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Abstract The brain-inspired spiking neural network (SNN) computing paradigm offers the potential for low-power and

scalable computing, suited to many intelligent tasks that conventional computational systems find difficult. On the other

hand, NoC (network-on-chips) based very large scale integration (VLSI) systems have been widely used to mimic neuro-

biological architectures (including SNNs). This paper proposes an evaluation methodology for SNN applications from the

aspect of micro-architecture. First, we extract accurate SNN models from existing simulators of neural systems. Second,

a cycle-accurate NoC simulator is implemented to execute the aforementioned SNN applications to get timing and energy-

consumption information. We believe this method not only benefits the exploration of NoC design space but also bridges the

gap between applications (especially those from the neuroscientists’ community) and neuromorphic hardware. Based on the

method, we have evaluated some typical SNNs in terms of timing and energy. The method is valuable for the development

of neuromorphic hardware and applications.
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1 Introduction

Although it is still not yet clear about how the brain

works, the great potential of neural systems has aroused

research enthusiasms. In addition to the discovery of

the brain’s computational paradigm, these studies offer

the possibility to implement neuromorphic circuits with

high parallelism and low power consumption compared

with the traditional von Neumann computer paradigm.

It is a well-established idea that the information pro-

cessing in the mammalian brain relies on the electric

discharges (spikes) of neurons, which interact at spe-

cialized points of contacts, the synapses. A generated

spike arrives at one or more target neurons after a delay

of a few milliseconds and causes a small change in the

neurons’ membrane potentials. A standard approach

to neural modeling is to consider neurons as the basic

network components and describe the network in terms

of the neurons and their positions and projections.

SNN (Spiking neural network) is such an abstrac-

tion of real neural networks, which is also believed to

yield higher biological realism and has the potential of

more computational power[1]. SNNs attempt to emu-

late the information processing in the mammalian brain

based on massively parallel populations of neurons that

communicate via spike events. In addition to neuronal

and synaptic states, they also incorporate the timing of

the arrival of spikes into the operating model.

Accordingly, SNNs are widely used in the commu-

nity of computational neuroscience. It is important

to note that different from artificial neural networks

(ANNs) that own complete mathematical paradigms

and have become an important branch of computer sci-

ence, SNNs lack common mathematical models. There-

fore, simulations are used to investigate models of the

nervous system at functional or process levels in com-

putational neuroscience. A lot of efforts have been

put into developing appropriate simulation tools and

techniques[2].

On the other hand, very large scale integration
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(VLSI) systems have been widely employed to mimic

neuro-biological architectures (called neuromorphic en-

gineering). In addition, a multi-core processor (CMP)

with a network-on-chip (NoC) has many characteristics

similar to those of neural networks, which has emerged

as a promising platform for neural network simulations.

There is quite a little such work, including [3-6], etc.

This is an interdisciplinary field. From the tradi-

tional aspect of computer architecture, the design of

neuromorphic circuits is promising to develop a new

type of computers and the computational models of

SNNs can be regarded as the objective applications.

Accordingly, we try to bridge the gap between appli-

cations from the neuroscientists’ community and the

neuromorphic hardware. The principle is simulation-

centric: existing software simulators widely used in the

neuroscientists’ community are utilized to extract ac-

curate SNN models and/or running traces. Moreover,

we give a configurable NoC simulator to emulate the

hardware in design and to execute applications, which

supports some proven effective features for SNN simu-

lation (like multicast). Namely, we try to model SNNs

from the architecture perspective and then quite a few

architecture evaluation methods can be used to explore

the design space.

In summary, the following contributions are accom-

plished.

1) We design a workflow to simulate SNN models

on the micro-architecture level. In detail, we give the

method to extract models from existing software simu-

lators and drive them on the architecture-level simula-

tor.

2) A trace-driven configurable NoC simulator is im-

plemented for SNN evaluation.

3) Based on the previous work, we evaluate some

typical SNNs in terms of timing and energy, which

proves the feasibility of this methodology and its ability

to guide the development of real hardware.

Moreover, we believe this method can be used as

the joint for interdisciplinary research. Some develop-

ment interfaces will be open for researchers from other

fields to integrate the new computational models of neu-

rons/synapses and the behavior models of new neuro-

morphic devices in the near future.

