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Abstract Matrix-vector multiplication is the key operation for many computationally intensive algorithms. The emerging
metal oxide resistive switching random access memory (RRAM) device and RRAM crossbar array have demonstrated a
promising hardware realization of the analog matrix-vecto r multiplication with ultra-high energy e�ciency. In this p aper,
we analyze the impact of both device level and circuit level n on-ideal factors, including the nonlinear current-voltag e
relationship of RRAM devices, the variation of device fabri cation and write operation, and the interconnect resistanc e as
well as other crossbar array parameters. On top of that, we pr opose a technological exploration ow for device parameter
con�guration to overcome the impact of non-ideal factors an d achieve a better trade-o� among performance, energy, and
reliability for each speci�c application. Our simulation r esults of a support vector machine (SVM) and Mixed National
Institute of Standards and Technology (MNIST) pattern reco gnition dataset show that RRAM crossbar array based SVM
is robust to input signal uctuation but sensitive to tunnel ing gap deviation. A further resistance resolution test pre sents
that a 6-bit RRAM device is able to realize a recognition accu racy around 90%, indicating the physical feasibility of RRA M
crossbar array based SVM. In addition, the proposed technological exploration ow is able to achieve 10.98% improvement of
recognition accuracy on the MNIST dataset and 26.4% energy savings compared with previous work. Experimental results
also show that more than 84.4% power saving can be achieved atthe cost of little accuracy reduction.

Keywords resistive switching random access memory (RRAM), machine learning, electronic design automation, matrix-
vector multiplication, non-ideal factor

1 Introduction

Machine learning is becoming popular in a wide
range of domains. Many emerging applications, rang-
ing from image and speech recognition to natural
language processing and information retrieval, rely

heavily on machine learning techniques[1] . Matrix-
vector multiplication is of signi�cant importance in
many applications[2-3] , such as support vector machine
(SVM) [4] and deep learning algorithms[5] . Therefore,
the performance of matrix-vector multiplication has be-
come one of the most crucial considerations in accelera-
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tor designs for machine learning applications[3] .
Recently, the emerging metal oxide resistive switch-

ing random access memory (RRAM) device and RRAM
crossbar array have demonstrated an e�cient hardware
implementation of matrix-vector multiplication [6-8] .
Based on the multilevel resistance characteristic of
RRAM device and the cross-point structure, RRAM
crossbar array can use the input voltage signal as the
vector data and save the matrix data into the RRAM
cells, which realizes matrix-vector multiplication e�-
ciently with O(1) time complexity by the nature of
merging all cells' current in each row. Furthermore, as
a nonvolatile memory device, RRAM is an emerging ap-
proach to merging the memory and computation, which
has potential to break the \memory wall" bottleneck of
traditional von Neumann architecture. Many studies
have explored the potential of computing with RRAM
crossbar array. For example, a low power approximate
computing system, which is based on the RRAM cross-
bar implementation of matrix multiplication and neu-
ral network, has demonstrated power e�ciency of more
than 400 GFLOPS/W [9] .

However, although many researchers have ade-
quately demonstrated the bene�t of RRAM crossbar
based computing systems, many important non-ideal
factors are neglected. Most of the previous work is
based on a simpli�ed circuit model[8;10-11] and uses a
linear resistor to represent an RRAM device, which may
lead to inaccurate conclusions[12] . Moreover, some non-
ideal factors, such as the nonlinear voltage-current rela-
tionship of RRAM devices, the interconnect resistance,
and the resistance state deviation, may signi�cantly in-
uence the performance of RRAM crossbar array based
computing systems. Therefore, a detailed and compre-
hensive analysis of the impact of these non-ideal factors
is still lacking.

The contributions of this paper include:
1) We analyze the impact of various non-ideal fac-

tors on the performance of RRAM crossbar array. We
demonstrate that the RC delay of the array could be ig-
nored (about 10 ps for a 100� 100 crossbar according to
our simulation). We also propose that the nonlinearity
of RRAM devices, the variation of device processing
and write operation, and interconnect resistance will
have a major inuence on the computation accuracy of
output voltage. Moreover, we present that the mini-
mum resistance state of RRAM devices has little direct
impact on computation accuracy while increasing load
resistance will signi�cantly improve computation accu-
racy.

2) We propose a technological exploration ow of
RRAM crossbar array to mitigate the impact of non-
ideal factors and realize a better trade-o� among per-
formance, energy, and reliability for each speci�c appli-
cation. The proposed ow includes: the con�guration
of technology node, RRAM resistance range, and load
resistance; the algorithm of mapping matrix parameters
to RRAM resistance states; and an iterative solution to
optimize the power and performance.

3) Finally, we use the Mixed National Institute of
Standards and Technology (MNIST) dataset and a lin-
ear SVM classi�er as a case study to test the per-
formance of the proposed technology exploration ow.
Our simulation results demonstrate that the explo-
ration ow can achieve 10.98% improvement of recog-
nition accuracy and 26.4% power reduction compared
with previous work [10] , and can further receive a 84.4%
power saving at the cost of little accuracy reduction.

2 Preliminaries

2.1 RRAM Characteristics and Device Model

RRAM device is a passive two-port element based
on metal oxide materials like TiOx

[13] , WOx
[14] , and

HfOx
[15] with variable resistance. In this paper, we use

HfOx -based RRAM for study because it is one of the
most mature RRAM materials explored[16] .

Fig.1(a) demonstrates a 2D �lament model of the
HfOx -based RRAM[17] . Its conductance is exponen-
tially dependent on the tunneling gap distance (d).
When a large voltage is applied on the electrodes, the
tunneling gap distanced will change due to the electric
�led and temperature-enhanced oxygen ion migration,
and the resistivity of RRAM device will switch between
the highest resistance stateROFF and the lowest resis-
tance state RON . Theoretically, an RRAM device can
achieve any resistance in the range betweenRON and
ROFF . This work focuses on the choice of the resistivity
of RRAM devices and other device parameters. How to
tune the RRAM device to the speci�c resistance state
will not be discussed in the paper.

