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Abstract This paper introduces ARCtimer, a framework for modeling, g enerating, verifying, and enforcing timing con-
straints for individual self-timed handshake components. The constraints guarantee that the component's gate-level cir-
cuit implementation obeys the component's handshake proto col speci�cation. Because the handshake protocols are delay-
insensitive, self-timed systems built using ARCtimer-ver i�ed components are also delay-insensitive. By carefully considering
time locally, we can ignore time globally. ARCtimer comes ea rly in the design process as part of building a library of veri �ed
components for later system use. The library also stores static timing analysis (STA) code to validate and enforce the co m-
ponent's constraints in any self-timed system built using t he library. The library descriptions of a handshake component's
circuit, protocol, timing constraints, and STA code are rob ust to circuit modi�cations applied later in the design proc ess by
technology mapping or layout tools. In addition to presenti ng new work and discussing related work, this paper identi�e s
critical choices and explains what modular timing veri�cat ion entails and how it works.
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1 Introduction

Nearly all modern digital computers march to the
beat of a \clock". The computer clock divides each sec-
ond into a few billion \clock periods" just as a school
bell divides each day into �xed-length class periods. A
55-minute class period is so useful for scheduling stu-
dents and classrooms that educators rarely ask if it is
best for learning. In reality, 55 minutes is either too
short or too long.

We are one of a few research groups who study how
to replace the rigid clock with more 
exible \self-timed"
regimes. Self-timed systems allow each small task to
take its own natural time just as \self-paced" learning
allows each student to learn at his or her own pace.
Easy tasks �nish quickly and take little energy. Di�-
cult tasks require more time and energy.

We design our self-timed systems using circuit com-

ponents connected through local communication chan-
nels. The components use handshake protocols to co-
ordinate their activities and to exchange data through
the communication channels. The \self-paced" opera-
tions of the system are delay-insensitive, provided the
components follow the handshake protocols.

We partition the veri�cation of such a system into
two parts:

ˆ a higher-level system part, at the protocol level,
to verify that the network of handshake compo-
nents and their protocols meet the requirements
of the system, and

ˆ a lower-level component part, at the circuit level,
to verify that the network of logic gates and wires
and their delays meet the component's protocol
description.

This paper describes how we do the lower-level veri-
�cation in advance of system design to build a library
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of veri�ed components for later system use.
The higher-level system veri�cation part applies to

digital circuits broadly. A general-purpose analysis sys-
tem, such as the ACL21O modeling and theorem prov-
ing system, can model and verify this part in terms of
cooperating �nite state machines, as is done in the for-
mal veri�cation of microprocessors[1] . This approach is
scalable to very large systems, as shown on contempo-
rary x86 systems[2] . The key message in the context
of this paper is that the lower-level component veri�ca-
tion allows the higher-level system veri�cation part to
ignore all circuit and timing information. By carefully
considering time locally, we can ignore time globally.

We further partition the lower-level component veri-
�cation part into three sub-parts, the last of which is
the main focus of this paper. The �rst sub-part veri�es
transistor-level implementations against their gate-level
descriptions. The second sub-part veri�es analog be-
havior as logical signal transitions. The third sub-part
veri�es the gate-level logical signal transitions against
the component's handshake protocol description.

The �rst sub-part, verifying at the transistor level, is
quite general. For this sub-part, we can re-use existing
methods in logic veri�cation for synchronous datapath
and control circuits, like [2]. The second sub-part, veri-
fying analog behavior, is addressed in [3]. This sub-part
is of lesser importance for our self-timed circuits, be-
cause we design our circuits using the theory of Logical
E�ort [4] . As a result, our circuits come with an \analog
health" waiver: their signal rise and fall times are suf-
�ciently good to skip analog circuit analysis and move
from analog to switch level veri�cation. The third sub-
part, verifying handshake behavior, is the main focus
of this paper.

This last sub-part, verifying the gate-level transi-
tions against the component's handshake protocol de-
scription, is unique to systems of self-timed circuits2O

because such circuits omit the \clock" that might oth-
erwise provide a global timing reference. Self-timed cir-
cuits replace the global clock network that would sup-
port synchronous behavior with a distributed network
of local handshake protocols to support asynchronous
or, more speci�cally, self-timed behavior. Thereby they
also replace setup and hold time constraints between
the global clock and local signals with timing con-
straints between local signals.

The crux of verifying gate-level signals against a
handshake protocol is to identify and verify the essen-

tial internal timing constraints that make or break the
component's protocol description. This task is the sub-
ject of this paper.

This paper introduces ARCtimer, a framework set
up precisely to identify internal timing constraints.
ARCtimer targets pattern-based circuit families of
handshake components | circuit families that use
design patterns to describe the circuit implementa-
tions of their components. Families that do so in-
clude Micropipeline[5] , Tangram and Balsa and Hand-
shake Solutions[6-8] , GasP[9-10] , QDI with precharge
bu�ers [8;11-12] , Mousetrap[13] , and Click[14] .

ARCtimer plays a crucial role in the overall design

ow of an integrated circuit (chip), but its role comes
early in the design process, as part of building a library
of handshake components. We run ARCtimer once per
library, and use the results over and over again for each
and every chip design. Thus, even though ARCtimer
plays a crucial role in establishing design correctness,
its run times play only a small role in the chip's overall
design time-to-market. We therefore have the leisure to
\pattern" the timing constraints after the design pat-
terns of the handshake components, making the con-
straints understandable to the component's designer,
easy to maintain, and robust to circuit modi�cations
applied later in the design process.

We have used ARCtimer successfully on the circuit
families for Click and GasP, and characterized the \tim-
ing patterns" for deterministic, nondeterministic and
data-driven handshake components in these families.

The goal of this paper is to build a shared under-
standing of what a framework like ARCtimer entails, so
that others can embellish it or make their own version
or improve the underlying tools. The Click and GasP
results, relevant though they may be, require a full ex-
ploration of the circuits and of the various bundled-data
protocols that they use, both of which are outside the
scope of this paper. But we will indicate where and
how the bundled data and data-driven control �t into
the framework, and we will identify related work.

The outline of the rest of the paper follows the dia-
gram in Fig.1. Section 2 explains the context of ARC-
timer in the design 
ow. Section 3 explains a series
of steps a framework like ARCtimer must perform for
each handshake component. We distinguish four steps,
which are discussed in Subsections 3.1{3.5. In Sec-
tion 4, we compare ARCtimer with related work, and
summarize what is new. Section 5 concludes the paper.

1O http://www.cs.utexas.edu/users/moore/acl2/, Sept. 201 5.
2O In the rest of this paper, we will use either of the terms system , design, and circuit , to refer to systems designed using circuits.
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2 Timing Veri�cation Context

Fig.1 (left-column) shows three stages in a typical
chip design 
ow for self-timed circuits. The stages are
marked with the keywords GUI (graphical user inter-
face), Parser, and STA (static timing analysis). Other
stages, for instance, simulation and testing, and lay-
out placement and routing, are omitted. Each stage
receives information from the yellow-colored center col-
umn of Fig.1, called the Design Library.

The subsections below give a short explanation of
these three stages in the chip design 
ow, the infor-
mation stored in the Design Library, and their relation
to the topic of this paper | the timing veri�cation of
handshake components.

2.1 GUI

Using a GUI (graphical user interface) or an equiva-
lent written user interface, one can formulate a net-
work of components connected by handshake channels.
The GUI design in the top-left corner of Fig.1 connects
four components assembled to generate the Fibonacci
sequence, 1, 2, 3, 5, 8, etc.

The GUI formulation operates partly at a structural
level and partly at a functional level, higher than the
circuit. Our GUI-formulated designs use function calls
to represent data operations and a handshake protocol
based on full and empty channels with data types. A
full channel has valid data; an empty channel has data
not valid yet or no longer used. Each Storage com-
ponent in the Fibonacci design acts when its incoming
channels are full and its outgoing channels are empty.
When the component acts, it:

� copies and forwards the incoming data,
� �lls outgoing channels, making them full, and
� drains incoming channels, making them empty.
The Join component adds the numeric data on its

two incoming channels and forwards the sum. Having
no storage facility for data, it waits to drain its incom-
ing channels until all its outgoing channels are empty.
This ensures that the incoming data remain stable until
the sum is stored and acknowledged.

The Fibonacci design starts with all channels being
empty except for channelsch1, ch2 and ch3 that start
full with initial data values 1, 1, and 0 respectively |
as indicated in Fig.1. The Join forwards the sum of 0
and 1, i.e., 1, both to the results channel and to chan-
nel ch4 going into Storage componentC4. StorageC4

forwards the Fibonacci result to StorageC1, and in do-
ing so, it �lls ch5 and drains ch4. This enables the Join

to drain channels ch2 and ch3, thus enabling Storage
C2 to act. C2 acts by storing the data value 1 pro�ered
over ch1 and sending it on to ch3, thereby making ch3

full and ch1 empty. This in turn enables StorageC1 to
store and forward the new Fibonacci result 1 ontoch1

and ch2, �ll ch1 and ch2, and drain ch5. The design is
now back in a state similar to its initial state, with all
channels being empty except forch1, ch2, and ch3 that
have the next set of data values: 1, 1, 1, respectively.
The Join's next Fibonacci result will be 2.

2.2 Parser

The Parser takes as input a component network
from the GUI and expands it into a gate-level netlist
for the protocol and circuit family selected by the user.

For the Fibonacci design in Fig.1, we choose a
bundled-data two-phase non-return-to-zero (non-RTZ)
handshake protocol, using a request wire, an acknow-
ledge wire, and a bundle of wires with data. The gate-
level netlist for Storage C4, shown in the center of
the left column in Fig.1, belongs to the Click circuit
family [14] .

There are several choices for expanding data func-
tions, like the add function in the Join. One choice is
to keep them as function calls. Standard hardware de-
scription languages, such as Verilog, can mix structural
and functional descriptions[15] . Another choice is to ex-
pand the datapath circuits separately and organize the
GUI formulation to optimize the 
ow of data. Stan-
dard design compilers excel at automatically synthe-
sizing combinational functions into gate-level netlists.
Automatically synthesizing sequential functions is more
di�cult, but it is possible when the goal is to optimize
worst-case performance. However, a major promise of
self-timed design is the ability to optimize average-case
performance | in terms of latency, throughput, power,
energy, or any combination thereof. Partitioning se-
quential functions into combinational functions that op-
timize average-case rather than worst-case performance
has thus far eluded design automation. Such partition-
ing remains a collaborative e�ort between the designer
and his or her design compiler[16-20] .

2.3 Design Library

An ideal design 
ow would support a variety of cir-
cuit families that could be mixed and matched based
on the desired speed, power, energy e�ciency, time-to-
market or backward compatibility needs for the sys-
tem or sub-systems. The design library for such a 
ow
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should store GUI, circuit, and protocol descriptions for
the components of each family. Such a library should
also store the timing constraints for each component.

