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Abstract Not many methods for parameterization guarantee bijectivi ty or local injectivity, which is essential for foldover-
free mappings. Stretch-minimizing parameterization whic h is widely used for surface parameterization, provides foldover-free
mappings and is capable of trading o� between angle and area distortions. We extend its usage to volumetric parameteriza tion
in this paper by deriving a 3D version of stretch-distortion energy and incorporating �xed boundary conditions. Our ene rgy
de�nition includes a natural barrier term which e�ectively prevents elements from collapsing and folding over. It saves
the e�ort in other methods of formulating additional energy or constrains to ensure the local injectivity. We propose to
minimize the overall energy integrated over the whole mesh with a relaxation-enhanced solver and optimize the energy
globally. This is di�erent from the conventional approach o f surface parameterization where mesh nodes are optimized
individually. Compared with other volumetric parameteriz ations, our approach bears the advantages of stretch-minimizing
method, being foldover-free and o�ering a good trade-o� bet ween angle and volume distortions.

Keywords stretch-minimizing, volumetric parameterization, foldo ver-free

1 Introduction

A number of geometry processing applications such
as hexahedral meshing, detail transferring, and texture
synthesis can be solved with the assistance of e�ec-
tive volumetric parameterization of a solid model. An
ideal parameterization should satisfy the requirements
of low distortions, alignment of constraints, and bijec-
tivity (for texture mapping), which can be relaxed to
local injectivity (for remeshing). Either the bijectivity
or the local injectivity helps to ensure mapping free of
foldover. Parameterization that is neither bijective nor
local injective may cause di�cult issues for simulation
and post-processing.

Early work [1-6] has paid great e�orts to resolve the
�rst two criteria, low distortions and alignment of con-
straints. Few of them are able to produce bijective
mappings or local injective (foldover-free) mappings.
It is only recently that several papers have managed
to incorporate foldover-free constraints. The foldover-
free criterion is often formulated as constraints of non-
convex inequalities in an optimization problem. Aiger-
man and Lipman[7] convexi�ed the problem and pro-
jected simplicial maps onto a set of bounded distor-
tion maps. Sch•uller et al.[8] proposed an interior point
method which supports various kinds of distortion en-
ergy. Kovalsky et al.[9] presented a convex framework
for controlling singular values of simplicial maps via
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semi-de�nite programming. Di�erent methods need
di�erent optimization strategies and solvers, and all of
them have to explicitly impose foldover-free constraints.

Can we directly optimize certain distortion energy
without imposing additional foldover-free constraints so
that the energy can restrain the foldover while preserv-
ing other geometric measures like angles and volumes?
Such type of energy exists and was used to solve 2D
problems, e.g., MIPS (Most Isometric Parameteriza-
tions) energy[10] and stretch-distortion energy[11] . To
the best of our knowledge, no such kind of energy has
been adopted for 3D volumetric parameterization so
far.

Both MIPS and stretch-distortion energy have a
term of reciprocal signed area which can be set as a bar-
rier function to prevent mesh elements from foldover.
Stretch-distortion energy is bounded with two norms on
stretch or shear which can locally measure length dis-
tortions. It is then possible to o�er a trade-o� between
angle and area distortions. In this paper, we derive
the 3D version of stretch-distortion energy by following
its de�nition on the 2D domain. We then apply it to
volumetric parameterization. The energy is related to
singular values of the Jacobian of simplicial maps. And
it can be optimized globally with an improved Newton-
like solver (a relaxation-enhanced solver). The barrier
item in our energy de�nition e�ectively prevents the ap-
pearance of folding elements and minimizes distortions.

2 Related Work

The mesh parameterization has been studied for
many years. Although there is a large body of surface
parameterization methods as highlighted in the survey
paper of [1] and its listed references, not many meth-
ods have addressed the challenges in volumetric param-
eterization, and very few of them consider the foldover
problem.

The widely used harmonic maps in 2D have been
adopted to help with constructing volumetric map-
pings. The harmonic mapping uses Dirichlet energy[12]

which measures the smoothness of the mapping. Wang
et al.[2] discretized the volumetric harmonic energy
over tetrahedral mesh and used it for volumetric map-
ping. Li et al.[13-14] computed the harmonic volumet-
ric mapping between solid models by using a meshless
approach. The basic idea is to simulate an electri-
cal charging system over sample points and use MFS
(method of fundamental solutions) to compute the har-
monic function. Li et al.[3] further considered feature