For the HfOx -based RRAM device, the nonli-
near I -V relationship can be empirically expressed as
follows[17] :

I = I 0 � exp
�

�
d
d0

�
� sinh

�
V
V0

�
; (1)

where d is the average tunneling gap distance,V is the
voltage across the RRAM device, andI is the current.
I 0 (around 1 mA), d0 (around 0.25 nm) andV0 (around
0.25 V) are �tting parameters through experiments.
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Fig.1. (a) Physical model of the HfO x -based RRAM. (b) Struc-
ture of the RRAM crossbar array.

In order to analyze the device and circuit interac-
tion issues for the RRAM crossbar array based compu-
tation, we use HSPICE to simulate the circuit perfor-
mance based on a recent Verilog-A model described in
[17].

2.2 RRAM Crossbar Array

RRAM crossbar array is able to perform the ana-
log matrix-vector multiplication e�ciently. Fig.1(b) il-
lustrates the structure of the RRAM crossbar array.
The relationship between the input voltage vector (Vi )
and the output voltage vector (Vo) can be expressed as
follows[8] :

0

B
@

Vo;1
...

Vo;M

1

C
A =

0

B
@

c1;1 � � � c1;N
...

. . .
...

cM; 1 � � � cM;N

1

C
A

0

B
@

Vi; 1
...

Vi;N

1

C
A : (2)

The index numbers of input and output voltages are
denoted by k (k = 1, 2, ..., N ) and j (j = 1, 2, ..., M )
respectively, and the matrix parameter ck;j can be rep-
resented by the conductivity of the RRAM device (gk;j )
and the load resistor (gs) as:

ck;j =
gk;j

gs +
NP

l =1
gk;l

: (3)

Since both gs and gk;j can only be positive, two
RRAM crossbar arrays are required to represent a ma-
trix with both positive and negative parameters. The
input voltage vectors of the positive RRAM crossbar ar-
ray and the negative RRAM crossbar array should be
Vi and � Vi , respectively. The relationship between the
input and the output voltage vectors can be expressed
as:

Vo = C + � Vi + C � � (� Vi )

= ( C + � C � ) � Vi = C � Vi ; (4)

whereC + and C � are the matrixes represented by the
positive and the negative RRAM crossbar arrays as de-
scribed in (2) and (3) respectively.

2.3 Related Work

Recently, lots of researchers are devoted to fabri-
cating RRAM devices with di�erent kinds of materi-
als and technologies. Some researchers use the tech-
nology at the device level to improve the performance
of RRAM, such as using emerging oxide material with
special characteristic[15;18-19] and optimizing the thick-
ness of oxide layer[20-21] . Moreover, some researchers
further analyze the causes and consequences of some
non-ideal factors of RRAM[22] and propose some mod-
els to describe the performance of RRAM[23-25] . These
device level results provide su�cient preliminary know-
ledge about the non-ideal factors and then support the
analysis and optimization of circuit level design, which
provides the basis of our work.

On the other hand, some researchers focus on
the RRAM-based computation architecture and pro-
pose some RRAM-based designs for applications such
as approximate computing[9;26] and neuromorphic
applications[27] . However, these results do not consider
the non-ideal factors of device and circuit. Actually, for
a certain resistance level (i.e., 0/1 for memory device),
the maximum di�erence between two fabricated RRAM
cells may be larger than one order of magnitude[28] .
For example, the measured resistance value of high re-
sistance state of a 2-value RRAM varies from 1 M

to 10 M
 [29] . Meanwhile, the write operation (i.e.,
SET/RESET for memory device) cannot precisely ad-
just the resistance of RRAM cell, which also results
in a stochastic resistance deviation ranging from 10%
to more than 60%[22] . These resistance variations in-
troduce noise into the computation circuit, which will
obviously inuence the computation result of RRAM
crossbar array.

There are a few researchers introducing some varia-
tions into weight matrixes in algorithms to reect the
RRAM device variations for simulation, and trying to
resist them by improving the reliability of behavior-
level algorithms[30-32] . But these results do not consider
other device level phenomena of the non-ideal factors,
such as the nonlinear I -V characteristics of RRAM,
which limits the improvement space of the RRAM cir-
cuit.

Moreover, some circuit level non-ideal factors may
cause considerable impacts on the computation if we
ignore them when con�guring the circuit design. For
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instance, the interconnect resistance between two ad-
jacent RRAM cells is 2.97 
 for 22 nm technology
node[33] . The resistance of a wire in a 100� 100 cross-
bar would be as large as 300 
. Since the lowest re-
sistance state of an RRAM cell is only around 500 
,
such a large interconnection resistance may have a sig-
ni�cant impact on the voltage distribution [17] . If we
take these impacts into consideration, there is a large
design space in the detailed circuit design of RRAM
crossbar array for computing, and thus a technologi-
cal exploration of RRAM crossbar array is necessary
to provide a guidance about how to choose the tech-
nology node, the resistance levels of RRAM, the load
resistance and other parameters to reduce the inuence
of the non-ideal factors from a basic circuit level and
improve the circuit design.

3 Design Challenge Discussion

In this section, the non-ideal factors of RRAM cross-
bar based computing circuit are studied. Generally,
the non-ideal factors can be classi�ed into two levels:
RRAM device level and circuit level. The device's non-
ideal factors include the nonlinear I -V relationship of
RRAM devices, the process variation[28;34] , and the
stochastic behavior of write operation[22;35-36] . These
device factors not only have impact on the computing
accuracy of RRAM-based system, but also interact with
other circuit level factors and further inuence some
design decisions of the crossbar circuit. The structure
factors contain the IR-drop phenomenon[37] and the RC
delay caused by interconnect resistance. These struc-
ture factors are directly related to the behavior level
performance and restrict the limit of some design pa-
rameters. Therefore, to get an optimized design consi-
dering the trade-o� relationship among accuracy, power
and other performance, the impacts of the non-ideal
factors of both device level and circuit level need to be
analyzed �rst.

Especially, the sneak path problem[38] will not be a
major problem when RRAM crossbar array is used for
computation. To further explain, the sneak path prob-
lem occurs only in memory applications when one word
line and one bit line are selected for each write or read
operation and the unselected lines will have negative
impact on the accuracy of output signals. In matrix-
vector multiplication applications, all the lines will be
selected and the sneak path problem will be eliminated.