The yellow-colored center column of Fig.1 illustrates
the Design Library. It shows a Click Storage circuit
(top), its protocol (middle), and a static timing anal-
ysis (STA) code description of its timing constraints
(bottom). Fig.1 omits the component, data type, and
function descriptions for the GUI. Although the Design
Library supports descriptions parametrized for multiple
incoming and outgoing channels, the Storage example
in the center column has only one incoming and outgo-
ing channel. Section 3 of this paper uses this single-in
single-out Storage component to explain how one can
generate timing constraints to �t parametrized compo-
nents.

2.4 STA

Static timing analysis (STA) [21] allows one to vali-
date and repair timing constraints in the gate-level
netlist generated by the Parser. Well-known examples
of timing constraints for latches and 
ip
ops are mini-
mum clock pulse width, setup time, and hold time. A
self-timed design library also holds relative timing con-
straints between the end signals on paths that start at
the same point but must arrive at their end points in a
pre-established sequence. The delay slack in each con-
straint is parametrized and �lled in during technology
mapping.

A technology library for the chosen fabrication pro-
cess will �ll in further details on gate and wire delays,
minimum clock pulse widths, etc. By using timing in-
formation stored in the technology library with physi-
cal information obtained from the chip, STA tools can
compute and compare actual clock pulse widths against
required minimum clock pulse widths, and add extra
delay to repair inadequate pulse widths. The repairs
go into the next chip layout iteration. STA tools can
also repair relative timing constraints by adding su�-
cient delay to the \late path" with the pre-established
later arrival.

There are several STA decisions that one must
make, each with its own choices. Below, we will em-
phasize three important STA decisions, and indicate
the choices that we have made.

The �rst STA decision to make is where to insert
delay to repair an invalid timing constraint. One could
insert the delay at the end point of the pre-established
later end signal. Alternatively, one could insert the de-
lay at a design-friendly location that might be exercised
less frequently per protocol cycle and therefore retard
the circuit performance less. Or one could choose a re-
pair point that is shared by multiple invalid constraints,
thus reducing the need to insert multiple delays.

We have chosen to specify a design-friendly delay
insertion point for each timing constraint. Each con-
straint stored in our Design Library identi�es a delay
insertion point to use for its repair. The Design Li-
brary may indicate that the delay is symmetric or that
it retards only rising or only falling signals.

We formulate timing constraints from the viewpoint
of a handshake component, even though the constrained
paths may start or brie
y wander outside the compo-
nent. The STA code for a timing constraint stored
in the Design Library records when and where a con-
strained path enters and exits the component. The
\when" relates to a pre-established path signal se-
quence. The \where" is always a handshake signal be-
cause all components connect only through handshake
channels. The STA code can identify a constraint with
an external start point by identifying the two hand-
shake signals that jointly started there. 3O Armed with
this information, an STA tool can instantiate the STA
code stored in the Design Library, �ll in the sub-paths
that are outside the component instance in the gate-
level netlist, and complete the path-�nding process in
a modular fashion.

The second and equally important STA decision to
make is when to insert delay. The many timing con-
straint instances associated with a gate-level netlist
might not be independent to each other. Inserting de-
lay to repair one invalid constraint instance may repair
or invalidate others.

We use an iterative process similar to [14] for de-
lay insertion. During STA, we group timing constraint
instances that share the same delay insertion point
instance 4O for repair. For each delay insertion point
and its group of constraints, we maintain:

� a list with delays of the constraints in the group,
� the maximum delay in the list, and

3O We use this, for instance, to formulate bundled-data setup t ime constraints. Data 
ip
op FF D in the Storage component in
Fig.1 (center-column-top) has a setup time constraint with an external start point identi�ed as the point where handsha ke signals
in 1 R and in 1 D jointly started.

4O We may use \constraint" and \insertion point" when it is clea r from the context that we mean \constraint instance" and
\insertion point instance".
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� the sum of the delays in the list.

The delay value of a constraint indicates the least
delay one must insert into the gate-level netlist to make
the constraint valid. The STA process stages delay in-
sertion iteratively, inserting more delays at only one
insertion point per iteration. As mentioned earlier,
constraints are not necessarily independent, and thus
inserting more delays into the netlist to repair one con-
straint may repair others as well, or possibly damage
them. Therefore, after each iteration, the STA process
re-computes the delay requirements for all constraints.
The process is as follows:

ˆ Start the �rst STA iteration, with all delays zero.

ˆ After each iteration, update the information for
each insertion point. For valid constraints, we
set the delay to zero. For invalid constraints, we
set the delay to a re-computed minimum delay
mismatch rounded up to the best suitable delay
device available in the technology library.

ˆ If all groups have a maximum delay of zero, then
all timing constraints are satis�ed, iteration ends,
and the netlist can proceed to the next stage in
the chip design.

ˆ If one or more groups have non-zero delay, ano-
ther iteration begins by adding delay to the worst
o�ender. As the worst o�ender, our process
chooses an insertion point from those with the
highest delay sum. The added delay is the maxi-
mum delay listed for this worst o�ender.

This process is not necessarily monotonic in the
number of valid constraints, but it will converge un-
less constraints are circularly dependent, which rarely
happens. Circularly dependent constraints force one to
choose di�erent delay insertion points or even di�erent
timing constraints.

Having discussed where to insert delay and when to
insert it, we now come to the third and most important
STA decision to make: what STA engine to use. Con-
ventional STA tools are di�cult to use on self-timed
circuits because such tools fail to handle logic loops
gracefully. Simple treatment of such loops is accepta-
ble for the conventional design process because they
are rare in clocked systems | loops in clocked systems
tend to start and end at 
ip
ops. Self-timed circuits,
however, are rich with logic loops, as they must be,

because the unstable behavior of closed logic loops ani-
mates self-timed behavior.

Graceful analysis of rise and fall times and delay of
gates in logic loops requires a two-pass process. A �rst
pass computes output rise and fall times from gate size,
gate load, and input rise and fall times. This pass con-
verges very quickly because output rise and fall times
are a very weak function, almost independent, of input
rise and fall times. A second pass computes the delay
of each gate using the input rise and fall times from the
�rst pass.

Conventional STA tools combine those two passes
into one concurrent process. They split loops into linear
acyclic paths to make a one-pass estimation e�ective.
Moreover, they commonly use a \clock", rare in self-
timed circuit designs, to guide where to split each loop.
Some self-timed design groups have invested heroic ef-
fort in fresh ways to split loops in order to apply con-
ventional STA tools to self-timed systems[14;22-25] , but
none work truly gracefully. 5O

The time has come to use a two-pass process to ana-
lyze loops intact. Loops are, after all, central to self-
timed circuit design.

Our STA engine is set up to work self-standing or
with an existing STA tool. Its internal algorithms to
�nd paths and calculate path delays are still too coarse-
grained to replace existing STA tools, but adequate
for early design exploration. We use the STA engine
in self-standing mode to evaluate the timing in new
handshake components before we have formalized tim-
ing constraints using ARCtimer | the timing veri�ca-
tion framework discussed in Section 3. We use the self-
standing mode again to validate the STA code for the
timing constraints produced by ARCtimer and stored
in the Design Library. By inserting pseudo-random de-
lays at multiple pseudo-randomly selected points in the
netlist, we force the STA engine to recompute com-
pensating delays, and then we simulate and test the
repaired netlist for correct functionality. The Click Sto-
rage constraints in Fig.10 in Subsection 3.3.1 have been
validated in this way for 15 743 \pseudo-random" test
cycles.

2.5 Summary for Timing Veri�cation Context

The Design Library stores veri�ed components for
use in chip designs. The Design Library appears in the
center column of Fig.1 because it connects the chip's

5O This applies also to the Click self-timed circuit family, wh ich was developed speci�cally to work with conventional STA and test
tools [14] . Click circuits use only 
ip
ops as state-holding elements , and have a 
ip
op in every loop. Some Click loops, however, g o
through 
ip
ops and fail to start or end at 
ip
ops. Conventi onal STA tools require splitting such loops.
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design 
ow on the left and the component's timing veri-
�cation framework on the right. Once veri�ed, a com-
ponent may be used in many chip designs. Because
closed loops are central to self-timed circuits, the time
has come for STA tools to avoid splitting loops and
instead to analyze loops intact.

3 Timing Veri�cation Framework

The spiral in Fig.1 shows the four main steps in our
timing veri�cation framework 6O for handshake compo-
nents. We call this framework ARCtimer. The steps
use the keywords: Handshake Component (step 1),
Model Checker (step 2), Timing Patterns (step 3) and
Static Timing Analysis (step 4). Step 1 begins and step
4 ends in the yellow center column with the Design Li-
brary of component descriptions for each circuit family
supported by the design 
ow. This paper illustrates
the steps for a Click Storage component with single in-
coming and outgoing channels. This same component
appears in the subsequent subsections of this paper to
explain each step.

We use this framework in two ways, with and with-
out priming. Without priming, ARCtimer takes the
circuit and protocol descriptions of a component and
helps us uncover all the timing constraints. The set of
timing constraints thus produced ensures that the cir-
cuit obeys the protocol. ARCtimer works well without
priming for simple components such as the Storage and
the Join in the Fibonacci design in Fig.1 (left-column).
For complex, nondeterministic, or data-driven compo-
nents, the run time and space limitations of underlying
tools may necessitate priming ARCtimer with a starter
set of timing constraints and using ARCtimer to com-
plete the set.

The subsections below explain each step in more
detail.

3.1 ARCtimer Step 1
| Handshake Component

A handshake component responds to the full and
empty state of its channels, as we illustrated earlier in
Subsection 2.1 for the Storage and the Join components
in the Fibonacci design.

The circuit-level representations for full and empty
channels depend on the variant of the handshake pro-
tocol used. Many circuit families, including Click[14] ,
Micropipeline[5] , and Mousetrap[13] , use a two-phase

non-return-to-zero (non-RTZ) protocol with separate
request and acknowledge wires to encode full or
empty. GasP uses a two-phase return-to-zero (RTZ)
protocol[9-10] with a single statewire to represent full or
empty. Fig.2 shows the default representations for full
and empty in two-phase non-RTZ and two-phase RTZ
handshake protocols.

Fig.2. Default state representations for full and empty cha n-
nels in two-phase non-RTZ and RTZ handshake protocols with
bundled data. A channel with non-RTZ protocol is engaged in
a handshake, i.e., it is full, when its request and acknowled ge
di�er. A channel with RTZ protocol is full when its statewire is
high. During the handshake, i.e., when the channel is full, t he
data must be valid and remain stable.

In general, the control logic of a handshake com-
ponent is an AND function of the conditions necessary
for it to act. Complex handshake components may have
multiple such AND functions to guard di�erent actions.
The Click Storage component in Fig.1 (center-column-
top) has one such AND function | labeled and2.