constraints in volumetric data and applied a multiple
fundamental solutions system for fast computation. Xu
et al.[15] recently used the similar framework to pro-
duce smoother parameterization but with a biharmonic
model. Martin et al.[16] computed harmonic volumet-
ric parameterization for cylindrical objects, which is
used for trivariate spline construction. They extended
their work in [16] and used midsurface in combination
with harmonic functions to eliminate the degenerated
elements[17] . However, the volumetric parameterization
based on harmonic function has no guarantees on bi-
jectivity. Xia et al.[18] used Green functions to parame-
terize star-shaped volumes and showed that the con-
structed map is bijective and smooth except at unique
critical point. Xia et al.[19] also proposed an algorithm
to decompose a volume into the direct product of a two-
dimensional (2D) surface and a one-dimensional (1D)
curve and then trace the integral curve along the har-
monic function. The mapping is claimed to be bijective.
Paill�e and Poulin [6] generalized the Cauchy-Riemann
equations to compute as-conformal-as-possible parame-
terization but the bijectivity and the convergence are
also not guaranteed.

Generalized barycentric coordinates with closed-
form expressions are a powerful and exible interpo-
lating tool to compute mappings[20-21] . Ju et al.[22]

and Floater et al.[23] extended the mean-value coor-
dinates from surface[20] to volume to compute the in-
terpolation of volumetric data. Lipman et al.[24] pro-
posed Green coordinates which led to mappings with
shape-preserving property. However, these methods do
not perform well for general solid models with complex
shapes and cannot ensure the bijectivity.

Following suit in 2D parameterization which derives
distortion energy from the Jacobian of simplicial maps
(also known as \deformation gradient") and formulates
the problem in a variational way, several work com-
puted 3D mappings. Chao et al.[4] proposed a sim-
ple geometric model measuring distance from the Jaco-
bian of the mapping to an isometry, which is known as
ARAP (as-rigid-as-possible) deformation energy. They
used SVD (singular value decomposition) of the Ja-
cobian to extract the rotation, and detect and re-
sist inversion[25] by rectifying the target transforma-
tion, but still some inversion might occur. Frame �eld
driven methods[26-28] compute the volumetric parame-
terization in a multi-patch manner, which uses an en-
ergy measuring di�erence between the Jacobian and the
guidance frame �eld. The parameterization usually has
low distortions and does not have guarantees of anti-
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folding. Volumetric polycube mappings were used to
compute mappings to volumes with orthogonal poly-
hedron boundary. Gregsonet al.[5] proposed a rotation
and position driven deformation algorithm to construct
polycube maps. This deformation strategy was also
used in [29-30]. However, they did not consider the
foldover problem. Huang et al.[31] recently proposed a
variational method for deforming an input mesh into
a polycube shape through the minimization of thel1-
norm of the mesh normals, regularized via an ARAP
volumetric distortion energy. They added log-barrier
terms as anti-folding constraints, but still produced de-
generated elements.

Recently, with the development of 2D locally in-
jective mappings, generating 3D volumetric mappings
without foldovers has received researchers' attention.
Some methods explicitly control the singular values
of the Jacobian of simplicial maps. Aigerman and
Lipman [7] projected simplicial maps onto a set of
bounded distortion maps by quadratic programs. This
projection seeks a mapping close to an input, rather
than directly optimizes the distortion energy. Kovalsky
et al.[9] introduced a family of convex sets of matrices
whose singular values are bounded. These sets are for-
mulated using LMI (linear matrix inequalities), allow-
ing optimization with standard convex SDP (semide-
�nite programming) solvers. Some other methods de-
sign an explicit \barrier term" for the feasible region.
Sch•uller et al.[8] proposed a general framework which
supports various types of distortion energy using inte-
rior point method. It shows successful applications on
2D/3D deformations and surface parameterization.

In surface parameterization, foldover problem is well
studied. For a detail review, please refer to the recent
work[8] . One simple but e�ective idea is to design some
special energy with a term of reciprocal signed area of a
parameter domain, which prevents foldovers. The well-
known MIPS energy measures Dirichlet energy per pa-
rameter area[10] . It is a kind of conformal energy with
the anti-folding property. Stretch-distortion energy is
another of such type. It was �rst proposed by Sander
et al.[11] and was used to measure the stretch distortion
of the mapping between two objects. The energy was
widely used and improved by the later work[32-35] for
several 2D problems. However, no such kind of energy
in 3D has been adopted so far. In this paper, we aim
to explore the de�nition of stretch-distortion energy in
a 3D domain and apply it to generate foldover-free vol-
umetric mappings.