As the goal of this paper is to explore design
methodologies for e�cient computing systems based on

RRAM crossbar array, the computation error rate in
di�erent cases should be one of the major metrics to
evaluate the impact of di�erent factors. The computa-
tion error rate of output voltage can be de�ned as:

� = max

�
�
�
�
Vactual � Vtheoretical

Vtheoretical

�
�
�
� � 100%;

where Vtheoretical is the ideal output voltage calculated
by (2). Other performance, such as the operating speed
of the crossbar array, is also analyzed in this section.

3.1 Non-Ideal Factors of Devices

As an emerging kind of devices, the existing practi-
cal RRAM devices cannot be directly seen as an ideal
rheostat, and the non-ideal device factors can cause im-
pacts on the behavior level computation. In this pa-
per, the major two non-ideal device factors are ana-
lyzed: the nonlinear I -V characteristic and the varia-
tions caused by device processing and write operation.

3.1.1 Impact of Nonlinear Characteristics of RRAM
Devices

As shown in (1), the I -V relationship of RRAM de-
vices is nonlinear. However, the resistance states of
RRAM devices should be constant to represent a spe-
ci�c matrix stably when the RRAM devices are used
to perform the matrix-vector multiplication. There-
fore, to con�ne the resistance deviations of RRAM de-
vices, the range of the voltage applied on the RRAM
devices should be limited. According to (1), the linear-
ity of RRAM devices is mainly determined by the term
sinh( V

V0
). The RRAM device comes into an ideal linear

resistance state whenV � 0:

sinh
�

V
V0

�
�

V
V0

:

Fig.2 illustrates the resistance states of an RRAM
device under di�erent tunneling gap distances (d) and
di�erent applied voltages (V ). The tilted dotted line
tracks the maximum voltage that could be applied on
an RRAM device under a speci�c maximum deviation
from the approximate linear resistance state atV � 0.
For example, a voltage of 0:5 V will cause a 5% resis-
tance deviation for d = 0 :2 nm. Considering the same
(5%) resistance deviation, the voltage is limited to the
range of 0:15 V for d = 1 :9 nm. These results demon-
strate that the RRAM resistance states vary with the
applied voltage and bothd and V have inuence on the
stability of the RRAM resistance states. Since Ohmic
current dominates in the low resistance state while tun-
neling current dominates in the high resistance state, a
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smaller RRAM resistance state with a smaller tunnel-
ing gap distanced will result in a more linear I -V re-
lationship under di�erent voltages. Therefore, in order
to achieve a more linearI -V relationship of RRAM de-
vices, both the RRAM resistance state (the tunneling
gap distanced) and the applied voltage (V ) should be
con�ned.
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Fig.2. RRAM resistance states under di�erent tunneling gap
distances (d) and di�erent applied voltages ( V ). The two verti-
cal lines intersect the tilted dotted line with two points, r epre-
senting the same voltage deviation (5%) from approximate li near
resistance state at di�erent distances ( d) with distinct applied
voltage. Both the tunneling gap distance d and the applied
voltage ( V ) should be limited to achieve an approximate linear
resistance state at V � 0 for a better computation result.

3.1.2 Variation of Device and Operation

The variations of RRAM device when processing
computation can be caused by the variations in device
fabrication and the stochastic write behavior during
write operation[22] . The fabrication variation includes
geometric device-to-device variations, such as length
and width variations, oxide thickness variations, and
the surface roughness[39] . Just as mentioned in (1), the
RRAM resistance state has an exponential dependence
on the tunneling gap distance (d). Therefore, the de-
vice variations may have obvious impact on the RRAM-
based computing system accuracy. The write variations
are mainly determined by the uctuation of the number
of vacancies and the changes in �lament geometry dur-
ing set and reset transient of RRAM[22;36] , which leads
to a stochastic write result even for the same RRAM
cell.

This work focuses on the inuence of non-ideal
factors on computing operation instead of the factors
themselves. From a more general view, both these two
kinds of variations can be regarded as a stochastic uc-
tuation on RRAM resistance of each cell. Although the

RRAM device can be theoretically tuned to any resis-
tance value, the unpredictable deviation makes two re-
sistance values indistinguishable if they are in the resis-
tance's deviation range of each other. Therefore, given
the variation degree, the maximum amount of resis-
tance levels is limited by the maximum and minimum
value range of an RRAM cell, which further determines
the quantization precision of the numerical value saved
in RRAM device.

Speci�cally, if the maximum deviation ratio of the
device is� , the neighboring two resistance levelsRlower

and Rhigher should satisfy the following inequality to
distinguish them:

Rlower + Rlower � � < R higher � Rhigher � �:

Thus the constraint of neighboring layers is:

Rhigher

Rlower
>

1 + �
1 � �

:

This constraint can be further extended to the whole
resistance range of RRAM. Given that the maximum
resistance of an RRAM cell isROFF , while the mini-
mum resistance isRON , if we want to put k resistance
levels into the range, the constraint inequality can be
expressed as:

�
1 + �
1 � �

� k

<
ROFF

RON
:

Therefore, the maximum value ofk is limited by both
the variation degree � and the resistance range, as (5)
shows:

k < log�
1+ �
1 � �

� ROFF

RON
: (5)

According to the fabrication result [28;40] , the on/o�
ratio of HfO 2-based RRAM cell is about 105, and the
variation ratio is about 5%� 20%. By substituting these
values back to (5), we can �nd that the whole resis-
tance range can only provide about 105 resistance lev-
els at the 5% variation, and the amount will reduce
to 28 when the variation is 20%. Therefore, when we
consider the inuence of variation of current RRAM
devices, the maximum precision of the numerical value
saved in RRAM can only be 4� 7 bits in practical, which
is determined by the on/o� ratio and the variation de-
gree of the device. Further analysis about the detailed
impact of this constraint is shown in Subsection 4.3.
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3.2 Non-Ideal Factors of Crossbar Structure

As the technology node continues to scale down, the
parasitic parameters induced by interconnects in cross-
bar structure can exert negative inuence on the perfor-
mance of the circuit. In this paper, two major impacts
are studied: the RC delay and the interconnect resis-
tance.