The response of a handshake component usually
changes the state of one or more of the channels
to which it responded. Many components drain full
incoming channels and �ll empty outgoing channels.
Thus, there is a feedback loop from channel state to
component action to channel state. The Click Sto-
rage component in Fig.1 (center-column-top) has two
such loops: one for channelin 1 from in 1 R through
gatesxor in 1, and2, F F to in 1 A; another for channel
out1 from out1 A through gates xnor out1, and2, F F
to out1 R.

The AND function coordinates the two loops and
makes the Click Storage component \act". The com-
ponent's gate-level actions are similar but more re-
�ned than its GUI-level actions described in Subsec-
tion 2.1. The component acts whenin 1 is full ( in 1 R 6=
in 1 A) and out1 is empty (out1 R = out1 A) | see
Fig.2. When detected, these cause rising transitions on
xor in 1 and xnor out1 that in turn cause AND func-
tion and2 to rise. A rising transition on and2 clocks the

6O We use the term \framework" because we already reserved the t erm \system" for large-scale designs, and because the term
\
ow" is often associated with automatic solutions and we se ek to avoid that connotation.
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edge-triggered 
ip
ops and starts three actions concur-
rently:

� F F D copies data fromin 1 D to out1 D ;
� F F inverts in 1 A, thus draining in 1;
� F F also inverts out1 R, thus �lling out1.
The now empty in 1 and the now full out1 reset

xor in 1 andxnor out1 to low, each of which resetsand2
to low, thus bringing the Click Storage circuit back to
an initial state where it can coordinate the next full in 1
and empty out1 handshakes.

We initialized the Click Storage circuit in the Design
Library of Fig.1 (center-column-top) with all channels
being empty. All its signals have a logical value of 0,
except for the output of xnor out1 and the D input of
F F which are 1, as indicated.

This initial state in the Storage circuit matches the
initial state in the compact Storage protocol description
in Fig.1 (center-column-middle) and the grey-colored
state 0 in the corresponding �nite state machine ex-
pansion (right column).

One can choose various speci�cation formalisms
to describe the protocol behavior of a single hand-
shake component or of a self-timed network of hand-
shake components. Dialects of Communicating Sequen-
tial Processes (CSP), sometimes called Communicating
Hardware Processes (CHP), are very popular[6;8]. The
Calculus of Communicating Systems (CCS) forms the
basis of the self-timed circuit veri�cation work in [23,
26]. Signal Transition Graphs and Petri Nets form the
basis of the self-timed circuit veri�cation and synthesis
work in [27-29].

The goal of this paper is merely to show how to ver-
ify single components. We consider here neither how to
synthesize a component nor how to verify networks of
them. This limited goal gives us the leisure of selecting
a formalism whose speci�cations are both compact, i.e.,
short and easy to understand, and complete, i.e., fully
delay-insensitive. We found a suitable formalism in the
theory of Delay-Insensitive Algebra developed by [30-
32]. Delay-Insensitive Algebra also underlies [33] which
uses it to build a veri�cation framework for self-timed
circuits. Our goal is much simpler than any of the syn-
thesis and veri�cation work built on Delay-Insensitive
Algebra. We merely seek compact and complete speci-
�cations that allow us to verify that a component's
circuit has the same choices of action as speci�ed by
the component's protocol. We seek to avoid premature
commitment to a veri�cation tool.

Delay-Insensitive Algebra uses �nite traces of events
that specify not only safety properties, but also liveness

properties that are crucial for distinguishing choices of
action. It uses an interleaving semantics that represents
parallel events by ordering them arbitrarily.

The protocol description in Fig.1 (center-column-
middle) �rst identi�es the signals coming into the Click
Storage (input) and those going out (output). This
information will be used to complete the compact de-
scription into a fully delay-insensitive one. Next come
the handshake event orderings for the two channels.
Each event is either a rising or a falling signal tran-
sition. Each channel of the Click Storage component
starts with an event on its request signal, and there-
after alternates events on its request and acknowledge
signals. This corresponds to the basic two-phase non-
RTZ handshake communication protocol for an initially
empty channel, illustrated in Fig.2. Last comes the pro-
tocol description P | a compact repetitive sequence of
four consecutive input-output events:

P = in 1 R; in 1 A; out1 R; out1 A; P:

In this form, protocol P says that the Click Storage
component must wait for input event in 1 R before it
produces output event in 1 A followed by output event
out1 R, after which it waits again until it receives an-
other input event, namely out1 A, before it repeats the
same protocol,P.

The delay-insensitive interpretation of P allows
more behaviors. The interpretation is based on what
is popularly known as the Foam Rubber Wrapper
metaphor, a term for delay-insensitive communication
introduced by the late Charles Molnar. The idea is that
an event may be delayed for an arbitrary period of time
when it travels between the sender and receiver com-
ponents. Thus, an input event in an event sequence
speci�ed by P might have occurred as early as its gene-
ration or as late as its receipt, or anywhere in between.
Hence, input eventsin 1 R and out1 A in P may move
to earlier positions in the sequence provided each input
follows the previous output event on the same channel,
as speci�ed in the handshake event orderings. Likewise,
output events in 1 A and out1 R may move to later po-
sitions in the sequence provided each output precedes
the next input event on the same channel.

We use tools developed for Delay-Insensitive Alge-
bra in [32] to complete the compact protocol descrip-
tion expressed asP automatically into a fully delay-
insensitive description expressed as the �nite state ma-
chine in Fig.1 (right-column). Fig.3 repeats both de-
scriptions.
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Fig.3. (a) Compact and (b) complete protocol speci�cations of
a Click Storage component with a single incoming and a single
outgoing handshake channel. The �nite state machine (b) sta rts
in state 0, colored grey. The triangle ( 5 ) indicates a transient
state. No matter the environment that it operates in, the com -
ponent must exit a transient state. It can exit a transient st ate
through an event on one of the state's outgoing arrows. The
arrow points to the component's next state. The rectangle ( � )
indicates a non-transient state. In some environments, the com-
ponent will stay in such a state forever; in other environmen ts,
it exits the state by following one of the state's event-arro w pairs
to the next state.

The �nite state machine in Fig.3(b) describes the
various event sequences and event choices at the pair
of channel interfaces of the Storage component. It also
describes the progress expectations at each state in an
event sequence. The triangles (5 ) denote transient
states that may persist only for a �nite time. Triangu-
lar states typically respond to handshake output events,
which are controlled by the component. The underly-
ing assumption is that the internal circuit actions lead-
ing up to the output event will �nish within a �nite
amount of time. 7O This is valid for most actions, with
the possible exception of non-deterministic arbitration
| absent from a Storage component. The rectangles
(� ) denote non-transient states that may persist for-
ever. Rectangular states typically produce only input
events | events controlled by the component's envi-
ronment. The underlying assumption is that the envi-
ronment might be lazy and never act. The �nite state

machine constrains the component to exit a transient
state within unbounded but �nite time, but allows it to
remain in a non-transient state forever.

Note that these descriptions can be used for any
Storage component with single incoming and outgo-
ing channels and two-phase non-RTZ handshakes. One
can easily envision how to generalize both descriptions
to arbitrary numbers of channels. Other handshake
components, such as the Join in the Fibonacci design
of Fig.1 (left-column-top), and even non-deterministic
and data-driven components, also have relatively simple
compact descriptions that are easy to understand[32] .

The combination of a compact protocol description,
P, and tool automation to complete P into a fully delay-
insensitive description helps avoid over-specifying com-
ponents. Avoiding over-speci�cation is important and
harder than one might think. We inadvertently and
repeatedly over-speci�ed the handshake behavior of a
component using the approach in [23, 26], which re-
quires complete speci�cations in CCS without tool sup-
port to help make them.

Note:
It may be worthwhile to revisit and simplify the the-

ory of Delay-Insensitive Algebra, \building it down" to
be just barely expressive enough to describe compact
protocols for single handshake components while pre-
serving the ability to complete these descriptions au-
tomatically into fully delay-insensitive �nite state ma-
chines as seen in Fig.3. The simpli�ed theory would be
easier to support with tooling and easier to re-use in
other self-timed design and veri�cation 
ows.

3.2 ARCtimer Step 2 | Model Checker

Fig.3 illustrates how one can model the protocol
of a handshake component as a �nite state machine.
The machine serializes sequential as well as parallel
events and captures the serialized behavior in event-
based state transitions, state transition choices, and
transient and non-transient states. Similar �nite state
machine descriptions can model gates, wires, the net-
work of gates and wires that form the circuit of a hand-
shake component, and even the timing constraints of a
handshake component. Verifying that the component's
circuit meets the component's protocol under the com-
ponent's given set of timing constraints thus becomes a
model checking task[34] .

What model checker should one use for this task?
The two basic choices are a general-purpose model

7O This assumes that the gates and wires are well-designed, and goes back to designing circuits using the theory of Logical E �ort [4]

| see Section 1.
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checker that is widely used or a model checker cus-
tomized to �t the self-timed computation theory of
one's choice. Analyze and Artist in [23, 26] are ex-
amples that use customized model checkers with a
trace semantics and a CCS based logic conformance
relation. They model and verify that the timing-
constrained circuit meets the protocol. Process Spaces
and FIREMAPS in [33, 35] are examples that use the
theory of Delay-Insensitive Algebra for both the mod-
eling and the model veri�cation task.

A major advantage of a customized model checker is
that the theory is already built into the model checker.
For instance, a model checker built on Delay-Insensitive
Algebra can use the �nite state machine description
in Fig.3(b) directly. On the other hand, a customized
model checker tends to have few and highly specialized
users and few test examples, and may be 
awed by
various subtle bugs that make it hard to use for new
examples. A major advantage of a widely used general-
purpose model checker is that it has many users and
many diverse test examples, and thus its bugs tend to
be discovered and repaired.

We experimented with both customized and
general-purpose model checkers. We have found cus-
tomized model checkers especially hard to use for mod-
eling and verifying the protocols and circuits of non-
deterministic and data-driven handshake components.
Moreover, we mistrusted some of the veri�cation re-
sults that we obtained. We resolved the di�culty in
modeling the protocols by using formalisms and tools
developed for Delay-Insensitive Algebra, as explained in
Subsection 3.1. Other di�culties vanished with the use
of a general-purpose model checker. General-purpose
model checkers force one to indicate explicitly both
what to verify and how to execute the various parts
of a model. Although explicitness requires more work,
it gives one full control over one's own experiments.

The experiments and code fragments reported in
this paper are based on NuSMV[36] , a model checker
that is freely available and has an active and diverse
user community. NuSMV has helped us generate and
verify timing constraints for widely di�erent compo-
nents with deterministic, non-deterministic, and data-
driven handshake behaviors. The timing veri�cation
work in [37] also uses NuSMV but veri�es fewer prop-
erties than we do, as we will explain in Subsections 3.2.1
and 3.2.2 and Section 4.