2 Related Work

Although there are some criticisms, neuromorphic

engineering is still a promising direction to explore a

new computer architecture beyond von-Neumann archi-

tecture. It is necessary to note that there is quite a little

work[7-10] on custom architectures to accelerate AI (ar-

tificial intelligence) algorithms, like machine-learning

algorithms of convolutional and deep neural networks.

In contrast, we focus on the simulation of biological

neuron networks, not algorithm-acceleration.

2.1 Hardware Spiking Neural Network

Systems

Fidjeland et al.[11] presented NeMo, a platform

for SNN simulations which achieves high performance

through the use of highly parallel hardware in the form

of graphics processing units (GPUs). A time multi-

plexed FPGA (field programmable gate array) embed-

ded processor SNN implementation reports 4.2K neu-

rons and more than 1.9M synapses[12]. This system

relies on the external memory for spike transfer mana-

gement.

The FACETS (Fast Analog Computing with Emer-

gent Transient States)[13] project and its successor

BrainScaleS[6] have produced wafer-scale IC systems for

neural networks. A mixed-signal SNN architecture of

2 400 analogue neurons implemented by using switched

capacitor technology and communicating via an asyn-

chronous event-driven bus has been reported.

SpiNNaker[4]’s hardware is based on the CMPs of

ARM processors. From the logic view, the SpiN-

Naker architecture is an array of computation nodes

arranged in a 2D triangular mesh, wrapped into a

torus. Each NoC node in the SpiNNaker system models

1 000 leaky-integrate-and-fire (LIF) neurons, each hav-

ing 1 000 synapse inputs.

One of the latest products is TrueNorth[3,14], a fully

digital neuromorphic chip developed by IBM in 2014.

This chip includes 4 096 neurosynaptic cores. Each core

brings memory (“synapses”), processors (“neurons”),

and communication (“axons”) together and is con-

nected with each other via a 2D-mesh NoC. Moreover,

IBM has proposed a programming paradigm, Corelet

(including the programming language, library, etc.)[15],

to represent some cognitive algorithms as the networks

of neurosynaptic cores. According to its open litera-

ture, this representation is completed manually, under

the help of Corelet library and an architectural simula-

tor (Compass).

EMBRACE[16-17] is a compact hardware SNN ar-

chitecture for embedded computing platforms. It owns

a hierarchical architecture. The on-chip communica-

tion is based on a customized array of configurable NoC

routers. Specially, it follows the modular neural net-
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work (MNN) computing paradigm[18] to partition com-

plex application tasks into smaller subtasks executing

on distinct neural network modules.

All above-mentioned studies try to design a new

computer architecture inspired by the brain. Thus,

architecture evaluation technologies (including hard-

ware simulation) have been used. For example, IBM

implemented the Compass simulator for TrueNorth,

which played a key role in the construction of the

new computing ecosystem. EMBRACE presented a

System-C based NoC-simulator for performance analy-

sis. FACTES constructed a comprehensive workflow

for modeling SNNs on its hardware, which integrates a

detailed simulation of the final hardware platform.

This paper can be regarded as complementary to

existing work. Our objective is to make it easier to

port the applications from the neuroscientists’ com-

munity to the neuromorphic hardware through archi-

tecture simulation. A similar strategy has been used

by SpiNNaker. However, the difference lies in that

SpiNNaker uses ARM cores to execute software mod-

els of neurons/synapses directly. Although software-

based solutions are flexible, it costs more overhead. As

the computational model of single neuron is well devel-

oped, dedicated ASIC units can provide lower power

consumption and better performance. Our proposal

mainly focuses on solutions based on dedicated ASIC

units for neural simulation.

2.2 NoC Simulators

The general trend in the SoC/processor develop-

ment has moved from dual- and quad-core processor

chips to ones with tens or even hundreds of cores that

are connected by network-on-chip (NoC). This requires

an NoC-based design to ensure an optimum manage-

ment of the transit of internal data. To facilitate the

development of systems containing a network-on-chip,

several dedicated tools have been proposed, including

NoC simulators. Some typical ones are presented as

follows.

NS-2 1○ was first developed for prototyping and

simulating ordinary computer networks. However,

since NoCs share many characteristics with classic net-

works, NS-2 was widely used by many NoC researchers

to simulate NoCs[19].