3 Stretch-Distortion Energy

3.1 Stretch-Distortion Energy in 2D

In this subsection, we recall the 2D stretch-
distortion energy from the work of [11]. Given a triangle
t with 2D parametric coordinates f u 1; u 2; u 3g; u i =
(si ; t i ) and the corresponding 3D coordinates
f x 1; x 2; x 3g; x i 2 R3, we can establish an a�ne map-
ping A : u ! x with its Jacobian J = A 2 R3� 2. The
two singular values ofJ ,  and � (  6 �) can be used
to measure the local stretch of a mapping which maps
unit-length vectors from a triangle in the parameter
domain to a triangle in 3D, i.e., the largest (�) and the
smallest ( ) local stretch. Based on this observation,
Sanderet al.[11] de�ned the following stretch measures
under L 2 and L 1 norms,

L 2(t) =
p

( 2 + � 2)=2; L 1 (t) = � :

Note that as the parameterization of a triangle t
starts to degenerate, � increases to in�nity, and both
the norms L 2 and L 1 approach in�nity. Therefore
degeneration triangles can be severely punished and
avoided by minimizing these two measures. The feature
makes it possible to produce foldover-free parameteri-
zation and has the ability to trade o� between angle and
area distortions as well. Such nice property arouses us
to seek stretch-distortion energy in 3D for volumetric
mappings which will be introduced in the next subsec-
tion.

3.2 Stretch-Distortion Energy in 3D

Similar to the 2D case, the stretch-distortion energy
in 3D can be de�ned analogously, i.e., using the norms
of the singular values of the Jacobian. Since it is di�-
cult to obtain the expressions of the singular values of
the Jacobian in 3D, it is non-trivial to derive the energy
(eps., theL 1 -norm energy) in the same way. However,
we can derive theL 2-norm energy through a lemma to
be proved.

Di�erent from the 2D case, where it constructs the
Jacobian of a mapping from the parameter domain to
the source domain, we take the Jacobian of an inverse
map instead, i.e., from the source domain to the pa-
rameter domain. This is to simplify the problem since
each element of the Jacobian matrix of such an inverse
mapping becomes a linear function.

Let a volumetric model be represented as a tetrahe-
dral mesh M = f V; Tg, where V = f x i g; x i 2 R3 and
T = f t i g denote the sets of vertices and tetrahedrons
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of the mesh, and the parameter domain denoted asD
with vertices V 0 = f u i g; u i 2 R3. Let a tetrahedron
in D denoted ast

0

j = ( u j 0 ; u j 1 ; u j 2 ; u j 3 ) and the corre-
sponding tetrahedron in M as t j = ( x j 0 ; x j 1 ; x j 2 ; x j 3 ).
Then the Jacobian as the �rst derivative of the a�ne
mapping A t can be calculated as:

J t = U t X
� 1
t ;

where U t = ( u j 1 � u j 0 ; u j 2 � u j 0 ; u j 3 � u j 0 ) and
X t = ( x j 1 � x j 0 ; x j 2 � x j 0 ; x j 3 � x j 0 ) are incidence
matrices. The related notations can be seen in Fig.1.

x j0

x j1

x j2

x j3

J t

u j1

u j0

u j3

u j2

Fig.1. A�ne mapping between two tetrahedrons.

To derive the formula of the 3D version of the
stretch-distortion energy, we �rst give out a lemma with
its proof.

Lemma 1. Let J t 2 R3� 3 be the Jacobian matrix of
the a�ne mapping from the tetrahedron t of the mesh
to the corresponding tetrahedront0 of the parameter do-
main, Vt and Vt 0 are volumes of the tetrahedronst and
t0, and assume� t; 1; � t; 2; � t; 3 are singular values ofJ t ,
then the following equations hold,

� t; 1� t; 2� t; 3 =
V 0

t

Vt
; (1)

� 2
t; 1 + � 2

t; 2 + � 2
t; 3 = jjJ t jj2

F ; (2)

� 4
t; 1 + � 4

t; 2 + � 4
t; 3 = jjJ T

t J t jj2
F ; (3)

where jj � jj F is the Frobenius norm (F -norm).
Proof. Take SVD (singular value decomposition)

of the Jacobian matrix J t = U t � t V T
t , where U t and

Vt are orthogonal matrices, and� t is a diagonal ma-
trix whose diagonal entries are� t; 1; � t; 2; � t; 3. Then the
proof of (1) is as follows,

� t; 1� t; 2� t; 3 = det( � t ) = det( U t � t V T
t )

= det( J t ) = det( U t X
� 1
t )

= det( U t ) det(X � 1
t )

=
det(U t )
det(X t )

=
V 0

t

Vt
:

To prove (2), we transform the F -norm to the form
of matrix trace and use the commutative law of the
trace, tr( AB ) = tr( BA ). Thus we can obtain,

jjJ t jj2
F = tr( J T

t J t )