Fig.4 shows what a general-purpose model checker
must have and do to verify a handshake component's
circuit against its protocol under a given set of timing

Fig.4. Organization of the model checking task to verify, fo r
a given handshake component, that the component's circuit i n
its environment and under its timing constraints satis�es b oth
the gate-level \digital health" properties and the propert ies de-
�ned by the component's protocol. Examples of \digital heal th"
are semimodularity, used later in this paper, and the absenc e
of set-reset drive �ghts, which plays no role in this paper. T he
grey rectangle at the top represents the Model Checker Libra ry
| a translation of the Design Library in Fig.1 (center-colum n)
into model checker lingo. Using the Model Checker Library,
ARCtimer creates a Model Checker Netlist represented by the
middle grey rectangle. The netlist connects single instanc es of
the component's protocol, circuit, environment, and avail able
timing constraints, as indicated by the white and broken-li ne
rectangles and the white arrows. A white arrow follows the di -
rection from a rectangle with models that create an event to a
rectangle with models that respond to that event. All events
in and between rectangles with horizontal text are interlea ved
using an asynchronous mode of operation. Events of rectangl es
with vertical text must be synchronized to corresponding ev ents,
which is achieved by operating them in synchronous mode. The
model checker takes the Model Checker Netlist and �rst gener -
ates a corresponding �nite state machine model with instant i-
ated gate-level \digital health" and protocol-related pro perties
for veri�cation, and then it checks the properties. The grey
rectangle at the bottom represents the veri�cation report w ith
a pass or fail indication per property and a counterexample o f a
computation path in the resulting �nite state machine for ea ch
failing property.

constraints. Note that besides models for the circuit,
protocol, and timing constraints, there is the compo-
nent's environment | a model for the environment in
which the component's circuit operates. We model the
component's environment by providing a separate inter-
face for each channel that responds to channel outputs
in any of all the valid ways possible for that channel.

The following subsections give a more detailed
explanation of Fig.4, including code fragments with
NuSMV solutions.
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3.2.1 Modeling the Component's Protocol

Fig.5 repeats the complete, fully delay-insensitive
protocol speci�cation of Fig.3(b) and shows its transla-
tion into NuSMV model checker lingo.

The translation is wrapped in a self-contained mod-
ule, with the abbreviated name protocol, with formal
parameter names for the handshake signals. The mod-
ule's full name is

Click Storage 1 In 1 Out P rotocol. 8O

We store such modules in the Model Checker Li-
brary (see Fig.4).

The �rst part of the translation, up to line 26 in
Fig.5, codes the states, initial state, and event-based
state transitions of the protocol. Each translated state
name begins with the letter s followed by the original
state number, e.g., initial state 0 (Fig.5(a)) translates
to s0 (Fig.5(b)). The original protocol speci�cations in
Fig.3 specify only legal states and transitions, omitting
illegal and irrelevant ones. However, the omissions must
be coded. We code two types of error states to receive
illegal handshake transitions: illegal channel outputs go
to errorOUT , and illegal channel inputs go toerrorIN .
All other events, irrelevant to the protocol, preserve the
protocol's state. The resulting code forms a monitor. It
will be used to monitor the Component's Test Circuit
| the sub-system inside the broken line in Fig.4 (mid-
dle) which holds the component's circuit, environment,
and timing constraints.

To monitor the Component's Test Circuit, the pro-
tocol operates in synchronous mode, as we already men-
tioned in Fig.4. This means that the protocol's �nite
state machine code is executed in each execution step by
the model checker. NuSMV uses the keywordTRANS
in line 6 of Fig.5(b) to indicate that the next statement
is to be executed in synchronous mode. The next state-
ment, enclosed by the keywordscaseand esacin lines 7
and 26 respectively, is precisely the monitor code of the
component's protocol in the rightmost white rectangle
in Fig.4.

The purpose of monitoring the Component's Test
Circuit is to annotate its behavior for veri�cation. The
veri�cation is done by checking properties. The proper-
ties in lines 28{50 of Fig.5(b) specify what the protocol
must see when it monitors the Component's Test Cir-
cuit.

(a)

(b)

Fig.5. (a) Fully delay-insensitive protocol speci�cation and (b)
corresponding NuSMV model checker code. The �rst part of the
code in lines 1{26 describes legal and illegal states and tra nsi-
tions. The Model Checker uses this part to monitor the sub-
system with circuit, environment, and timing constraints. The
second part in lines 28{50 describes the protocol propertie s for
\what the monitor must see". Note: a NuSMV case statement
gives higher priority to the guarded commands in earlier lin es of
the case statement.

The properties in the second part of the code, lines
28{50, are inherent in the protocol speci�cation, and
translated along with the rest of the code. The two

8O Its un-abbreviated name says that the module has the protoco l translation for a Click Storage component with one incomin g
and one outgoing channel.
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safety properties in lines 30 and 31 allow only legal
handshake behaviors. The �ve progress properties in
lines 33{37 allow the �ve transient states to persist
for only a �nite time. The transient states correspond
to the triangles (5 ) in the original speci�cation. The
remaining choice equivalence properties spell out the
choices of action that must be available to the observed
sub-system to meet the protocol speci�cation. These
might be re�ned with additional event information,
if needed. The structure of these properties is quite
straightforward for the Click Storage component, but
becomes more interesting for non-deterministic compo-
nents.

The progress and choice equivalence properties are
absent from the NuSMV based timing veri�cation work
in [37]. We will come back to this when we compare re-
lated work in Section 4.

3.2.2 Modeling the Circuit and Environment

Fig.6 repeats the gate-level Click Storage circuit and
environment models in Fig.1 (right-column-top) and
shows the corresponding gate-level NuSMV translation,
using two gate models,cgateand � posedgethat are de-
�ned in Fig.7.

The two translations are wrapped in self-contained
modules with formal parameter names to support the
exchange of handshake and timing constraint signals.
For this paper, we abbreviate the module names

Click Storage 1 In 1 Out Circuit ,
Click Storage 1 In 1 Out Environment

to circuit and environment, respectively. These con-
tain the code for the middle two white rectangles with
horizontal text in Fig.4.

The Click Storage circuit shown in Fig.6(a) con-
tains �ve more bu�ers than the original circuit descrip-
tion in the Design Library of Fig.1 (center-column-
top). The extra bu�ers are colored in grey and named
buf in 1 A1, buf in 1 A2, buf out1 R1, buf out1 R2,
and buf ck. The translation adds these bu�ers to de-
lay wires and individual wire branches independently
from gates. Bu�ers are necessary because the model
checker ignores wire delays. Adding a bu�er or inverter
device to a logic wire connection makes that connection
visible to the model checker as a device output with
a device delay. It su�ces to add bu�ers only to wires
that branch out and to wires that clock edge-triggered

ip
ops. It is straightforward to adapt a compiler that

(a)

(b)

Fig.6. (a) Click Storage circuit and environment models fro m
Fig.1 (right-column-top) with corresponding module de�ni tions
for the Model Checker Library (b) coded in NuSMV. In the
picture, the gates for ENV in 1 and ENV out1 contain the let-
ter \L" to indicate that they are lazy. The code for cgate and
� posedge follows in Fig.7.

generates the original circuit description to generate
also the description for the model checker. The circuit
description for the model checker also contains data-
path signals in 1 D and out1 D and datapath 
ip
op
FF D, which are omitted from Fig.6 because they are
outside the scope of this paper.
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Fig.7. Module de�nitions for cgate and � posedge. Earlier com-
mands in a case statement have a higher priority. NuSMV uses
the symbol \!" for logic negation.

Fig.6(b) shows the translated circuit module in lines
1{18 and the translated environment module in lines
21{30. Lines 3{12 describe the gate instances and their
connections for the circuit. Lines 23 and 24 do the
same for the environment. Most gates are instanti-
ated asprocess cgate(function; : : : ) where function is
a Boolean logic combination of the module's parame-
ters and outputs of other gates. The instances have
the same names and logic functions as in Fig.6(a). For
example, gate instancexor in 1 in line 3 computes the
exclusive-OR of parameter in 1 R and buf in A2:val,
the output of gate buf in A2. Likewise, the posi-
tive edge-triggered 
ip
op instance FF in line 7 copies
and stores the value oninv q2d:val onto its output q
whenever its clock input buf ck.val changes from low
(FALSE) to high (TRUE). The signal de�nitions in
lines 14{17 and 26{29 following the keywordsDEFINE
serve to shorten and simplify various code fragments.

The operations of the circuit and its environment
are monitored by the protocol, as explained in Subsec-
tion 3.2.1. Because we describe protocols with Delay-
Insensitive Algebra, which uses an interleaving seman-

tics, the protocol model interleaves its events. Thus, the
protocol can interpret handshake events only when they
arrive in sequence. Consequently, the circuit and its en-
vironment must interleave all handshake events because
these are the events they share with the protocol. To
simplify the overall execution, we chose to interleave
not just the handshake events but all events generated
by cgate instances in the circuit or its environment 9O .
NuSMV pairs the keywords process and cgate in lines
3{12 and 23{24 to indicate that the cgate instance is to
be executed in asynchronous mode by interleaving its
operations with those of otherprocess cgateinstances.

The asynchronous interleaving mode of operation
comes with a cost of fairness conditions for selecting
which process cgateoperation to run next. The proto-
col assumes that most circuit operations take a �nite
time. It expects the circuit to generate a handshake
output within a �nite number of execution steps after
receiving a handshake input from its environment. The
NuSMV code for the protocol uses progress properties
to formulate and verify these expectations | see lines
33{37 of Fig.5(b). To satisfy these progress properties,
each process cgateinstance in the module must be se-
lected to run after an unbounded but �nite number of
execution steps. The NuSMV statementsFAIRNESS
running in lines 18 and 30 of Fig.6(b) enforce precisely
that.

The remaining code details can be explained by exa-
mining the module de�nitions for cgate and � posedge
in Fig.7.

The module de�nition of cgate, i.e., \combinational
gate", follows in lines 1{20 of Fig.7. Each cgate
takes an arbitrary Boolean combinational logic func-
tion through its �rst parameter, set. For example, the
cgate for xor in 1 in line 3 of Fig.6(b) takes in 1 R xor
buf in 1 A2:val | the exclusive-OR of Boolean sig-
nals in 1 R and buf in A2:val. The second parame-
ter, init val, contains the initial value of cgate output
val, assigned in line 6 of Fig.7. For example, the out-
put of xnor out1 in line 4 of Fig.6(b) is initialized to
TRUE, which corresponds to the value 1 indicated for
the xnor out1 output in Fig.6(a). When a cgate in-
stance is selected to run, it evaluates itsset function.
Depending on the other input parameters in Fig.7, it
either updates its output val with the set result (line
10 or 11) or does nothing (line 9 or 10). Only lazy or
timing constrained cgate instances may do nothing.