DARSIM[20] allows the simulation of mesh NoC ar-

chitectures of two and three dimensions. It offers a

multitude of NoC simulation configurations with vari-

ous parameters. This includes two generation modes of

data generation: trace-driven and execution-driven.

Noxim 2○ is developed in SystemC language. It al-

lows the user to define a 2D mesh NoC architecture

with various parameters. Noxim allows the evaluation

of NoCs in terms of throughput, latency and power con-

sumption.

ORION[21-22] is a simulator dedicated primarily to

the estimation of power and space for NoCs architec-

tures. It has integrated the support for new semicon-

ductor technology through the models of transistors

and capacitances upgraded from industry.

3 Simulation Workflow

In the common process of developing a new com-

puter architecture, the first step is to locate objective

applications (or benchmarks) and then extensive simu-

lations will be carried out to explore the design space

for adaptation before the hardware design and produc-

tion.

We follow this methodology, which contains two

main tasks. The first is to extract accurate models from

some representative SNN software simulators as the ob-

jective applications. The second is an SNN-specific

NoC simulator used to execute applications. Others

include mapping SNNs onto NoC and so on.

3.1 Neural Networks from Software Simulators

The neuronal networks in brains can be described as

weighted, directed graphs, with neurons as nodes and

synaptic connections as edges. Neurons communicate

by sending and receiving spikes through the connections

(synapses). For large neuronal networks, the geometric

and biophysical complexity of individual neurons can be

neglected. Each neuron is described as point-like object

with a dynamic state. The common state variable is the

membrane potential, which is influenced by spikes that

arrive at the neuron’s synapses. As it crosses a thresh-

old, the neuron issues a spike, which is transmitted to

all connected neurons with a delay. Each connection

can have a different delay and weight.

Accordingly, existing neural system simulators sup-

port detailed or simple representations of the neu-

rons/synapses to form the weighted and directed graph.

They also provide programming interfaces for users to

1○http://www.isi.edu/nsnam/ns/, Nov. 2015.
2○http://www.noxim.org/, Nov. 2015.
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develop SNN models. Usually the model representa-

tion operates on the population (group of homogeneous

neurons)/projection (bundle of single connections be-

tween populations) level rather than on the single-

neuron/connection level. This strategy is not just for

development simplification. It also accords with the

real organization of our brains. In detail, the brain is

a heterogeneously structured system, composed of nu-

merous neuron areas which are distinguished by their

anatomical, physiological, and functional properties.

The structure of the brain itself also conveys important

information.

For example, Fig.1 presents the pseudo-code that

creates two neuron-populations and a projection con-

necting them together. Besides the simple mode in

Fig.1, more schemes of the connection mode and

attribute-configurations have been supported.

// Two populations have been created; the neuron 
// number and type have been set
pre = Population (1000, one_neuron_type)
post = Population (500, another_neuron_type)
// An all-to-all-connection projection between two
// populations has been created; then the weight and
// latency of each connection are set.
excitatory_connections = Projection (pre, post,
    AllToAllConnector (), StaticSynapse (weight=0.13)) 
excitatory_connections.set (delay=0.4)

⋯

Fig.1. Simple example of SNN.

Thus, the following information can be extracted

from SNN simulators.

Node Information. It contains the neuron type and

class, as well as the ID of the population it belongs

to (in the current design, the population ID is of 8-bit

width). The former indicates that it is a functional node

or a common neuron; the latter is the neuron model,

like leaky integrate-and-fire, Hudgkin-Huxley 3○. In

addition, a functional node means the node is just a

direct-current generator (for input neurons), not a real

neuron. Each node is identified by an integer ID.

Edge Information. It contains the IDs of its source

and target nodes, as well as the weight and delay. A

connection between a neuron and a functional node can

be regarded as an edge with 0-delay and 1-weight.

It is necessary to point out the relationship between

edges and nodes. As mentioned above, SNN-model rep-

resentation operates on the population/projection level.

Moreover, for almost all SNN examples we have studied,

the connection mode between populations is all-to-all.

Thus, the edge information can be described on the

population level (the weight of each connection of a sin-

gle projection can be different). For other connection

modes (like the random connection mode in which the

existence of a connection of two neurons from different

populations depends on a probability), 0-weight edges

will be introduced. Thus, we can normalize all modes.