3.2.1 RC Delay

RC delay may have a negative impact on the
operating speed of RRAM crossbar array based
computation[41] . However, the RC delay for RRAM
crossbar array is trivial (around 10 ps according to our
simulation results) when the wire length between two
adjacent junctions is around tens of nanometers for a
100� 100 RRAM crossbar array. Therefore, the RC
delay is not a major consideration of the RRAM cross-
bar array based computing system design. The design
should focus on the performance of peripheral circuits
which may signi�cantly impact the operating speed.

3.2.2 Impact of Interconnect

In order to analyze the impact of interconnect re-
sistance on output voltage computation accuracy, a
SPICE simulation of the worst-case scenario is con-
ducted as a corner case to guarantee the computation
accuracy in normal cases. A worst-case scenario is de-
�ned that all the input voltages of the RRAM crossbar
array are of the same amplitude and the worst result
can be reected by the output port which is the far-
thest away from the input ports, while all the RRAM
cells are in the lowest resistance statesRON . The load
resistance (RS) is set to 5 k
 and the lowest resistance
state of RRAM cells (RON ) is set to 1 k
. The am-
plitude of input voltages is set to 0:9 V. The crossbar
size is varied from 5� 5 to 100� 100 and the computa-
tion error rate is tested as de�ned in (2) under di�erent
technology nodes. The interconnect resistance between
two adjacent junctions is 4:53 
, 2 :97 
, and 1 :55 
, re-
spectively, for a 4F 2 RRAM crossbar structure, where
F is the feature size of RRAM device, under 16 nm,
22 nm, and 32 nm technology node according to the
International Technology Roadmap for Semiconductors
2013[33] . An ideal case without any interconnect resis-
tance is also simulated as a comparison.

The results are demonstrated in Fig.3. When the
interconnect resistance (RInterconnect ) is neglected, the
computation error rate decreases with the rise of cross-
bar sizeN � N . To be speci�c, the equivalent resistance

of the N shunt RRAM cells in a column will drop while
the load resistance in that column remains the same.
The decreased voltage applied on the RRAM cells will
result in better linearity, making the crossbar array rep-
resent the matrix more accurately as described in (3).
Therefore, the computation accuracy increases with the
crossbar size. However, when the interconnect resis-
tance is taken into consideration, the computation error
rate will decrease at the beginning and �nally increase
due to the voltage drop on the interconnect resistance.
Therefore, under the interaction of the nonlinearity of
RRAM cells and interconnect resistance, there will be
an optimal crossbar sizeN � N for each technology
node in the worst-case scenario, and the optimal cross-
bar size will shift slightly as the technology node scales
down. On the other hand, if the crossbar size is re-
stricted by the application, the smaller technology node
leads to higher error rate, as shown in Fig.3. These re-
sults imply that the nonlinearity of RRAM cells and
interconnect resistance should be considered together
to realize a better implementation of the matrix-vector
multiplication operations.
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Fig.3. Worst-case computation error rates ( � ) of RRAM cross-
bar arrays with di�erent crossbar array sizes ( N � N ) and dif-
ferent technology nodes. The RRAM resistance states are cal -
culated at V � 0.

4 Technological Exploration Flow of RRAM

Crossbar Array

According to the analysis in Section 3, the non-ideal
factors can inuence the performance of RRAM cross-
bar array through three design parameters: the load
resistanceRS interacted with nonlinear I -V relation-
ship, the resistance levels limited by variation, and the
technology node of interconnect lines that inuences the
IR-drop phenomenon. These three parameters form the
design space of an RRAM crossbar array for a matrix-
vector multiplication application like SVM. In order to



Lixue Xia et al.: Technological Exploration of RRAM Crossbar Array for Matr ix-Vector Multiplication 9

overcome the impact of these non-ideal factors, we de-
scribe the proposed technological exploration ow of
RRAM crossbar array and achieve a better trade-o�
among accuracy, energy and reliability.

Among the above three non-ideal factors, the inter-
connect line's inuence is independent with the other
two device factors, and is always chosen considering
the design of other peripheral CMOS circuits. Thereby
we �rst determine the technology node of interconnect
lines. For the other two factors caused by the device
itself, the nonlinear I -V characteristic mainly comes
from the physical mechanism of RRAM (residual �la-
ment shown in Fig.1(a)) while the variation is essen-
tially caused by the stochastic process of moving atoms.
These two factors are also independent with each other
and can be separately optimized by choosing the load
resistanceRS and the resistance levels of RRAM. From
the design view,RS is more important because it cap-
tures a part of input voltage from every RRAM cell,

which introduces a computation bias into the whole
crossbar array. To deal with this problem, we propose
a numerical iteration algorithm to map the data onto
the crossbar considering the inuence ofRS and em-
bed this mapping algorithm into the design ow to im-
prove the computation accuracy. The resistance range
of RRAM can also inuence the computation accuracy
considering the variations of RRAM cells, but increas-
ing RON can reduce the power consumption. In order
to optimize the trade-o� among power, accuracy and
other parameters of the circuit, we propose an iterative
ow to explore the design space and to �nd the optimal
design con�guration.

Fig.4 demonstrates the overview of the proposed
ow. The ow consists of �ve stages: 1) determine
the technology node according to characteristics of the
application; 2) choose a proper initialRS to reduce the
impact of interconnect resistance; 3) reset the resistance
range to the maximum range for iteratively optimizing
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the power and the accuracy; 4) map the application ma-
trix C to the RRAM conductance matrixes G robustly;
and 5) iteratively explore the technological design space
and optimize the performance, energy and reliability of
the system. Q is the maximum number of continuously
accuracy reduction, which is used to stop iteration. In
addition, although the crossbar size can also inuence
the e�ect of IR-drop as shown in Fig.3, the practical
crossbar size is constrained by the characteristics of the
speci�c application. Consequently, the proposed de-
sign ow does not consider the con�guration of RRAM
crossbar array size.