9O This simple mode of interleaving can be combined with a simul taneous mode of operation [37] for internal gates that generate
non-handshake events, allowing arbitrary subsets of these to operate simultaneously. Such a simultaneous mode of oper ation would,
however, require tighter fairness conditions than the FAIRNESS running in lines 18 and 30 of Fig.6(b) in order to satisfy the protocol 's
progress properties in lines 33{37 of Fig.5(b).
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A cgate is lazy if its third parameter, lazy, is TRUE.
For example, both the Click Storage Environment gates
ENV in 1 and ENV out1 in lines 23 and 24 of Fig.6(b)
are lazy. A lazy cgate has an arbitrary choice either to
act by setting its output val to the result in set or to
do nothing by keeping the old value ofval. This non-
deterministic choice is indicated in line 10 of Fig.7 by
the curly brackets around val and set.

Timing constraints may prevent a cgate output
transition from FALSE to TRUE (rise), from TRUE to
FALSE (fall), or both. Output val cannot rise in line
9 of Fig.7 if the fourth parameter stop rise is TRUE,
and neither can it fall if the �fth parameter stop fall is
TRUE. In Subsection 3.3, we will discuss how timing
constraints control the run-time values of stop rise and
stop fall in the various cgate instances.

It is possible that a cgate instance, poised to have
its output rise or fall, fails to be selected and do the
output transition before a new set value arrives that
disables the transition. For cgate instances used in self-
timed circuits, the presence of a laterset value over-
taking an earlier one often indicates the presence of
a race condition. We therefore 
ag such overtakings
for later inspection. A variable with the name semi-
modular, initially TRUE (line 7), becomes FALSE at
the �rst such overtaking (lines 15 and 16) when the
next execution step no longer shows an enabled transi-
tion ( next(val) = next(set)) but also shows no sign
of having taken it (next(val) = val). The NuSMV
model checker updates variablesemimodular (lines 14{
18) at each execution step, as indicated by the keyword
TRANS in line 13. The \digital health" property in
line 20 requiressemimodular to be TRUE at all times,
and 
ags any change to FALSE.

Variable semimodular in Fig.7 has been aptly
named. Semimodularity is a well-known paradigm for
designing self-timed digital circuits without hazards by
insisting that digital signal changes occur before being
disabled. One might call it the \no change left behind"
paradigm. Introduced by Muller and Bartky [38] and
brought to the attention of a wider audience through
Raymond Miller's 1965 book[39] semimodularity formed
the starting point of the �rst generation of self-timed
circuit design tools[27-28] . Though semimodularity is
still an important paradigm for designing and verifying
self-timed circuits, new design trends for fast, energy-
e�cient self-timed circuits [18-20;40] force it to share that
position with relative timing [41] . The NuSMV code in
lines 14{18 of Fig.7 for updating the variablesemimod-
ular is based on a new de�nition of semimodularity for

timing constrained self-timed circuits, presented by us
in [42].

The module de�nition of � posedgein lines 22{31
of Fig.7 models a positive edge-triggered 
ip
op. The

ip
op copies and stores the value of its second parame-
ter, d, onto its output, q, whenever its �rst parameter,
ck, changes from low (FALSE) to high (TRUE), as in-
dicated in line 29. The value of output q is initialized
through the third parameter, init q (line 26). Instances
of � posedgerun each execution step, as indicated by
the keyword TRANS in line 27.

To time and verify each � posedgeinstance, we pair
it with a process cgateinstance as its clock bu�er. The
clock bu�er provides the timing 
exibility in selecting
when the 
ip
op acts. We verify the semimodular be-
havior of the clock bu�er to ensure that all \clock"
transitions issued by the and2 gate reach the 
ip
op
(see Subsection 3.1 for a reminder on \clocking"). This
explains the extra bu�er buf ck in Fig.6(a): it is the
clock bu�er for 
ip
op FF.

Gate modelscgateand � posedgein Fig.6 and Fig.7
have NuSMV code descriptions reminiscent of code de-
scriptions in a hardware description language like Veri-
log. We chose to use a general gate model forcgate, ca-
pable of modeling all combinational gates in the Click
Storage component. This is possible because each gate
instantiated in the component's gate-level netlist in
Fig.6(a) has a behavioral description of its Boolean
logic function. When instantiated with the signals com-
ing into the gate, this Boolean logic function becomes
the set function of the correspondingcgate instance in
Fig.6(b). One could follow a similar approach for se-
quential gates and de�ne a general gate model capable
of modeling all sequential gates, as is done in [43]. We
refrained from doing this here because the Click Storage
component uses only one type of sequential gate | a
positive edge-triggered 
ip
op. Instead of using a few
general gate models, one could de�ne a dedicated model
for each gate with a di�erent logic function, and connect
the gates by connecting their signal names. This is done
in [37]. Fig.6 would require eight such dedicated gate
models: two for the lazy environment, and six for the
circuit. Dedicated gate models produce a larger Model
Checker Library to characterize, but they contain extra
connectivity information that could be useful.

3.2.3 Instantiating the Model Checker Netlist

Fig.8 repeats the middle grey rectangle of Fig.4 with
the Model Checker Netlist but omits the white rect-
angle for the component's timing constraints. It also
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shows the NuSMV translation with a single protocol,
circuit, and environment instance for each. The key-
words process in lines 4 and 5 indicate that the model
checker will run the circuit and environment instances
in asynchronous mode by interleaving their events. The
FAIRNESS running command in line 11 insists that the
event selection between the two instances be fair. The
lack of keyword processin line 3 indicates that the pro-
tocol instance runs in synchronous mode. This matches
the modes of operation speci�ed earlier in Fig.4.

(a)

(b)

Fig.8. (a) Copy of the model checker netlist in Fig.4 without
timing constraints and (b) corresponding NuSMV code with on e
instance each of the component's protocol, circuit, and env iron-
ment. The code for each instance is in Fig.5 and Fig.6.

In Subsection 3.3, we will verify the \digital health"
and protocol properties in the code of Fig.8, analyze
any failing properties, and generate timing constraints
to correct the failures. In Subsection 3.4, we will re-
visit Fig.8 and upgrade its NuSMV code by adding the
missing constraints.

3.3 ARCtimer Step 3 | Timing Patterns

When the model checker runs the code in Fig.8,
it reports multiple failing properties. For each failing
property, it gives a counterexample | a computation

path that fails that property. Failing properties ex-
pose delay sensitivities in the design. A counterexample
not only exposes a delay sensitivity, but also contains
\clues" about how to prevent it from becoming haz-
ardous. These clues can be captured in a form suitable
for veri�cation and correction, and thus prevention.

There are various options available for capturing
clues. For instance, Yonedaet al.[44] assigned metric
delay bounds to each gate in the circuit and its envi-
ronment, capturing each clue as a tighter metric delay
bound, and called this a timing constraint. Alterna-
tively, a clue can be captured as a relative ordering of
events and be called a chain constraint as in [33, 35], or
a (relative) timing constraint as in [23, 26, 29, 45-46].

Here, we capture a clue as a relative ordering of
events and call this arelative timing constraint , or sim-
ply constraint.

Analyzing a counterexample to capture the clue it
contains always requires �nite state machine analysis
around the failing step. Many of the approaches refer-
enced here, notably [26, 29, 44, 46-47], provide heuris-
tics to capture the clue as a constraint and to generate
the constraint automatically. These heuristics are, alas,
tightly coupled to the underlying tools and theory and
thus hard to transfer to other veri�cation 
ows. 10O

To share understanding of what is involved in ana-
lyzing a counterexample, this paper analyzes the two
counterexamples of Fig.9 for the netlist of Fig.8 | one
failing a \digital health" property and the other fail-
ing a protocol property. Subsection 3.3.1 analyzes each
counterexample, extracts its clues and formulates them
as relative timing constraints. Subsection 3.3.2 shows
a way to model these constraints.

It is well to remember that the generation of relative
timing constraints comes early in the design process, as
part of building the library of handshake components
| the Design Library in Fig.1 (center-column). Once
constraints are known and stored in the Design Library,
they are used over and over again for every chip design.
Thus, the time taken for constraint generation plays
only a small role in the overall time from design to
market. We therefore have the leisure to make the con-
straints understandable to the component's designer,
and to increase their robustness to circuit modi�ca-
tions applied later in the design process. We do this by
formulating the constraints as timing patterns, in sup-
port of the design patternsthat the designer selected for

10O (See also Note on page 85 in Subsection 3.1) It may be worthwhi le to revisit the existing heuristics on automatic generati on
of constraints from counterexamples and \build down" the su rrounding theory to be just expressive enough for heuristic constraint
generation. The extracted heuristics would be easier to sup port with tooling and easier to re-use elsewhere.
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Fig.9. (a) Copy of the Click Storage circuit and environment coded in Fig.6 and Fig.7 and (b) two counterexamples showing a \digital
health" failure for gate xnor out1 and a failure in state s4 of the protocol (Fig.5) monitoring the circuit and environ ment. The coun-
terexamples each describe a path of events through the circu it. An event is a rising or falling signal transition. The cou nterexamples
indicate rising signal transitions by appending the symbol \+" to the signal name, like ENV in1.val+ in step 1. They indicate falling
transitions by appending the symbol \ � ", like out1 R� in step 15 of the path with the protocol failure.

the component's circuit and family. The highly general
and highly robust timing patterns derived for simple
components can form a starter set forpriming complex
components. More detail on timing patterns appears in
Subsection 3.3.3.

3.3.1 Analyzing Counterexamples

Fig.9(b) shows two counterexamples for the NuSMV
netlist in Fig.8. To ease following the paths in each
counterexample, Fig.9(a) repeats the gate-level circuit
diagram of the Click Storage Circuit and Environment.
Both counterexamples describe a path of events start-
ing from the initial state. State names, like s0 for the
initial state, are �lled in by the component's protocol
| the vertical rectangle in the netlist diagram of Fig.8.
The protocol description for the Click Storage compo-
nent can be found in Fig.5.

The two counterexamples show that if gates and
wires have arbitrary delays, it is harder to guarantee
the simple operational descriptions of handshake com-
ponents and handshake channel interfaces given in Sub-
section 3.1 and Fig.2.