In addition, the information of issued-spikes by neu-

rons can be obtained during the simulation procedure.

Each log contains the ID and issuing time of the source

neuron. Then, we can get the whole information of

spikes, namely, running traces.

3.2 NoC Aspect

NoC is a common and mature technology that con-

nects IPs on chip together. Thus, we should focus on

some features that are SNN-specific.

As we know, in SNN, one neuron is typically con-

nected to many others. Thus huge amounts of one-to-

many communications must take place between pro-

cessing nodes. Therefore, multicast-enabled routing

looks highly efficient for the simulation of neural net-

works, which is also proven by some existing work.

For example, Vainbrand and Ginosar[23] showed that

among common topologies, multicast mesh NoC pro-

vides the highest performance/cost ratio and conse-

quently it is one of the most suitable interconnect archi-

tectures for configurable neural network implementa-

tion. In addition, for SpiNNaker[4], a multicast mecha-

nism is provided for efficient one to many communica-

tions.

Furthermore, as a case study, we focus on the mesh

NoCs because the topology is widely used by CMP

products. Accordingly, the tree-based distributed rout-

ing method is considered for multicast. Compared with

the source routing mechanism, it has been proved that

the distributed routing will introduce less storage over-

heads. Moreover, there are quite a few well-known mul-

ticast routing strategies[24-26] belonging to this cate-

gory.

For the tree-based routing, a multicast continues

along a common path and then branches (replicates)

the message when necessary to achieve a minimal route

to each destination. At each hop, the router will com-

plete corresponding operations based on the source ID

of the incoming packet. By default, the X-Y routing

3○Different models also contain different parameters, like threshold voltage, leakage voltage, and recovery period.
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strategy is used for each single message to avoid dead-

lock. Specially, a two-level routing strategy is used and

we give the outline here.

As mentioned in Subsection 3.1, SNN models of soft-

ware simulators usually represent bundles of single con-

nections (projections) between populations. Thus it is

beneficial to distribute as many as possible neurons of

a population into one core, or into several nearby cores

if one cannot occupy all of them. This strategy can

decrease communication overheads.

Accordingly, we take the population ID as the look-

up key of routing tables. A spike then can be directed

(or duplicated first and then directed) to the target set

of nodes (or from the aspect of SNNs, to one or more

cores that occupy the neurons of the connected popu-

lation).

The second level is inside a core. On receipt of a

spike, neurons in the target core will check whether this

spike should be dealt with by itself or not, as one node

may contain neurons from multiple populations. It is

achieved by looking up a local table. The key of this

table is the source-neuron ID carried by the incoming

packet as the payload.

The last task is to fill in routing tables, which de-

pends on the strategy of mapping SNN onto NoC. Simi-

lar to SpiNNaker’s method, a linear mapping algorithm

is used.

First, all neurons are re-numbered so that the IDs

of all neurons in a single population will be continu-

ous. Second, neurons are uniformly allocated to NoC

nodes in order. Thus, all neurons of a population will

be distributed into one core or into several nearby cores

(Fig.2).

4 Implementation and Evaluations

4.1 Model Extraction

Now we can extract SNN models from the following

software simulators.

NEST (Neural Simulation Tool) 4○ is able to model

different neurons, along with various synaptic models

and plasticity methods.

Nengo 5○, the tool used to implement the neural

engineering framework principles[27]. It affords the

user the possibility to map a wide range of neuro-

computational dynamics to spiking neural networks.

Moreover, there are some open resources of com-

putational models of SNNs (like ModelDB[28]). Each

model is associated with some simulators. Therefore,

using open simulators and models, we can construct

accurate neural networks and drive them.

By way of illustration, we refer to the extraction

of NEST that has provided friendly interfaces for such

model extraction, including the node and edge infor-

mation. The pseudo-code for node information is pre-

sented in Fig.3.
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Fig.2. Mapping neuron nodes to NoC. (a) Processing node IDs of an 8× 8 2D-mesh NoC. (b) Distribution of ordered neurons. Here
we assume that one NoC node can simulate 128 neurons.