4.1 First Stage: Determining the Technology
Node

As the interconnect resistance has negative impact
on the computation accuracy of RRAM crossbar array,
the technology node should be scaled up to support ap-
plications that require a large crossbar array or high
computation accuracy. Meanwhile, the scaling down of
technology node will shrink the area of RRAM crossbar
array. Therefore, there may exist a trade-o� between
the area and the computation accuracy. After the setup
of crossbar size and technology node, device level pa-
rameters can be further con�gured as discussed in the
next stage.

4.2 Second Stage: Choice of RS

Besides the value of interconnect resistance, many
other parameters, such as the value ofRS and the resis-
tance states of RRAM cells, also inuence the compu-
tation accuracy of RRAM crossbar based computation.
Since the practical computation accuracy is heavily de-
pendent on the pattern of input signals and the resis-
tance distribution of RRAM cells, large quantities of
variables form a complex design space. In order to ex-
tract the key parameters and simplify the design op-
tions, the worst-case scenario is studied so that the
negative inuence of interconnect resistance can be fully
exposed.

The value of RS needs to be determined considering
RON sinceRS and RON inuence the linearity of RRAM
cells together. Theoretically, whenRS increases orRON

decreases, the voltage applied on the RRAM cells will
decline. As discussed in Subsection 3.1.1, a smaller ap-
plied voltage will result in better linearity of RRAM
devices and better computation accuracy. However, a
smaller RON can also lead to more serious impact of
the interconnect resistance. The impact ofRON on the

computation accuracy is hard to predict. In order to
better study the impact of RS and RON in the worst-
case scenario as de�ned in Subsection 3.2, where all the
RRAM cells are set to RON , a simulation is conducted.
The crossbar size is set to 50� 50 and the amplitude
of input voltages (which are the same) are set to 0:9 V
(about 0:1 V will be applied on the RRAM cells). The
technology node is set to 22 nm. We varyRON from
500 
 to 5 k
 and vary RS from 1 k
 to 11 k
.

The simulation results are illustrated in Fig.5. It
demonstrates that the computation error rate decreases
exponentially with the rise of RS. Compared with RS,
the computation accuracy improves less than 1% when
RON varies from 500 
 to 5 k
 under the same RS.
This result indicates that RON has little direct impact
on the computation accuracy when not considering the
limited resistance levels caused by variation. Therefore,
the choice ofRON can be neglected for convenience, and
the technological exploration ow should focus on the
choice ofRS. To be speci�c, the simulation results il-
lustrated in Fig.5 can serve as a look-up table and the
technological exploration ow will �rst choose a proper
initial RS to satisfy the worst case and reduce the im-
pact of interconnect resistance. In addition, since the
application performance is also inuenced by the prac-
tical resistance distribution of RRAM cells, a larger RS

cannot guarantee a better computation accuracy. A
smaller initial RS can be used and the optimal choice
of RS can be achieved by iteratively exploring the tech-
nological design space in the next stages of the techno-
logical exploration ow.
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Fig.5. Computation error rates of RRAM crossbar array with
di�erent RSs and RON s. The simulation results demonstrate
that the computation error rate decreases exponentially wi th
RS, while RON has little impact on the computation accuracy.
Therefore, the technological exploration ow of RRAM cross bar
array for matrix-vector multiplication should focus on the choice
of RS. The size of crossbar array is 50 � 50.
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4.3 Third Stage: Choice of Resistance Range

Low power consumption is one of the main advan-
tages of RRAM-based circuit[42] . Therefore many re-
searchers concern power consumption more than accu-
racy especially for the low-power applications like ap-
proximate computing[9;43] . Obviously, if we increase
the resistance ofRON , the resistance value of each level
after mapping will increase, leading to a lower power
consumption of the whole crossbar shown in Fig.1(b).
However, the increasing ofRON results in a smaller
resistance range of RRAM. As discussed in Subsec-
tion 3.1, given the device variation, the range of RRAM
resistance restricts the maximum amount of resistance
levels for error-free separation. For a practical com-
putation, the precision of the number saved in RRAM
cells is determined by the application requirement. As a
result, when RON rises, the distance between two neigh-
boring resistance levels gets smaller, and �nally breaks
the error-free constraint. On the other hand, if the pre-
cision given by application is already larger than that
the RRAM's characteristic can support, the decreasing
resistance range will further reduce the computation
accuracy of RRAM crossbar array. Fig.6 shows the
SPICE simulation result of di�erent RON s and varia-
tions. Considering that the Verilog-A RRAM model
contains the resistance range from 300 
 to 500 k
 [17] ,
we select 200 k
 as the value ofROFF to support the
variation range and change the value ofRON from 500 

to 50 k
, and the data precision is set to be 6-bit (64
resistance levels). The result shows the relationship be-
tween accuracy andRON inuenced by variation.
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Fig.6. Practical relationship between accuracy, power and RON
at 5% and 20% variation when using 6-bit precision (64 resis-
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power data are the average results of 150 matrix samples and
150 input samples.

To further analyze the trade-o� relationship be-
tween accuracy and power, we simulate the power con-
sumption of a 50� 50 crossbar when processing matrix-
vector multiplication with 5% variation. The relation-
ship between power and error rate is shown in Fig.7.
The result shows that the power reduces rapidly at �rst,
which means we can obtain considerable power saving
at the cost of a little accuracy. This is because when
RON is small enough, the low resistance RRAM cells
cost most of the power in the whole crossbar circuit,
and increasing their resistance can signi�cantly reduce
the power according to the inversely proportional rela-
tionship between resistance and power. However, when
RON has already been large enough, further increasing
the RRAM resistance only has a little e�ect on power
saving, but can cause the rapid drop of accuracy as
shown in Fig.6. As a result, there is an inection point
in the trade-o� line. Designers can choose this point
as the optimized result, or use one parameter as a con-
straint to optimize the other one.
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Fig.7. Trade-o� relationship between power and accuracy fo r a
50� 50 crossbar array among di�erent mapping resistance ranges .
The amount of resistance levels is 64 (6-bit precision) and t he
variation is 5%.