The �rst six execution steps, Run step 1{6 in
Fig.9(b), are the same in both counterexamples. In
step 1,ENV in 1 raisesENV in 1:val. The rising tran-
sition is denoted by the symbol \+" at the end of
ENV in 1:val. For a falling transition, we would have

used the symbol \� ". Remember that a gate name with
su�x \.val" denotes the gate's output (see Fig.6 and
Fig.7). BecauseENV in 1:val is an alternative name
for in 1 R, this step changes the protocol state tos1.
With in 1 R high and in 1 A still low, incoming chan-
nel in 1 is now full. This is detected by gate xor in
whose output rises in step 2. With both its input sig-
nals high, AND function and2 now \acts" as follows.
First, and2:val rises (step 3), and then clock bu�er out-
put buf ck.val rises and clocks 
ip
op FF, causing its
output FF.q to rise (step 4). From here on, the order-
ing of execution steps depends on the delays of the logic
gates in the feedback loops fromFF.q back to buf ck.
There are four such feedback loops, two per channel on
each side.

Both counterexamples focus on the two feedback
loops at the out1 side. They show what happens when
the two feedback loops are equally fast, and what hap-
pens when both are faster than the two feedback loops
at the in 1 side. The examples both next select to
changebuf out1 R1 in step 5, raisingbuf out1 R1:val
and thus out1 R, which changes the protocol state
to s3. Outgoing channel out1 is now empty. In
step 6, both examples then raisebuf out1 R2:val, mak-
ing gate xnor out1 aware that out1 is empty by en-
abling xnor out1:val to fall. In step 7, the two coun-
terexamples diverge.
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The example in the left box of Fig.9(b) selects
ENV out1, raising ENV out1:val and thus out1 A,
which changes the protocol state tos4. The change
in out1 A also makes channelout1 full and prevents
xnor out1:val from falling before it took the opportu-
nity to fall. This causes xnor out1:semimodular to
become FALSE (lines 15 and 16 of Fig.7) which is

agged because the gate has failed the \digital health"
property, called CTLSPEC AG semimodular (line 20 of
Fig.7).

A semimodularity failure like this could happen in
a chip design if the internal path through the circuit,
from FF.q via buf out1 R2 to xnor out1, were to take
about the same time as the external path through the
environment, from FF.q via buf out1 R1 to xnor out1.
Were this to happen, it would render exclusive-NOR
gate xnor out1 useless as a detector of full and empty
channel states, thus defeating the handshake protocol
on out1. To di�erentiate a full channel from an empty
channel, xnor out1 must have enough time to receive
and respond to the internal representation forout1 R,
as captured bybuf out1 R2, before the environment re-
sponds with a next state change throughout1 A. This
is the clue we are seeking. Given that both inputs for
buf out1 R1 andbuf out1 R2 start at F F:q, or even at
the AND function and2:val before that, we can capture
this clue in the counterexample in one of the following
two ways.

ˆ After FF.q rises, xnor out1:val must fall before
out1 A rises. Following the notation of [23, 37],
we denote this as:

F F:q+ ! xnor out1:val� < out 1 A+.

ˆ If : FF.q holds while and2:val rises, then sub-
sequently xnor out1:val must fall before out1 A
rises | denoted as:

(: FF.q ^ and2:val+)
! xnor out1:val� < out 1 A+.

The second formulation of the captured clue
matches relative timing constraint rt 3 in Fig.10(b). A
similar counterexample exists for the case thatFF.q
holds while and2:val rises, leading to rt 4. Two more
such counterexamples can be found by exchanging the
two feedback loops at channelout1's side for the two
feedback loops at channelin 1's side. The four relative
timing constraints rt 1 to rt 4 in Fig.10(b) block all such
counterexamples.

Semimodularity failures are easy to solve: instead
of disabling the transition, take it! This simple heuris-
tic, however, tends to push the semimodularity failure
to the next gate, just as a snow plow pushes snow else-
where. This happens for instance betweenrt 7{ rt 8 and
rt 9 in Fig.10(b), each of which solves a semimodularity
failure. Constraints rt 7 and rt 8 solve a semimodularity
failure for gate and2 by pushing the failure to the next
gate, buf ck. Constraint rt 9 solves the semimodularity

(a) (b)

Fig. 10. (a) Stoplight model of a relative timing constraint for use by the model checker, and (b) initial set of relative t im-
ing constraints for the Click Storage component derived by f ailure analysis of counterexamples for the NuSMV model chec ker
netlist in Fig.8. The failure analysis of the two counterexa mples from Fig.9 in Subsection 3.3.1 gave us rt 3 and rt 5 | and
implicitly rt 1 to rt 6. Constraint myNAME : myPOD ! myEARLY < myLATE expresses that after myPOD , the computation
encounters myEARLY before myLATE . The expressions myPOD , myEARLY , and myLATE formulate guarded events, as explained
in the text of Subsection 3.3.2. The expressions for the guar ds are underlined. Rising events end with the symbol \+" and f alling
events end with the symbol \ � ".
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failure for gate buf ck by pushing the failure to FF,
which does not register this type of failure, and thus
the simple heuristic snow plow stops here. Relative
timing constraints that merely push a semimodularity
failure elsewhere fail to be appealing and intuitive to
the designer of the component and are less robust to
circuit modi�cation applied later in the design process.
We will come back to this in Subsection 3.3.3.

The counterexample in the right box of Fig.9(b)
avoids the mistake of the �rst counterexample by taking
the still-enabled transition xnor out1:val� (step 7). It
continues by resetting the AND function and setting up
the 
ip
op for the next handshake coordination (steps
8{10). So far so good. But then, it starts a second
handshake on channelout1 (steps 11 and 12) while ig-
noring the still outstanding �rst handshake on in 1 |
forgetting that it \takes two to tango". With in 1 R
being high andin 1 A still being low, input channel in 1
is still full and xor in 1 is still high. As a result, the
AND function \acts" prematurely (steps 13{15) and
coordinates the �rst handshake onin 1 with the second
handshake onout1. This premature action of the AND
function causes a protocol failure in step 15.

This second counterexample violates the core pur-
pose of the Click Storage component, which is to coordi-
nate exactly one incoming handshake with exactly one
outgoing handshake and to repeat this for the successive
handshakes on each channel. For one-to-one coordina-
tion, the AND function must know when a channel is
willing to participate (\Shall we dance?") as well as
when its participation is over (\Thank you!"). Each
channel indicates its willingness to participate by rais-
ing the output of its exclusive-(N)OR gate, and each
channel ends its participation by lowering this same
output. After each action, both outputs must fall be-
fore either rises again. We capture this clue in the coun-
terexample in the following way.

ˆ When and2:val rises, then xor in 1:val must fall
before xnor out1:val rises. We denote this as:

and2:val+ ! xor in 1:val� < xnor out1:val + :

This formulation of the captured clue matches rt 5
in Fig.10(b). The related constraint, rt 6, avoids similar
counterexamples for the reverse situation by preventing
each handshake onin 1 from outpacing its handshake
partner on out1.

Solving protocol failures may be hard and require
rules of thumb for designing self-timed circuits. For ex-
ample, Cortadellaet al.[29] conducted experiments with
slow versus fast input events to guide the synthesis of

self-timed circuits. By presuming a slow environment,
it may be possible to generatert 5 automatically from
the second counterexample. We will come back to this
in Subsection 3.3.3.

3.3.2 Modeling Relative Timing Constraints

The relative timing constraints in Fig.10(b) capture
the clues from the various counterexamples generated
by the model checker. The two counterexamples of
Fig.9(b) gave usrt 3 and rt 5, and implicitly all six con-
straints, rt 1 to rt 6. The focus of the current subsection
is to expose the structure and operation of all such rela-
tive timing constraints.

As mentioned in Subsection 2.4, relative timing con-
straints are the constraints between signals at the ends
of paths that start at the same point | signals that
must change in a pre-established sequence. Each rela-
tive timing constraint identi�es the point where the
paths split, called a point of divergence (POD) in [23,
37] | here we call it myPOD. Each constraint also in-
dicates the two destinations, a pre-established \early"
end point and a pre-established \late" end point |
we call these myEARLY and myLATE , respectively.
In addition, the constraint has a name, like rt 1 in
Fig.10(b) | we call this myNAME.

Our relative timing constraints have the following
structure:

ˆ myNAME : myPOD ! myEARLY < myLATE ,

where

ˆ myPOD abbreviatesguardPOD ^ eventPOD ,

� guardPOD is a guard, i.e.,

a logic expression with Boolean result,
� eventP OD is an event, i.e.,

a rising or falling signal;

ˆ myPOD holds if and only if

� guardPOD holds,

� while eventP OD occurs;

ˆ myEARLY and myLATE have similar structures:

� myEARLY is guardEARLY ^ eventEARLY ,
� myLATE is guardLATE ^ eventLATE .

The better to distinguish guards from events, we
underline guards. We omit trivial guards, like TRUE.
For instance, the guards formyPOD in rt 5 to rt 11 are
omitted for this reason.

myNAME : myP OD ! myEARLY < myLAT E
says:

� if myPOD becomes valid,
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� then myEARLY must become valid,
� beforemyLATE becomes valid.
One can use a constraint for analysis and report

whether or not it is satis�ed for all possible computa-
tion paths of the system. This is done, for instance,
during static timing analysis (see Subsection 2.4). Al-
ternatively, one can use a constraint as an actuator |
a delay device that retards eventLATE after myPOD
becomes valid by blockingeventLATE until myEARLY
has become valid. The model checker uses constraints
as actuators.

Our model checker's actuator model of constraint
myNAME is a 3-state �nite state machine extension
of the 2-state version used in [37]. The three states
in Fig.10(a) are necessary for modeling the non-trivial
guards of myLATE in rt 7 and rt 8 of Fig.10(b). We
name the three states GREEN, YELLOW, and RED.

Fig.10(a) shows thestoplight model that we use as
the model checker's actuator view of a relative timing
constraint. Both GREEN and YELLOW states per-
mit eventLATE to happen, while a RED state blocks
eventLATE . Most constraints start in GREEN, as do
rt 1{ rt 11 in Fig.10(b), and proceed as follows.

ˆ All constraints go to a GREEN state when
myEARLY becomes valid, because the need to
retard eventLATE vanishes with the arrival of
myEARLY .

ˆ In GREEN, only myPOD can change the state,
becausemyEARLY and myLATE matter only af-
ter myPOD becomes valid. The stoplight changes
from GREEN to YELLOW if myPOD holds but
guardLATE does not. Only instances ofeventLATE

for which guardLATE holds need blocking. The
state changes from GREEN to RED if both my-
POD and guardLATE hold.

ˆ Both YELLOW and RED states follow from the
arrival of a valid myPOD but not yet a valid
myEARLY .

ˆ Before myEARLY becomes valid, changes in
guardLATE change the state from YELLOW to
RED, and vice versa. Such changing of the guard
and the state happens in some computations for
rt 7 and rt 8 in Fig.10(b). The stoplight state for
rt 7 or rt 8 changes from RED, atmyPOD, to YEL-
LOW, by rt 5 and rt 6, and then back to RED if
either xor in 1:val+ or xnor out1:val+ occurs be-
fore and2:val� .