4○http://www.nest-simulator.org/, Nov. 2015.
5○http://www.nengo.ca/, Nov. 2015.
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//Get the kernel status of NEST 
kernel_status←NESTGetKernelStatus()
//Get the number of nodes and the node list
size←kernel_status[‘network_size’]
node_status_list←NESTGetStatus(tuple(size))
//Get the node information from the list for analyses
foreach(node_status in node_status_list):
  print AnalyzeNode(node_status)
end foreach

//Classify the node and then get the corresponding information
function AnalyzeNode(node)
  if node[‘element_type’]== ‘neuron’ then

    return FilterInformation (node, feature_neuron)
  else if node[‘element_type’]== ‘stimulator’ and

 node[‘model’]== ‘dc_generator’ then

    return FilterInformation (node, feature_dc_generator)
  else 
  //more types
  ⋯
  end if

end function

//Get the needed features of the input node
function FilterInformation(node, feature_list)
  result←empty list
  foreach(feature in feature_list)
    result.append(node[feature])
  end foreach

  return result
end function

Fig.3. Pseudo-code for node extraction.

4.2 Simulator

We refer to Noxim[22] to implement a trace-driven

cycle-accurate simulator for NoCs, which also supports

the evaluation of power consumption.

4.2.1 Router Pipeline

Our work is focused on the tree-based multicast

routing. We refer to the micro-architecture design of

the VCTM multicast router[24].

The design foundation is a common four-stage

router pipeline. The first stage is the buffer write (BW).

The routing computation (RC) occurs in the second

stage. In the third stage, virtual channel allocation

(VA) and switch allocation (SA) are performed. In the

fourth stage, the flit traverses the switch (ST). Each

pipeline stage takes one cycle followed by one cycle to

do the link traversal (LT) to the next router. As one

packet is just one flit, no speculation optimization is

used.

For multicast packets, the processing is simpler than

VCTM because multicast virtual circuit is decided dur-

ing the mapping process, rather than the run time.

Namely, the contents of routing tables are fixed. In de-

tail, the original routing computation stage is replaced

with the operation of routing-table look-up. If a packet

is replicated at this node, this stage will be repeated till

all replications have been inserted into the next stage.

Moreover, the common scratchpad memory can be

used as the routing table, instead of the expensive

CAM (content addressable memory): population IDs

are defined as a series of consecutive integers; thus they

can be regarded as memory addresses to access the

scratchpad 6○. One entry of the routing table just con-

tains the operation type (8-bit) that represents a type

in Table 1 or a combination of them.

Table 1. Operation Types

Operation Type Description

Turn up It will be transmitted to the up node

Turn down It will be transmitted to the down node

Turn left It will be transmitted to the left node

Turn right It will be transmitted to the right node

Sink Approaching destination

Valid 1/0

Reserved 2 bits

Now the NoC simulator supports the 2D-mesh

topology with the stall-and-forwarding flow control.

The number of virtual channels (for each direction, the

default number is 5) and the NoC scale can be confi-

gured.

4.2.2 Power Consumption

We use the Orion 2.0 tool to get the power con-

sumption of each pipeline stage.

The number of table-entries that each router con-

tains should be equal to the number of populations,

denoted as k. For an SNN that can be occupied in one

NoC chip, k is usually limited. Accordingly, we can

use the CACTI 7○ tool to get the power consumption of

table accesses.

The default technology is 45 nm CMOS and the

running frequency is 1 GHz. The SNN’s frequency is

1 KHz, which is the upper bound for biological cells.

4.3 Evaluations

Models and running traces of the following 11 SNNs

have been extracted (in the 8th item, there are four

models).

1) RBM Digit Recognition (Digit). It is a model

for digit recognition, created by training an RBM deep

belief network on the MNIST database. This model

contains 6 000 neurons and five populations.

6○Each router has its own table; thus the scratchpad memory is private.
7○http://www.hpl.hp.com/research/cacti/, Nov. 2015.
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2) Basal Ganglia[29] (BG). It models the basal gan-

glia, a group of interconnected subcortical nuclei, as-

sociated with a variety of functions including control

of voluntary motor movements, procedural learning,

etc. This model implements the topology and real-

time work-situation of the basal ganglia, which contains

about 1 200 neurons of five populations.