As shown in Fig.4, the proposed ow can optimize
the above trade-o�, which is a small nested loop. Af-
ter choosing RS, we need to select a resistance range
(or actually an RON for most cases) to determine the
�nal quantization levels of RRAM resistance according
to the precision of application. During the mapping
phase, the mapping results of resistances (or conduc-
tances) need to be quanti�ed into the determined levels.
Finally, the estimated power and accuracy are tested
if they can satisfy the restriction provided by designers
according to the monotonic relationship between power
and accuracy. For example, if we give minimum accu-
racy as a constraint, we can gradually increaseRON

and reduce the power consumption until the accuracy
is lower than the threshold, which reaches a minimum
power. Oppositely, given a maximum power cost as a
constraint, we can also gradually increaseRON and �nd
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for the �rst time that the power consumption is lower
than the threshold, which reaches maximum accuracy.

In addition, when the resistance range gets too
small, the di�erence between di�erent computation re-
sults will also reduce according to (2), resulting in a
new challenge to the precision of read circuit. This
phenomenon can be regarded as another restriction like
the power or accuracy restriction in the above ow and
we can also introduce this condition into the judgment
phase to further limit the design space.

4.4 Fourth Stage: Mapping Matrix Parame-
ters to RRAM Device Conductivities Ro-
bustly

The conductance states of RRAM cells in the cross-
bar array must be con�gured properly to realize the
multiplied matrix C . However, as shown in (3),ck;j

not only relies on the conductivity of the correspond-
ing RRAM cell gk;j , but also depends on all the RRAM
cells' conductance states in the samej -th column in the
crossbar array. In order to realize a one-to-one mapping
between matrix C and the conductance matrix of the
RRAM crossbar array, some previous work proposed
a few simple and fast approximations to the mapping
problem like [10]:

gk;j = c0
k;j � (gON � gOFF ) + gOFF :

When

gs � (gON � gOFF ) �
NX

l =1

c0
k;l ; (6)

(3) can be approximated to:

ck;j � c0
k;j �

gON

gs
= c0

k;j � gON � RS;

where ck;j is the matrix parameter of a speci�c appli-
cation and c0

k;j is a decayed version ofck;j . gON and
gOFF are the maximum and the minimum conductance
states of the RRAM cells in the crossbar array.

The above equation demonstrates a linear one-to-
one mapping between matrix C and the RRAM con-
ductance matrixesG when gs is determined. However,
the precondition of the approximation may be di�cult
to be satis�ed and may decrease computation accu-
racy. For example, RON � 1 k
 for a physical RRAM

device[17;44] and
NP

l =1
c0

k;l � 5 for a 256� 256 RRAM

crossbar array[10] . And according to (6), RS should be
about 100 
. However, as described in Subsection 4.2,

such a smallRS will lead to a large computation error
because of the interconnect resistance and the nonli-
nearity of RRAM devices.

In this work, we propose a numerical iteration algo-
rithm to map matrix C to the conductance matrixesG
without any approximation, which improves the com-
putation accuracy of RRAM crossbar array.

(3) can be expressed as:

gk;j � ck;j �
NX

l =1

gk;l = gs � ck;j : (7)

If we combine the N equations (for j = 1, 2, ..., N
in (7)) together, all of the RRAM cells in the k-th col-
umn in the crossbar array can form a system of linear
equations ofN variables together:

0

B
B
B
@

1 � ck; 1 � ck; 1 � � � � ck; 1

� ck; 2 1 � ck; 2 � � � � ck; 2
...

...
. . .

...
� ck;N � ck;N � � � 1 � ck;N

1

C
C
C
A

0

B
B
B
@

gk; 1

gk; 2
...

gk;N

1

C
C
C
A

=

0

B
B
B
@

gsck; 1

gsck; 2
...

gsck;N

1

C
C
C
A

: (8)

The accurate conductance states of RRAM cells
(gk;j ) can be achieved by solving the above equations
when the matrix parameters ck;j are provided. How-
ever, several constraints must be considered to guar-
antee the solved conductance states can be realized by
physical RRAM cells. The �rst constraint results from
the range of conductance states that can be realized by
physical RRAM devices. Suppose the minimum and
the maximum conductance states of RRAM cells in a
crossbar array aregOFF and gON , respectively. The pa-
rameters ck;j must be of the following range to enable
all the solved gk;j to be within the range betweengOFF

and gON .

� min 6 ck;j 6 � max ; (9)

where � max and � min are the maximum and the mini-
mum matrix parameters that can be represented by a
physical RRAM crossbar array:

� min =
gOFF

gs + gOFF + ( N � 1)gON
; (10)

� max =
gON

gs + gON + ( N � 1)gOFF
: (11)

Moreover, as described in (4), two crossbars are re-
quired to represent a matrix with both positive and
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negative parameters. In order to satisfy the condition
described in (9), (4) should be revised to:

C0 = C +
0 � C �

0 = � ((C + + �) � (C � + �)) ; (12)

where:

c+
k;j =

�
ck;j ; if ck;j > 0;
0; if ck;j 6 0;

(13)

c�
k;j =

�
� ck;j ; if ck;j < 0;
0; if ck;j > 0:

(14)

� and � are parameters to map C +
0 and C �

0 to the
range described in (9). The choice of� and � can
be achieved by exhausted search. In order to reduce
the search space, a restriction of� and � is required.
We set cmax = max( jck;j j). According to (9) � (12), the
constraints of � and � can be expressed as:

� min

�
6 � 6

� max

�
� cmax ; (15)

� 6
� max � � min

cmax
: (16)

Finally, Algorithm 1 demonstrates the steps of map-
ping matrix C to the conductance matrixes G+ and
G � . Lines 1� 4 in the algorithm are used to set up
parameter constraints. Lines 7, 8, 10, and 11 calcu-
late candidate G+ and G � . Lines 9 and 12 check the
feasibility of candidate solutions.