= tr( Vt �
T
t U T

t U t � t V T
t )

= tr( Vt �
T
t � t V T

t )

= tr( Vt V T
t � T

t � t )

= tr( � T
t � t )

= � 2
t; 1 + � 2

t; 2 + � 2
t; 3:

Note that the above equation is the well-known and
widely used volumetric Dirichlet energy[2] expressed in
the form of singular values. Similarly, we can easily get
the proof of (3),

jjJ T
t J t jj2

F = tr( J T
t J t J T

t J t )

= tr( Vt �
T
t U T

t U t � t V T
t Vt �

T
t U T

t U t � t V T
t )

= tr( Vt �
T
t � t �

T
t � t V t )

= tr( Vt V T
t � T

t � t �
T
t � t )

= tr( � T
t � t �

T
t � t )

= � 4
t; 1 + � 4

t; 2 + � 4
t; 3:

�
Now with the lemma above, we can easily derive

the L 2 stretch-distortion energy and obtain the follow-
ing theorem.

Theorem 1. The L 2 stretch-distortion energy has
the following closed-form expression,

Estretch (t) =
1

� 2
t; 1

+
1

� 2
t; 2

+
1

� 2
t; 3

=
1
2

V 2
t

V 2
t 0

(( jjJ t jj2
F )2 � jj J T

t J t jj2
F ); (4)

where symbolsJ t ; � t; 1; � t; 2; � t; 3; Vt ; Vt 0 are de�ned in
Lemma 1.

To prove the above theorem, we use the results in
Lemma 1 and obtain:

Proof.

1
� 2

t; 1
+

1
� 2

t; 2
+

1
� 2

t; 3

=
1

(� t; 1� t; 2� t; 3)2 (( � t; 1� t; 2)2 + ( � t; 2� t; 3)2 + ( � t; 3� t; 1)2)

=
det(X t )2

det(U t )2

1
2

(( � 2
t; 1 + � 2

t; 2 + � 2
t; 3)2 �

(� 4
t; 1 + � 4

t; 2 + � 4
t; 3))

=
1
2

V 2
t

V 2
t 0

(( jjJ t jj2
F )2 � jj J T

t J t jj2
F ): �
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Note in (4) that the term 1
V 2

t 0
has a natural \barrier"

item, namely,

� (Vt 0) =

8
<

:

1
V 2

t 0

; for Vt 0 > ";

1 ; for Vt 0 6 ";

where" is a small value that accounts for numerical in-
accuracies. This function de�nes a feasible region with
positively signed volumes of the tetrahedron. With this
property, the stretch-distortion energy would punish
collapsing tetrahedrons and thus it is able to prevent
tetrahedrons from degeneration or foldovers and pre-
serve the volume better than other kinds of energy like
Dirichlet.

With the results of Lemma 1, we can further de-
rive the 3D versions of LSCM (least square conformal
maps)[36-37] and LPM (length preservation maps)[37] .
Di�erent from the 2D versions of LSCM and LPM
which use � t;i to measure the distortions, we use� 2

t;i

instead in order to obtain closed-form expressions as
follows.

ELSCM = ( � 2
t; 1 � � 2

t; 2)2 + ( � 2
t; 2 � � 2

t; 3)2 + ( � 2
t; 3 � � 2

t; 1)2

= 3 jjJ T
t J t jj2

F � (jjJ t jj2
F )2; (5)

ELPM = ( � 2
t; 1 � 1)2 + ( � 2

t; 2 � 1)2 + ( � 2
t; 3 � 1)2

= jjJ T
t J t jj2

F � 2jjJ t jj2
F + 3 : (6)

4 Stretch-Minimizing Parameterization

Stretch-distortion energy can be used to compute
volumetric parameterizations. However, directly mini-
mizing the energy without constraints is not acceptable
because it would \stretch" all parametric elements to
in�nite size. To prevent such an in�nite stretching, the
boundary of the domain is required to be �xed as it
was done in [11]. Therefore, \stretch-minimizing" is
only meaningful for boundary constrained mappings.
To �nd a stretch-minimizing parameterization under
such constraints, Sanderet al.[32] used a local optimiza-
tion scheme. They began with an initial foldover-free
planar embedding (e.g., Tutte embedding[38] ) and op-
timized each interior node individually by performing
a line search minimization along a randomly chosen di-
rection in the parameter domain. However, there is no
parallel theory for Tutte embedding in 3D, and it is
non-trivial to obtain a foldover-free initial status with
a �xed boundary. Thus the same scheme cannot be
used directly in general. Instead, we compute the pa-
rameterization using a global optimization.