3.3.3 Deriving Timing Patterns

Failure analysis of the two counterexamples in
Fig.9(b) of Subsection 3.3.1 gave us the �rst six relative
timing constraints rt 1{ rt 6 of Fig.10(b). Constraints
rt 1{ rt 6 are the weakest relative timing constraints re-
quired to prevent the failures exposed by the two coun-
terexamples and similar examples. The remaining con-
straints are also the weakest relative timing constraints
of their kind.

ˆ Constraints rt 7 and rt 8 form the weakest rela-
tive timing constraints to maintain the \digital
health" of gate and2 as a semimodular gate. They
go as far as to permit a single risingand2 input
after both inputs have gone low, before they re-
quire and2:val to fall.

ˆ Constraint rt 9 is the weakest relative timing con-
straint to maintain buf ck's \digital health" as a
semimodular gate.

ˆ Constraints rt 10 and rt 11 are the weakest
setup time constraints for positive edge-triggered

ip
op FF.

One can explore

myNAME : myP OD ! myEARLY < myLAT E

expressions to get an idea which constraints are criti-
cal. One way to do this is to estimate the elapsed time
betweenmyLATE and myEARLY at full speed opera-
tion under reasonable gate delays and in a reasonable
environment, e.g.,

ˆ Assume gate delays equivalent to two inverter de-
lays for X(N)OR, AND, FF. Assume zero delay
for the grey bu�ers. Replace the component's en-
vironment in Fig.6(a) by two other Click Storage
circuits, one on each channel. Assume maximally
parallel operation | no stalling.

ˆ Under these assumptions, the cycle time for
and2:val+ is 12 inverter delays, and the elapsed
time from myEARLY to myLATE is four inverter
delays forrt 1{ rt 4 and rt 7{ rt 8, six for rt 5{ rt 6 and
rt 9, and nine for rt 10{rt 11.

With at least four inverter delays to spare in each
constraint, these estimations indicate that the risk for
violating a constraint is low and that none of the con-
straints rt 1{ rt 11 is critical.

Constraints rt 1{ rt 11 are the weakest possible con-
straints in part because they are tightly coupled to the
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circuit. A tight coupling between constraints and cir-
cuit is useful if the chip uses exactly this circuit for each
instance of the Click Storage component, which is un-
likely. For example, a technology mapping tool might
partition the AND gate into a NAND and inverter, and
a layout tool might add clock bu�ers. With a NAND
gate or extra clock bu�ers, constraints rt 1{ rt 11, as for-
mulated in Fig.10(b), no longer su�ce because the gate
names and connections have changed. To make the con-
straints su�ce might require a grouping of gates in the
new circuit and a mapping of group names back to the
old circuit. This is common practice and not a problem
in itself. The problem is that not all renamings ensure
that rt 1{ rt 11 still cover all the properties in the new
circuit (see Fig.11).

Ensuring the renaming works for rt 1{ rt 11 may re-
quire re-running the model checker on the new circuit.
However, re-running the model checker would defeat
the purpose of working with a Design Library of veri-
�ed components and would put the timing veri�cation
framework, i.e., ARCtimer, in the critical design cy-
cle of each chip. Our purpose holds to keep ARCtimer
�rmly in the early part of the design process.

To hold this purpose, the constraints must work
regardless of circuit changes made during technology
mapping or layout. Fig.11 shows that constraints rt 1{
rt 11 fail this purpose.
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Fig.11. Click Storage sub-circuit from Fig.6, and two new po st-
layout versions with an extra bu�er. Sub-circuit NEW-1 grou ps
and2new and buf extra new and identi�es the group with and2 in
OLD. The semimodular gate behavior of each gate is covered if
the semimodularity of and2 is covered. Constraints rt 7 and rt 8
of Fig.10(b) cover the semimodularity of and2, and thus that
of and2new and buf extra new in NEW-1. The grouping and re-
namings for sub-circuit NEW-2, however, keep buf extra new iso-
lated. Because rt 1{ rt 11 are the weakest possible constraints for
the original circuit with sub-circuit OLD, they fail to cove r the
semimodular gate behavior of buf extra new in NEW-2. Because
the timing patterns p5 and p6 in Fig.12 cover the semimodular
behavior of all gates from and2 through buf ck, they cover the
semimodular behavior of the intermediary gate, buf extra new , in
both NEW-1 and NEW-2.

In summary, we need general constraints that em-
phasize the circuit's intent rather than its structure.

The component's designer faces a similar issue when
choosing appropriate structures for the component's
circuit. To make the circuit work for every chip, he
or she uses design patterns. The patterns work for
most technology mappings and layout tools. We wish
to solve circuit design and circuit timing in a similar
way. We seek timing patterns that make the design
patterns work, i.e., that ensure:

ˆ the X(N)OR gates detect full and empty states,
ˆ the AND function coordinates the handshakes,
ˆ FF and inv q2d 
ip the channel state.

Let us examine the initial constraints rt 1{ rt 11 of
Fig.10(b) to see which might work as patterns and
which need generalizing:

ˆ Constraints rt 1{ rt 4 make the X(N)OR gates
work, and do no more and no less than that |
they make �ne patterns. Fig.12 rephrases them
as p1 and p2.

ˆ Constraints rt 5 and rt 6 make the AND func-
tion work by comparing the output signals of the
X(N)OR gates. This comparison makes less sense
for complex AND functions in components with
more than one channel on each side. Requiring
the outputs of all X(N)OR gates to fall before any
channel input changes results in the more general
constraints p3 and p4 in Fig.12 (top) and p (bot-
tom).

ˆ Constraints rt 7{ rt 9 keep the AND function semi-
modular, but they do this by exposing the organi-
zation of the AND function all the way from gate
and2 to the FF 's clock input | a result of re-
solving semimodularity failures by pushing them
out of the way. The slow environment presumed
in Subsection 3.3.1 for rt 5 and rt 6 can be as-
sumed again here to guarantee that there will be
enough time to stabilize internal feedback loops
up to FF 's clock input before the channel inputs
change. This assumption is formalized inp5 and
p6 of Fig.12. Unlike rt 7 and rt 8, patterns p5 and
p6 are robust to both post-layout design changes
shown in Fig.11.

ˆ Constraints rt 10 and rt 11 keep the FF with
inv q2d combination 
ipping, but can be general-
ized as patternsp7 and p8 of Fig.12 by assuming
a slow environment.
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(a)

(b)

Fig.12. (a) Timing patterns replacing rt 1{ rt 11 from Fig.10 and
(b) parametrized timing patterns for N incoming and M outgo-
ing channels (0 < n 1; n2 6 N and 0 < m 1; m2 6 M ). Pattern
p expresses that after myPOD , the computation must satisfy all
myEARLY before any myLATE . Symbols \+," \ � " and \ � "
at the end of a signal indicate a rising, falling, or either si gnal
transition.

Note that each pattern in p1 to p8 of Fig.12 still
leaves at least two inverter delays to spare under the
earlier estimations for full speed operation, reasonable
gate delays, and a reasonable environment. This indi-
cates that the risk for violating one of these patterns is
low and that none of them is critical.

The slow environment assumed above leads to a
burst-mode operation[48] of the Click Storage compo-
nent, where internal loops stabilize before new external
channel inputs arrive. The burst-mode assumption is
expressed most clearly in the parametrized patternp
of Fig.12. It is quite common in self-timed circuit de-
sign to assume that an external feedback loop through
the component's environment is slow compared with
an internal feedback loop in the component's circuit.
Heuristics for automatic circuit synthesis or timing con-
straint generation often use such assumptions. There is
no guarantee, however, that relative timing constraints
generated on the basis of heuristics are su�ciently gene-
ral to be stored in a Design Library for use in every chip
design (see Fig.1).

The role of ARCtimer's step 3 is to take the initial
timing constraints, obtained by human or automated
failure analysis, and turn them into su�ciently general
timing patterns.

3.4 Step 2 Revisited
| Adding Timing Constraints

The double-headed arrow in Fig.1 (right-column),
on the spiral between step 2 and step 3, indicates that
we alternate these two steps. We �rst run the model

checker (step 2), and then we examine a few coun-
terexamples and capture their clues in one or more
relative timing constraints (step 3). Then we model
the constraints, and re-run the model checker primed
with these constraints. We examine a few counterex-
amples, and repeat. We alternate step 2 and step 3
until the model checker reports no further counterex-
amples. This alternation gave us constraintsrt 1{ rt 11
of Fig.10(b), from which we then derived timing pat-
terns p1{p8 and p of Fig.12.

The purpose of this subsection is to illustrate how
one can model such constraints in a general-purpose
model checker. As before, we use the NuSMV model
checker as example. Fig.13 expands the NuSMV Model
Checker Netlist of Fig.8 without timing constraints to
match the version shown in Fig.4 (middle) with p1 to
p8 as the component's timing constraints. When the
model checker runs the code in Fig.13, it reports no
further counterexamples | all modeled properties are
valid.

Module rt in lines 1{18 of Fig.13 models the state
changes of the stoplight model of Fig.10(a) which is
our model of a relative timing constraint. The param-
eters in line 1 with names eventPOD, eventEARLY,
guardPOD, guardEARLY, and guardLATE represent
eventPOD , eventEARLY , guardPOD , guardEARLY and
guardLATE de�ned earlier in Subsection 3.3.2 and used
in Fig.10 respectively. Note the absence of a parameter
for eventLATE . The third parameter in line 1, init rt ,
contains the initial stoplight state. The role of the last
two parameters, xPOD and xEARLY , is to reduce the
number of rt instances needed to code constraints. Pa-
rameter xPOD, when being TRUE, indicates that both
rising and falling signal transitions count as events for
myPOD. Parameter xEARLY indicates the same for
myEARLY . The last two parameters make it possible
to model inv q2d:val� in p7 and p8 of Fig.12 with a
single rt instance by making xEARLY TRUE ( t) (see
line 27).

The statement between the keywordscaseand esac
in lines 7 and 14 is precisely the code for the stoplight's
state changes. It is executed in synchronous mode, i.e.,
in each execution step by the model checker, as indi-
cated by the keyword TRANS in line 6. This is con-
sistent with the mode of execution indicated earlier in
Fig.4 for the leftmost white rectangle with the name
Component's Timing Constraints.

The signal, stop, de�ned in line 18 of Fig.13, is
TRUE if and and only if the stoplight is RED.

The constraint's rt instances follow in lines 22{30,
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Fig.13. NuSMV model checker code changes for adding the rela tive timing constraints captured in patterns p1{ p8 of Fig.12. The
Model Checker Library adds the module de�nitions for protocol (Fig.5) and logic gates cgate and � posedge (Fig.7). In NuSMV, earlier
commands in a case statement have a higher priority, and the s ymbol \!" is used for logic negation.

in the code for the circuit module. Constraints that
start in the same state and that use the samemyPOD,
myEARLY , and guardLATE have the samert param-
eters in the NuSMV code, and can thus share anrt
instance. For instance, patternsp1 and p3 share anrt
instance in line 24, calledp1p3. This is possible, despite
the fact that the two patterns have di�erent myLATE
events. It is possible because thert instances control
the GREEN, YELLOW and RED stoplight states, but
they do not block myLATE event. The cgate instance
that drives the myLATE event, eventLATE , is the one
that blocks the event.