4.5 Fifth Stage: Trade-O� Among
Performance, Energy and Reliability

The proposed technological exploration ow itera-
tively tests the performance of di�erent parameters and
tracks the optimal point. To be speci�c, the technologi-
cal exploration ow will �rst choose a proper initial RS

as discussed in Subsection 4.2. The selectedRS should
be a small one to guarantee the amplitude of output
current. Afterwards, the technological exploration ow
will calculate the corresponding G+ and G � accord-
ing to the selectedRS and the proposed robust map-
ping algorithm. The calculated parameters will be used
for simulating the detailed performance of the RRAM
crossbar array based computing systems. As a larger
RS may lead to better computation accuracy, and less
energy consumption but smaller amplitude of output
current, the technological exploration ow will keep in-
creasingRS gradually to track the change of the system
performance, energy and reliability. The exploration of
the design space will stop once the output current be-
comes too small. In addition, the rise ofRS can only
guarantee that the computation accuracy increases in
the worst case. The input pattern and the RRAM resis-
tance state distribution may lead to worse computation
accuracy for a largerRS. Therefore, the exploration of
the design space will also stop when the computation
accuracy begins to decrease continuously for a period of
time. Finally, by comparing all the tracked solutions,
the technological exploration ow is able to provide a
solution with better trade-o� among performance, en-
ergy, and reliability.

5 Experimental Results

In this section, we use the support vector machine
(SVM) as a case study to demonstrate the performance
of the proposed technological exploration ow.

Support vector machine (SVM) is one of the most
crucial machine learning algorithms[45] with considera-
ble matrix-vector multiplication workload. Supposing
the data can be represented asx , SVM focuses on learn-
ing the hyperplane w with max-margin to distinguish
x and other data. The decision of the class ofx is de-
termined by the sign of calculating w T x + b = w 0T x 0,
where x 0 = (1; x ) and w 0 = ( b; w). Since many hy-
perplanesw can form a matrix W together, the major
operation of an SVM is the matrix-vector multiplica-
tion. Therefore, we use the RRAM crossbar array and
the proposed technological exploration ow to imple-
ment an SVM and test its performance.

5.1 Experimental Setup

In our experiment, the MNIST dataset is used to
test the performance of RRAM-based SVM. MNIST
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is a widely used dataset with more than 60 000 hand-
written digits for optical character recognition. In our
experiment, we choose 20 000 examples of handwrit-
ten digits of \0" � \9" to train the SVM. We extract
a 49-dimension feature through principal component
analysis (PCA)[46] from the original 28 � 28 images.
In other words, the dimension of input data x̂ is 50
when one dimension for the o�set b is considered. As
there are 10 classes of handwritten digits in the MNIST
dataset, we train 10 di�erent SVMs to distinguish only
one digit from the others. The recognition accuracy
of SVM trained on CPU is 94%. And the size of the
combined matrix W of 10 SVMs is 50� 10. We rea-
lize this matrix with a 50 � 50 RRAM crossbar array.
All the other 40 output ports are regarded as virtual
nodes whose states will not be considered. The un-
used RRAM cells in the crossbar array are set to the
highest resistance states to reduce the extra energy con-
sumption and negative impact. Other 5 000 examples
in the MNIST dataset are used to test the performance
of RRAM-based SVM. The maximum amplitude of in-
put voltage is set to 1 V to achieve better linearity of
RRAM devices. Most of the input voltages applied on
the RRAM cells are around tens to hundreds of milli-
volt. A current comparator is used to select the port
with the highest output current and provide the recog-
nition results. We use SPICE to simulate the circuit
performance of RRAM crossbar, such as the power con-
sumption and the output voltage. A recent Verilog-A
model described in [17] is chosen as the RRAM device

model. The simulation results are provided in Table 1.
Some comparisons are made between the proposed tech-
nological exploration ow and the method based on [10]
under di�erent technology nodes.

5.2 Performance of Matrix Mapping
Algorithm

We �rst compare the proposed matrix mapping al-
gorithm with the one proposed in [10] under the same
technology node. The experimental results demon-
strate that both algorithms work well when RS is very
small (RS = 100 
). However, as discussed in Sub-
section 4.2, such a smallRS will lead to bad computa-
tion accuracy because of interconnect resistance. Only
around 80% recognition accuracy is achieved in this
situation. As for the cases with a largerRS of 3 k
, the
recognition accuracy of the proposed technological ex-
ploration ow signi�cantly increases to more than 90%,
while a dramatic decrease from 90% to 9% is observed
for the previous method. These results demonstrate
that the approximation used in the previous work does
not work well for a larger RS. And the proposed method
is robust since there is no approximation used in the
mapping algorithm.

5.3 Impact of RS and Interconnects

We also increaseRS to 10 k
 to test the impact of
RS on the performance of RRAM-based SVM. We �rst

Table 1 . Experimental Results of RRAM-Based SVM with Di�ernet Para meters (RON = 500 
)

Map Technology RS Signal Device Accuracy Accuracy Power Power

Algorithm Node (nm) (
) Fluctuation (%) Variation (%) (%) Im provement (%) (mW) Savings (%)

[10] 22 100 00 00 82 { 1.96 {

[10] 22 3k 00 00 09 {89.02 1.93 2.02

[10] Ideal 1 00 00 90 9.76 3.00 {52.73

Proposed 22 100 00 00 83 1.22 4.07 {106.94

Proposed 22 3k 00 00 93 13.41 2.02 {3.04

Proposed 16 3k 00 00 90 9.76 1.97 {0.40

Proposed 16 10k 00 00 83 1.22 1.40 28.99

Proposed 22 10k 00 00 86 4.88 1.42 27.64

Proposed 32 10k 00 00 91 10.98 1.45 26.40

Proposed 22 3k 00 05 90 9.76 2.16 {7.18

Proposed 22 3k 00 10 74 {9.76 2.13 {8.36

Proposed 22 3k 00 20 53 {35.37 2.62 {33.26

Proposed 22 3k 05 00 92 12.20 2.03 {3.33

Proposed 22 3k 10 00 90 9.76 2.11 {7.59

Proposed 22 3k 20 00 87 6.10 2.07 {5.51
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�x the technology node to test the impact of RS. Com-
pared with the cases whenRS = 3 k
, the recognition
accuracy does not increase but drops from 93% to 86%.
The reason lies in that a di�erent RS will lead to di�e-
rent RRAM conductance matrixes. The RRAM con-
ductance matrix at RS may be a�ected more seriously
by the variation of RRAM resistance states and the in-
terconnect resistance. Such results verify the discussion
in Subsection 4.5 that a largerRS is not necessary to
lead to better computation accuracy in practical ma-
chine learning tasks instead of the worst case. Then,
we vary the technology node of interconnection from
16 nm to 32 nm �xing RS. The results demonstrate
that a lower interconnect resistance is bene�cial to the
recognition accuracy for RRAM-based SVM.