4.1 Energy Function for Volumetric
Parameterization

Formally, given a source tetrahedron meshM with
boundary @M and a target domain D with boundary
@D, we want to seek a low distortion and foldover-free
mapping f : M ! D under the boundary constraints
h : @M! @D. The boundary constraints can be for-
mulated as a set of linear equations:

P(u ) = C u � p = 0 ; (7)

where C is a coe�cient matrix, and p is a vector of
target positional values.

We use the stretch-distortion energy for measuring
distortions and take the positional constraints in (7)
into consideration. Thus we can �nd a mapping by
minimizing the following energy, which can gradually
deform the rest shape to the target.

arg min
u

E = Estretch + Epos

=
nX

i =1

1
2

V 3
t;i

V 2
t 0;i

(( jjJ i jj2
F )2 � jj J T

i J i jj2
F ) +

! jjP(u )jj2
2; (8)

where Epos is the energy of positional constraints for
the boundary vertices and! is a large weight to ful�ll
the constraints of (7).

4.2 Optimization

The energy function in (8) is non-linear and non-
convex. The term of reciprocal of the signed volume of
parameter domain (1=V2

t 0) can be served as a natural
barrier to prevent degeneration and foldovers. How-
ever it may potentially make the optimization di�cult
since the gradient and the Hessian may become ill-
conditioned when the elements are close to degenera-
tion. In order to accelerate the convergence, we need
to keep a good condition number of the gradient and the
Hessian in the iteration. Thus we adopt the similar in-
terior point method discarding the topology operations
in [39] (a variant of the method in [8]) with a modi-
�cation. In each iteration of the solver [39] , it updates
vertices' coordinates via Newton's method with back-
tracking line search (subroutine UpdateVertices) fol-
lowed by a relaxation step to improve the conditioning
of the gradient and the Hessian (subroutineRelaxVer-
tices). When the Hessian becomes ill-conditioned (e.g.,
by checking whether the LLT decomposition of Hessian
is failed[8] ), the later step is taken and alters the en-
ergy term Epos temporally by replacing the �nal target
with the current vertices' positions and re-optimizing
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the new energy to improve the distribution of tetra-
hedrons. This strategy can provide a well-conditioned
Hessian for further optimization.

However, the solver[39] is not robust and may still
slow down the convergence for some examples which
require acute constraints. This situation may appear
when the total energy is reduced largely at the expense
of sharply increasing the norm of the gradient. When
the iteration falls into such a case, the gradient and the
Hessian may tend to be ill-conditioned and the further
convergence would become very slow. Thus we modify
the line search scheme in each update of vertices' co-
ordinates by adding an additional criterion of reducing
the norm of the gradient as well as the energy value.
Such a modi�cation may increase the rate of failure in
�nding a suitable step. When such failure happens, we
switch to the relaxation subroutine for further improve-
ment (to avoid excessive relaxation which consumes too
much time, we set the maximal number to 5 in each re-
laxation subroutine). Besides this modi�cation, we also
consider the following issues.

Convergence Criteria. After the subroutine Update-
Vertices, we will check the convergence criteria as de-
scribed in [39] as well as the function-value convergence
criterion: jEn � En � 1j < " f DM , where n is the current
number of iterations, " f is a small constant (" f = 10 � 8

by default) and DM is the diameter of the bounding
box of the meshM .

Soft Weight. The weight ! in (8) has an impact on
the convergence of the optimization. Too small value
may result in failing to ful�ll the constraints and too
large value may lead to numerical issues. By default,
we set ! = 108 and for examples with acute boundary
constraints, we begin with a small value for! and in-
crease it by multiplying  when the iteration meets one
of the three convergence criteria while the constraints
are not satis�ed (jjP(u )jj2 > � (� = 10 � 6 by default),
! n = ! n � 1; 1 6 n 6 5). And we �nd that ! 0 = 100
and  = 25 work well.

Initial Guess. The solver requires that the initial
value should be an interior point, i.e., all the tetrahe-
drons have positive signed volumes. Though rest-pose
mesh is a choice, we �nd experimentally that the solver
behaves better when the initial mesh well approximates
the target parameter domain. Thus we calculate a
shape as an initial guess which rigidly aligns the tar-
get parameter domain as well as possible. The problem
is to �nd a \scaled" rotation matrix Q 2 R3� 3 (a ro-
tation matrix multiplies a scalar value), a translation

t 2 R3 , and an auxiliary variable for global scaling
s 2 R, which minimize the following energy function:

arg min
s;Q ;t

NX

i

1
N

jj (Qx i + t ) � u i jj2 + jjQT Q � s2I jj2
F ;

