the number of photons col-
lected and the number of photons emitted. By compar-

ing the experimental results of the global photon map
and the caustic photon map, it can be clearly found
that acceleration is more e�cient when global photon
map is used. The reason is that in global photon map,
there is a great-high tree with a large number of pho-
tons and almost all of the shading points need to search
for enough photons for radiance estimation, which takes
a long time to traverse. In our method, a cluster only
needs to traverse once, thus the method harvests a high
acceleration e�ciency. The search number k is also a
very important parameter, which impacts the accuracy
of the rendering results. In Fig.8, we plot the speed-up
evolution under the variation of the number k, both the
total time and the searching time. We can see from the
�gure that the larger the k, the better the acceleration.
Choosing a largerk value will improve acceleration ef-
fect, but on the other hand, the larger k is, the more
bias appears.
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Fig. 7. Di�erences between our method and the traditional ph oton mapping. (a) (d) Results of our method. (b) (e) Results o f
traditional method. (c) (f) Di�erences between the two meth ods.
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6 Summary and Discussion

In summary, we presented a parallel method for ra-
diance estimation on MIC. The method divides shading
points into coherent clusters using a hierarchical aggre-

gation method, and then searches theK -D tree for an
initial neighbouring scope in radius R0 at each cluster
center. Compared to standard photon searching, we
searchedk-NN photons in the initial scope for all of the
16 shading points in a cluster, thereby allowing us to
perform SIMD instructions in parallel on the MIC. We
also presented a photon tracing approach on the MIC
based on a QBVH tree by applying a 16-wide SIMD
hardware as four lanes of four elements. The approach
uses the KNC instructions of MIC to implement SIMD
calculation. Although some exiting algorithms can uti-
lize the parallelism of CPU with SSE instructions, we
take advantage of the many-core computing power on
MIC and our algorithm for the photon searching can
also be implemented on CPU with SIMD instructions.

Our algorithm presents a balance achieved between
rendering accuracy and e�ciency as we use a classi-
�cation and factorization search algorithm for k-NN
searching. The classi�cation step can complete the
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search tree in one time, and the factorized algorithm
applies the 16-wide SIMD units to maximize the per-
formance of the parallel program. Meanwhile, the ap-
proach chooses a conservative initial radius for each
cluster to make sure that k-NN photons of every shad-
ing point are included in the initial neighbouring scope.

Our approach has two main limitations. First, the
cluster step introduces redundant computation. We
used a hierarchical aggregation method to cluster 16
points in a set. Although using a four-layer iteration
can get the results, the method has to calculate the
distance between any two points. Therefore, the initial
bundle should not be too large, and we set the maxi-
mum value to be 2 000 as test using 120 threads in paral-
lel. Second, when rays are totally incoherent, it is hard
to get a bundle with a number of shading points, which
makes our factorized method burdensome. Fortunately,
ray tracing pipeline will generally return appropriate
bundles in the �rst bounce. Our current solution is that
when we get a bundle with a small number of points,
we achieve radiance estimation according to the origi-
nal method in parallel without SIMD. Of course, this
will reduce the acceleration e�ciency. It would then be
interesting to determine how to re-manage incoherent
rays.

Finally, in this work, successfully searchingk-NN
photons in a K -D tree using SIMD units onto the MIC
has many engineering challenges, although the device
is more 
exible compared with GPU. We still believe
that this device has certain advantages in dealing with
parallel speedup global illumination. Due to the di�er-
ent architectures and methods, direct comparison with
GPU methods is di�cult. However, the experimental
data in [4, 6-7] shows that the acceleration data of our
approach is not less than the data in GPU methods.
Our classi�cation and factorization search algorithm is
a general algorithm, as it can be applied to progres-
sive photon mapping in the same way. In progressive
photon mapping, photon tracing and photon detection
are processed in the same process, which makes all of
the operators on the photon map can be run entirely
on MIC. Our future job will be concentrated on these
operations' optimization and parallelization on MIC.
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