3) Controlled Question Answering Network

(QAWC). This demo performs question answering

based on storing items in a working memory, and un-

der control of a basal ganglia. It contains about 12 000

neurons and 13 populations.

4) Question Answering Network (Question). This

model simulates the question-answering function, which

provides the answer by learning examples. This model

includes about 8 000 neurons and 80 populations.

5)Temporal Differentiation (Diff)[30]. This model

performs the computation of temporal differentiation,

which contains 5 000 neurons and three populations.

6) Spatiotemporal Processing and Coincidence De-

tection (Spat). This demo aims at simulating connec-

tions between the retina and the cochlea, and realizes

a co-incidence detector. It has 8 500 neurons and 18

populations.

7) Neural Path Integrator[31] (Path). This model

incorporates representations and updating of position

into a single layer of neurons without using multiplica-

tive synapses. This model has 1 600 neurons and 12

populations.

8) Bandit Task[32]. This is a set of four bandit task

models 8○ to exhibit how a simulated rat responds to

several different environments. It contains four net-

works with similar topologies. Each includes more than

1 000 neurons and 15∼20 populations.

We have simulated each network for 10 times with

random (but legal) inputs, and recorded the spike-

information of each neuron. Without loss of general-

ity, the active degrees of neurons of some models with

different scales have been shown in Fig.4 (others own

the similar feature): for clarity, 100 consecutive neu-

rons from each model are randomly selected to display.

The X-axis is neuron IDs; the Y -axis is the testing se-

quences; the Z-axis represents the active degree of each

neuron, namely, the ratio of the number of its spike-

issues to the maximum number of all neurons. From

Fig.4, we can find that the distributions of neurons

with diverse active degrees show similarities to a great

extent, under randomly-generated inputs.
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Fig.4. Active degrees of neurons. (a) QAWC. (b) Diff. (c) Bandit task (quarterlearn). (d) Digit.

8○Four models are abbreviated as arm, env, halflearn and quarterlearn respectively.
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We believe it is a meaningful finding. As men-

tioned previously, we try to carry out research from

the perspective of computer architecture. This invari-

ance helps handle the on-chip SNN simulation as par-

allel tasks in which each task (population) has different

active degrees in terms of communication. Thus, some

typical architectural topics, including parallel task dis-

tribution, and load balance, may be emerging.

After the linear mapping (as described in Subsec-

tion 3.2), we can drive the simulator with traces.

First, we get the energy-consumption information of

above-mentioned SNNs (the default simulation is set to

100; namely, one simulated SNN cycle contains 10 000

NoC cycles). Three cases are tested: the number of

neurons that one processing node can occupy is set to

64, 128 and 256 respectively. Results are presented in

Fig.5, which gives the average energy-consumption of

SNNs in one simulated second. Apparently, the energy-

consumptions of the NoC decrease with the increase of

the number of neurons that one node can simulate, be-

cause the NoC scale has been reduced, as well as the

spike communications.
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Fig.5. Energy consumptions of NoC (different legends show
the different numbers of neurons that one processing node can
occupy).

Correspondingly, for most of the SNN applications,

when the number has increased from 64 to 128, the ave-

rage transmission-latencies decrease (in Fig.6). While

the number reaches 256, the latencies of some SNNs

(like arm, env, quarterlearn, spat) increase. The reason

lies in that some local congestion becomes severer. Al-

though the hop count of transmission keeps decreasing,

each spike spends more time at every node. This rea-

son does also hold for those SNNs (including question

and qawc) whose latencies have grown as the number

increases from 64 to 128.
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5 Conclusions

This paper presented a methodology to bridge the

gap between the applications from the neuroscientists’

community and neuromorphic hardware, focusing on

simulation technologies. Some key methods, like SNN

modes’ extraction (from the functional simulator) and

evaluation (on the architecture-level simulator) were

proposed.

On the other hand, it is just a beginning. The as-

pect of computer architecture will bring forward more

interesting topics.

Besides the exploration of design space of micro-

architecture, the strategies of mapping SNNs to NoC

may be pivotal to fully utilize the hardware resources.

Moreover, hardware implementation is confronted with

more constraints (for example, a neuron’s connectivity

will be limited), which may further put constraints on

applications. The interaction is worth studying.

Anyway, we intend to use it as the joint to combine

research from different fields.
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