where the summation is taken all over the boundary
vertices. It can be e�ciently solved using the same
method above by discarding the relaxation subroutine
due to its low dimensionality (with 13 variables). Since
the obtained Q is not a strictly scaled rotation matrix,
we have to rectify it with the closest rotation matrix
to Q: R = UV T , where U ; V are rotation matrices
taken from SVD of Q: Q = U � V T . Finally, we up-
date coordinates of all the vertices as the initial guess:
x 0

i = jsjR x i + t .
In the optimization, relaxation plays a very impor-

tant role in the convergence since it can keep the con-
dition of the gradient and the Hessian as well as pos-
sible. To show its e�ect, we plot the change of the
two energy terms Estretch and Epos during the itera-
tions by using the algorithms with and without relaxa-
tion. Fig.2 illustrates the change of the function values
and the gradient norm of the two energy terms for a
cow model (with 5876-V, 4675-B and 19232-T , where
V; B; T stand for the number of vertices, boundary ver-
tices and tetrahedrons respectively) with the two al-
gorithms. It takes 272 s for the former algorithm to
achieve a point with gradient convergence and 1 597 s
for the later one which exceeds the maximal iteration
number. It shows that with the relaxation, the value
of Estretch increases monotonously during the iteration
and �nally converges in 46 iterations (Fig.2(a)); while
for the algorithm without relaxation, its value reaches a
peak before reducing (Fig.2(c)) and the norm of the cor-
responding gradient changes abruptly (Fig.2(d)) mean-
while, which greatly slows down the convergence.

We also display the shapes of the cow model sam-
pled from the iterations in Fig.3. Note that the shape
generated with the relaxation-enhanced algorithm de-
forms much smoother (the �rst row) than that of algo-
rithm without relaxation (the second row).

5 Results

We implemented the algorithm of stretch-
minimizing volumetric parameterization on a computer
with 3.40 GHz CPU and 12 GB memory. In the imple-
mentation, we used the Eigen library 1O to carry out the

1O http://eigen.tuxfamily.org, Mar. 2015.
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Fig.2. Convergence plots of the energy value and the gradien t norm of the two energy terms E stretch and Epos for the cow model with
the �xed soft weight ! = 10 4 . (a) (b) Results with relaxation. (c) (d) Results without re laxation.

matrix computations and the simplicial LLT decompo-
sition method wrapped by CHOLMOD library 2O to
solve the linear system in the optimization.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig.3. Shapes of the cow model during the iteration. The shap es
of (a) � (e) are sampled from the iteration 1, 11, 22, 33, 46 of the
relaxation-enhanced solver respectively. The shapes of (f )� (j)
are sampled from the iteration 1, 120, 240, 360, 500 of the sol ver
without relaxation respectively.

To quantify the parameterization distortion, we
computed angle and volume distortions. With the help
of the singular values� t; 1; � t; 2; � t; 3(� t; 1 6 � t; 2 6 � t; 3)
of the JacobiansJ t for tetrahedron t, we had the follow-
ing distortion measures for angle distortions and volume

distortions,

Daa =
X

t

VtP
t Vt

�
� t; 1

� t; 3
+

� t; 3

� t; 1

�
;

Dma = max
t

�
� t; 1

� t; 3
+

� t; 3

� t; 1

�
;

Dav =
X

t

VtP
t Vt

�
� t; 1� t; 2� t; 3 +

1
� t; 1� t; 2� t; 3

�
;

Dmv = max
t

�
� t; 1� t; 2� t; 3 +

1
� t; 1� t; 2� t; 3

�
;

whereDaa; Dma ; Dav ; Dmv denote the average angle dis-
tortions, maximal angle distortions, average volume
distortions, and maximal volume distortions respec-
tively. In the following, we would use the vector
D = ( Daa; Dma ; Dav ; Dmv ) to represent the four types
of distortions of the mapping.

We applied our approach to parameterize a variety
of volumetric tetrahedron meshes to target domains
(e.g., polycube) with prescribed boundaries. The poly-
cube domain can be manually or automatically con-
structed, and the position of inner vertices in each poly-
cube patch can be calculated using the convex combina-
tion method[1;20] with bijective guarantees or bounded

2O http://faculty.cse.tamu.edu/davis/suitesparse.html, Mar. 2015.



560 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

distortion mappings with controllable distortions [7;40] .
In our experiment, we used the data coming from the
homepages of Xin Li3O and Noam Aigerman 4O . All the
boundary vertices of the parameter domains are �xed
to di�erent polycube shapes.