5.4 Power Saving by Resistance Range
Optimization

As mentioned in Subsection 4.3, the proposed ow
can further optimize the power consumption at the cost
of a little accuracy reduction. To verify the power op-
timization e�ect of the proposed method, we use an
accuracy threshold and �nd the minimum power con-
sumption with di�erent interconnect technology nodes
from 18 nm to 36 nm, and the device variation is still
5%. Considering that the related RRAM-based work's
result is about 82%[10] , we use 80% as the classi�ca-
tion accuracy constraint. The results are shown in Ta-
ble 2. The result shows that by utilizing the trade-o�
relationship between power and accuracy, about 80%
power consumption can be saved in various intercon-
nect technologies. Another experiment shows that if
we use 85% as the classi�cation accuracy constraint,
the power consumption saving is about 70%, which is
also a considerable gain. However, according to the
trade-o� relationship shown in Fig.7, further reducing
the accuracy threshold only has little e�ect, and thus
80%� 85% is a relatively reasonable range for power op-
timization.

Table 2. Power Saving with a Restricted Accuracy

Threshold (Initial RON = 500 
)

Technology Accuracy Optimal Initial Optimal Power

Node Threshold RON Power Power Savings

(nm) (%) (k
) (mW) (mW) (%)

16 80 17.0 2.10 0.340 83.7

22 80 16.3 2.16 0.347 83.9

28 80 16.0 2.19 0.351 84.0

36 80 16.0 2.26 0.353 84.4

22 85 05.0 2.16 0.611 71.7

5.5 Robustness of RRAM Crossbar Array

The above results demonstrate that the RRAM-
based SVM works well under ideal conditions. However,
several non-ideal factors may inuence the RRAM-
based SVM performance. In this subsection, we dis-
cuss the impact of device variation, resistance resolu-
tion, and signal uctuation to test the robustness of
the RRAM-based SVM.

5.5.1 Impact of Device Variation and Resistance
Resolution

Given a certain 8-bit data precision (256 resistance
levels), we test the performance of RRAM-based SVM
with di�erent maximum deviations of 5%, 10%, and
20% respectively, as shown in Table 1. The simulation
results verify the above hypothesis and the recognition
accuracy signi�cantly drops from 90% to only 53%. The
RRAM-based SVM is very sensitive to the variation of
RRAM resistance.

The above experiments are based on the condition
that the precision of data saved in RRAM crossbar ar-
rays is determined by the application. As a result,
when the variation degree is large enough, the neigh-
boring resistance levels of RRAM cannot be clearly dis-
tinguished, as (5) shows. In other words, the data pre-
cision has already lost the e�ect, which means we can
reduce the data precision (namely the RRAM resistance
resolution) to match the variation level in order to ob-
tain an error-free result of data mapping. We reverse
(5) to �nd the maximum variation degree that a speci�c
data precision can support:

� <

k

r
ROFF

RON
� 1

k

r
ROFF

RON
+ 1

;

where � is the variation degree and k is the amount
of RRAM resistance levels. For instance, when we re-
duce the data precision down to 4-bit, namely, 16 re-
sistance levels, the maximum� is 18.51%. We test the
performance of SVM based on di�erent data precisions
with corresponding maximum variation degree, where
the practical data is 8-bit in this experiment. The simu-
lation results are illustrated in Fig.8. The result shows
that 6-bit is an inection point for accuracy (90% for
SVM), which means the variation degree needs to be
less than 4.68%. When we use less data precision to
realize error-free recognition of resistance levels, the ac-
curacy still drops rapidly, which is similar to the results
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of directly using the original data precision as Table 1
shows.

5.5.2 Impact of Signal Fluctuations

The electrical noise from the input ports will lead
to input signal uctuation. Here we simulate the per-
formance of RRAM-based SVM under di�erent uctua-
tions of input signals. The results show that the pro-
posed RRAM-based SVM is robust to the signal uc-
tuations. For example, a 10% variation of the input
signal only reduces the recognition accuracy from 92%
to 90%. These results demonstrate that the RRAM-
based SVM is able to work in the environments with
large signal uctuations.
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Fig.8. Recognition accuracy with di�erent RRAM resistance
resolutions under maximum variation. Each accuracy result is
the average value of four variation matrixes.

6 Conclusions

In this paper, we studied the impact of a wide range
of parameters and proposed a technology exploration
ow to con�gure these parameters to achieve a better
trade-o� among performance, energy and reliability for
RRAM crossbar array based computing system design.
We �rst analyzed the impact of both device level and
circuit level non-ideal factors, including the nonlinear
I -V relationship of RRAM devices, the variation of de-
vice processing and write operation, the interconnects,
and other device parameters. In order to overcome the
impact of these non-ideal factors and achieve a bet-
ter trade-o� among performance, energy and reliabi-
lity, we proposed a technological exploration ow for
device parameter con�guration of RRAM crossbar ar-
ray based computation, including the technology node
and load resistance con�guration, and the algorithm of
matrix mapping to crossbar array with considerations

on the trade-o� between power and performance. We
used the MNIST dataset and a linear SVM classi�er
as a case study to test the performance of the pro-
posed framework. The simulation results show 10.98%
improvement of recognition accuracy and 26.4% power
reduction compared with previous work[10] , and can fur-
ther receive an 84.4% power saving at the cost of little
accuracy reduction. In addition, although this work
focuses on the load resistance based read scheme for
RRAM crossbar, other kinds of read peripheral circuits
such as sense ampli�ers and analog to digital conver-
ters can also be regarded as equivalent resistances or
impedances connected to the crossbar array. Therefore,
the proposed design ow can be extended to other read
schemes with little modi�cation, and the experimental
results are still valuable for these designs.

In the future, we will further explore how to
compensate the impact of IR-drop problem in map-
ping, which can improve the computation accuracy
of RRAM-based matrix-vector multiplication especially
when using large crossbars, we will also develop a
friendly design automation tool.
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