We �rst compared results of our stretch-distortion
energy with those of popular energies, such as
\Dirichlet" [2] and \ARAP" [4] . The results can be seen
in Fig.4. Since \Dirichlet" energy and \ARAP" energy
do not impose foldover-free conditions, the results have
foldover tetrahedrons (colored in red in Figs.4(c) and
4(d)), where the results of Dirichlet energy in Fig.4(c)
and ARAP energy in Fig.4(d) have 921 and 1 114 fold-
ing elements respectively. Thanks to the barrier term
possessed in our stretch-distortion energy, it produces
results without foldovers as shown in Fig.4(e).

(a) (b) (c) (d) (e)

Fig.4. Parameterization results for (a) \MaxPlanck" model with
23 653 tetrahedrons by using three di�erent energies: \Diri ch-
let" energy, \ARAP" energy and our stretch-distortion ener gy.
A cross section is opened for the model (b) and its tetrahedro n
elements and corresponding mapped elements can be seen in (c),
(d) and (e). The red color encodes the foldover tetrahedrons .

We then compared our method with the most re-
lated work[8] which aims to compute foldover-free map-
pings in the framework of interior point method. In
[8], the authors explicitly imposed the foldover-free con-
straints as an inverse-spline barrier function and con-
verted a constrained optimization to an unconstrained
one. Their method needs to set two additional parame-
ters, the weight for the barrier energy � and the weight
for the initial rest-pose tetrahedron volumes � , which
can a�ect the convergence (ours directly optimizes the
distortion energy and is parameter-free). In the com-
parison experiment, we set� = 0 :01 and � = VD =VM ,
whereVD and VM are the total volume for the parame-
ter domain D and the meshM respectively. And we
adopted the Newton-like solver as proposed in the pa-
per to optimize the energy. The solver updates vertices'
coordinates using the similar strategy to ours combined
with a di�erent substepping strategy for improving the
condition number of the Hessian.

We found by experiments that in general, the
method in [8] performs well in applications such as
2D/3D deformation and surface parameterization, but
not in volumetric parameterization with acute con-
straints. An example can be seen in the �rst row of
Fig.5, where we parameterize the Isis model (3403-
V , 2535-B , 12074-T) to a cuboid using our method
and that of [8] using the ARAP energy. Note that in
Fig.5(c), the boundary constraints are far away from
the target parameter domain with the method in [8],
while in Fig.5(b), ours can align the constraints well.
We further replaced the optimization solver of the
method in [8] with ours, parameterized the horse model
(10999-V, 8457-B , 36775-T) to a polycube with Dirich-
let energy and obtained the result in Fig.5(f). We can
see in Fig.5(e) that the ful�llment of the constraints has
been improved but is still not well compared with ours.

(a) (b) (c)

(d) (e) (f)

Fig.5. Comparison results for (a) the Isis and (d) the horse
models. (b) (e) Results of our method. (c) (f) Results of the
method in [8].

To see the convergence behavior of di�erent energies
under foldover-free constraints, we parameterized the
duck model (2464-V, 901-B , 12601-T) to a cube with
Dirichlet energy, ARAP energy, and stretch-distortion
energy. Since Dirichlet energy and ARAP energy do
not contain any term to prevent foldovers, we explicitly
added a barrier energy as done in [8] for both of them
and optimized the energy functions with our solver.
The results can be seen in Fig.6 and Table 1. We can see

3O http://www.ece.lsu.edu/xinli/Meshing/VolumeMeshing. html, Mar. 2015.
4O http://www.wisdom.weizmann.ac.il/ � noamaig/html/projects/bd3d/bd3d.html, Mar. 2015.
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that all the three kinds of energy achieve similar con-
vergence behavior with gradient convergence. Though
our result costs more time, it provides much lower angle
distortions than the others.
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Fig.6. Comparison results of the foldover-free algorithms with
di�erent kinds of energy ( ! = 10 8 ). (a) Dirichlet energy. (b)
ARAP energy. (c) Stretch-distortion energy.

Table 1. Distortions and Time Statistics for the Duck

Model with Di�erent Kinds of Energy

Types of Energy ( D aa ; D ma ; D av ; D mv ) Time (s)

Dirichlet (3 :2; 273:7; 5:2; 34:7) 1 047

ARAP (2 :9; 254:9; 5:1; 33:7) 1 041

Stretch (2 :8; 12:3; 5:1; 34:7) 1 098

LSCM (6 :7; 652:1; 5:3; 31:6) 1 018

LPM (3 :9; 236:0; 5:3; 30:1) 1 569

Besides, to show the behavior of the other two kinds
of energy, LSCM (5) and LPM (6), we parameterized
the same duck model using these two kinds of energy
with the same method above (with barrier energy). The
results are shown in Fig.7 and Table 1, where LPM en-
ergy converges faster and has lower distortions than
LSCM energy, and both of them cost much time.
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Fig.7. Results of LSCM and LPM parameterizations ( ! = 10 8 ).
(a) LSCM energy. (b) LPM energy.

Finally, we compared our results with those of the
method in [7]. Fig.8 displays comparison results for
the hand model (8366-V, 3497-B , 40627-T) and the
sphinx model (10528-V, 6118-B , 43371-T) and Table 2
lists their statistics information. The method in [7] can
exibly control the bound of angle distortions ( K ) in
a convex framework. Thus we set di�erent bounds for
the algorithm in the results. Generally speaking, the
method in [7] can achieve much lower maximal angle
distortions and higher average angle distortions com-
pared with our method. For the volume distortions,
our method shows its advantages in most cases. We
can see the volume distortions of the both models in
the table, where the average and the maximal volume
distortions are much lower than those in [7].
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(a) (b) (c) (d)

(i) (j) (k) (l)

(m) (n) (o) (p)

(e) (f) (g) (h)

Fig.8. Comparison results for the hand (the �rst row) and the
sphinx (the second and the third row) models. (c) (f) (j) (n)
Results of our method. (d) (e) (g) (h) (k) (l) (o) (p) Results o f
[7]. The color map encodes distortions (the colors from ligh t red
to dark red denote the values from small to large). (c) � (e) dis-
play angle distortions with the method of ours, [7] with K = 64,
and [7] with K = 20 respectively, and (f) � (h) are their volume
distortions. (j) � (l) show angle distortions with the method of
ours, [7] with K = 38, and [7] with K = 10 respectively, and
(n) � (p) are their volume distortions respectively. Both angle
and volume distortions are concentrated on the boundary.

Table 2. Distortions and Time Statistics for the Results of Our

Method and the Method in [7]

Method ( D aa ; D ma ; D av ; D mv ) Time (s)

Ours (3.8, 63.9, 4.6, 41.3) 684

[7] (K = 64) (4.0, 63.8, 4.8, 559.8) 943

[7] (K = 20) (3.9, 20.0, 4.7, 91.4) 425

Ours (2.6, 38.4, 2.1, 68.2) 110

[7] (K = 38) (2.8, 37.9, 2.4, 258.0) 499

[7] (K = 10) (2.6, 10.0, 2.3, 102.2) 588

Note: K is the bound of angle distortion. The algorithm of [7] is
ran with MATLAB. The former three and the later three rows
are the results for the hand and the sphinx model respectivel y.

Besides, our method distributes distortions more
evenly. Note the inside region of the green frames in
Figs.8(j)� 8(l) and Figs.8(n)� 8(p). This is due to the
fact that the stretch-distortion energy has a severe pun-
ishment on the degeneration volumes and thus can pre-
serve the volume to a large extent but their method has
no control over the volume distortions.

The time performance of our method is listed in the
last columns of Table 1 and Table 2. Note that both
the method in [7] and ours are time-consuming. The
method in [7] needs to solve a quadratic program in

each iteration, which is costly. As for our method, it
is due to the high non-linearity of the energy function,
in which the evaluation of the Hessian of the non-linear
energy accounts for the most of the running time.

6 Conclusions

We derived the de�nition of the stretch-distortion
energy of a 3D domain and applied it to volumetric pa-
rameterization to satisfy �xed boundary constrains. We
provided a global optimization strategy which moves all
vertices of a model simultaneously with a relaxation-
enhanced solver to optimize the non-linear energy. One
important feature of our parameterization is that a bar-
rier item de�ned in the energy implicitly enforces the
foldover-free constraints while minimizing the distor-
tions of both angles and volumes. We also extended the
2D de�nition to the 3D one for both forms of distortion
energy, i.e., LSCM and LPM, and conducted several
numerical experiments. And in general, we found that
the LPM method o�ers faster convergence and less dis-
tortions than LSCM.

Our method provides a solution to satisfy the cri-
teria in parameterization of low distortions, alignment
of constraints, and foldover-free. Like most methods,
our approach has to conduct a non-linear optimization
which is time-consuming. In our experience, our pa-
rameterization can align to the boundary constraints in
most examples when the relaxation scheme is adopted
in optimization. However, it cannot guarantee to ful�ll
arbitrary desired boundary constraints and may fail to
align some very extreme constraints.

Currently, only the �xed boundary conditions can
be included in our model, which limits its potential in
some applications. It may not work well for general de-
formation simulation where people want to implement
a force constraint. We will investigate into the matter
in the future to enhance the overall e�ciency of solving
the problem and make it adapt to other applications,
including deformation. This can be achieved by improv-
ing the solver to include only the gradient information
and parallelizing the computation.
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