For the model checker, we partitioned the stoplight

model of Fig.10(a) into a stoplight controller ( rt ) and
a driver (cgate). Although Desai et al.[37] used a 2-
state model instead of our 3-state stoplight model, their
model checker solution uses exactly the same partition.
The analogy with everyday stoplights and drivers makes
this an obvious partition.

Just as multiple stoplights may force a driver to
stop a vehicle, multiple rt instances may force acgate
to block a myLATE event. Take for instance relative
timing constraints p1, p4, p5, and p7 of Fig.12. The
constraints share myLATE event, in 1 R� , and may
thus each block it. Thus, in the model checker, each
of the stop signals of the constraints' multiple rt in-
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stances may block in 1 R� . Line 29 of Fig.13 com-
bines these separatestop signals into a single variable
stop in 1 R x, to simplify the remaining code. Likewise,
line 30 combines the separatestop signals formyLATE
event out1 A� into a single variable stop out1 A x.

All events in 1 R� and out1 A� are generated
by the environment. Therefore, stop in 1 R x and
stop out1 A x must pass from the instantiated circuit
to the instantiated environment through the parameter
mechanism, as shown in lines 41{48 of Fig.13.11O

In lines 34{37, module environment passes the pa-
rameters to the appropriate cgate drivers, ENV in 1
and ENV out1. Becausestop in 1 R x blocks the ris-
ing as well as the falling transitions of ENV in 1:val,
it is passed to both the stop rise and the stop fall pa-
rameter slots for cgate ENV in 1 | making the cgate
block any transition of ENV in 1:val if stop in 1 R x is
TRUE (line 9 of Fig.7). This is how timing constraints
control the run-time values of stop rise and stop fall in
the various cgate drivers of myLATE events.

It is straightforward to generate the NuSMV code
changes in lines 21{49 of Fig.13 from the timing pat-
terns in Fig.12. Module rt , in lines 1{18 of Fig.13, is a
prede�ned module in ARCtimer's Model Checker Li-
brary for NuSMV (Fig.4), just like the modules for
combinational logic gate cgate and for positive edge-
triggered 
ip
op � posedge.

3.5 ARCtimer Step 4
| Static Timing Analysis

Subsection 3.3.3 ended step 3 \timing patterns"
of Fig.1 (right-column-bottom) with a set of timing
patterns p1{p8 and their parametrized version p (see
Fig.12). This set is complete in terms of property cov-
erage and su�ciently general to apply to every chip
with a Click Storage component.

Subsection 3.5 takesp to step 4 \static timing analy-
sis" of Fig.1 (center-column-bottom) by translating p's
formula into the code for static timing analysis (STA).
We store both p's formula,

p : myP OD ! myEARLY < myLAT E;
and its STA code in the Design Library12O .

The �rst task for static timing analysis is to val-
idate p, i.e., to validate that p's slowest early path

is faster than p's fastest late path in the chip's gate-
level netlist. This involves computing the maximum
path delay, maxEARLY , of all paths from myPOD to
myEARLY and the minimum path delay, min LATE ,
from myPOD to myLATE , and validating that:

maxEARLY < (min LATE + margin )
for some delaymargin.

The second task for static timing analysis is to re-
pair the netlist in case the �rst task invalidates p. The
iterative repair process described in Subsection 2.4 per-
forms this second task. It �nds the minimum delay
value d to make p valid, given a delay insertion point
in the netlist at which to insert d.

Calculating maxEARLY and min LATE involves fol-
lowing the topological connections between gates and
wires in the netlist, di�erentiating rising transitions
from falling transitions where possible, and �lling in
gate and wire delays using lookup tables[22-23;25;49-51] .
Unfortunately, some STA tools cannot di�erentiate ris-
ing transitions from falling transitions, and many STA
tools cut paths and loops at 
ip
ops (see Subsec-
tion 2.4). As a result, most STA tools need guidance
to know if a path passes through or bypasses a 
ip
op
and to know which delay to use at asymmetric delay
insertion points.

Various self-timed design groups have developed so-
lutions to guide STA tools through a gate-level netlist
with self-timed circuitry (see Subsection 2.4). The so-
lutions usually involve pre-cut sub-paths that a conven-
tional STA tool can handle. These pre-cut sub-paths
are the result of a higher-level analysis of the netlist.
The higher-level analysis is the most interesting part of
any of these solutions, because it is the part that would
remain necessary even if conventional STA tools were
capable of doing the analysis without guidance.

The STA code stored in the Design Library does
the higher-level analysis. It contains the algorithms to
�nd paths and calculate path delays and to mark inter-
mediary 
ip
ops and other relevant checkpoints on the
paths.13O Below, in Subsections 3.5.1{3.5.4, we indicate
the most important decisions that we made to organize
this STA code. These decisions complement the actual
path cutting pragmatics described for instance in [22,
25, 50-51].

11O Some timing constraints exchange parameters in the reverse direction, from the environment to the circuit. For example , bundled
data setup time constraints pass myPOD from the environment to the circuit (see footnote 3).

12O The STA code for non-relative-timing constraints, such as m inimum clock pulse widths, can be stored, organized, and gen erated
in a way similar to p.

13O We call these checkpoints, after the Berlin Wall's \Checkpoint Charlie" | the famous C old War crossing point between East
and West Berlin.



100 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

3.5.1 Fill in Crucial Semantic Details in Advance

We use the model checker and formal analysis to �ll
in behavioral details that a topological search cannot
�nd.

3.5.2 Mimic the Modularity of the Self-Timed Design

Because the Design Library stores information by
component, we must partition the STA code also by
component. Our self-timed components communicate
by handshakes over channels, as explained in Subsec-
tion 3.1 and Fig.2. Each handshake is marked by a
pair of events, making the channel full and then empty,
or vice versa. In Click, these events are marked by a
transition on the request signal followed by a transition
on the acknowledge signal, or vice versa. Each pair
of handshake events partitions the paths in the netlist
between two successive components.

Thus, although we store the main STA code for
validating the component's timing constraints with the
component, we can distribute the full code by storing
the delay calculations for the other side of a partitioned
path with the other component. 14O

The STA code uses the pair of handshake events to
initiate an external delay calculation and return its re-
sults. This process may be recursive, because the STA
code for the neighboring component may initiate sub-
calculations stored with further out neighboring com-
ponents before it can complete its calculation.

We implement this using channel subroutine calls.
Hence, in addition to STA code for validating its own
timing constraint, each component must also store STA
code for the channel subroutines for which it might re-
ceive calls.

3.5.3 Sequence the Calculations in a Sensible Way

Internal paths generally contribute less delay than
paths that exit and enter the component via a hand-
shake channel. Thus, it makes sense to start minimum
path delay calculations with internal paths, and use the
current minimum to cut o� subsequent calculations in-
cluding the channel subroutine calls introduced above.

3.5.4 Example

As an example, let us look at the decisions and
STA code organization related to timing constraint p
of Fig.12 and the corresponding STA calculations to
validate maxEARLY < (min LATE + margin).

Regarding delay insertion points, we have chosen to
repair p at the two myLATE events, by delaying signal
changes onin [n2] R and out[m2] A, whichever applies.
The two end signals make good repair points, because
not only do they change exactly once permyPOD{
myLATE cycle, the minimum frequency for repair, but
also their change covers all of themyEARLY events
in each myPOD{ myLATE cycle. The delay element
must delay both rising and falling transitions because
the direction of the change is irrelevant, as indicated
by the symbol \ � " in Fig.12. Also, as p's myLATE
events, in [n2] R and out[m2] A share the same set of
myEARLY events. As a result, we can delay signal
changes onin [n2] R and out[m2] A without creating
circular repair dependencies. The lack of circular de-
pendencies ensures that the repair process described in
Subsection 2.4 will converge.

Timing constraint p has falling signal transitions
for myEARLY events, and thus requires transition-
aware static timing analysis. However, the only
myEARLY event preventing a transition-agnostic anal-
ysis is buf ck:val� . Unlike its transition-agnostic ver-
sion buf ck:val� , event buf ck:val� follows and2:val+
not immediately but only after F F:q� . As it hap-
pens, all p's myEARLY events follow and2:val+ after
F F:q� . We can indicate this by addingF F:q� between
myPOD and myEARLY in p. The presence ofF F:q�
makes it possible to focus on changes rather than spe-
ci�c transitions of myEARLY events | the transitions
are implied, as the model checker can con�rm. Fig.14
shows the updated version ofp, with checkpoint F F:q�
and non-speci�c myEARLY event transitions. This
is the version that we translate into STA code, using
transition-agnostic calculations15O .

From p itself, we can deduce that early paths end
before anymyLATE event and thus never go through a
channel. Therefore, we can use transition-agnostic cal-

14O Bundled data setup and hold time constraints use a similar pa rtition based on di�erent pairs of handshake events | betwee n
request and data signals versus acknowledge and data signal s. See also footnote 3.

15O We chose and2:val + as p's myPOD rather than F F:q� , because as the AND function of the Click Storage component, and2:val +
makes the component \act" more so than F F:q� . Moreover, alternative circuit implementations that spli t FF into separate 
ip
ops
for each channel[52] require p to use and2:val + as myPOD . Having said that, the Click Storage circuit in Fig.1 (right -column-top)
can use F F:q� as myPOD and thus, without inserting an additional checkpoint, avoi d the need to di�erentiate rising from falling
transitions in myEARLY . No matter whether one chooses to keep the STA code as general as possible by taking and2:val + as myPOD
or as simple as possible by taking F F:q� as myPOD , the goal remains the same: to simplify the STA code using tra nsition-agnostic
path-�nding and path-delay calculations where possible.
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culations for maxEARLY restricted to paths internal to
the module.

The min LATE STA code for p calculates the min-
imum path delay for paths from myPOD to myLATE
internal to the module. The code keeps track of
any 
ip
op or other checkpoints that may need fur-
ther preparation before the calculations can be handed
over to conventional STA tools. Each time when the
path subsequently exits and enters the module over
a channel, the code inserts a channel subroutine call,
and splits the calculation into the sum of three sub-
calculations: the original calculation up to the exit over
the channel, the channel subroutine call, and the orig-
inal calculation from the entry over the channel back
into the module.

Each channel comes with STA code to �ll in the de-
lay of a channel subroutine call entering and exiting the
Click Storage module. Each such channel subroutine
calculates the minimum path delay for paths through
the component from channel entry to channel exit.

(a)

(b)

Fig.14. We modify timing pattern p of Fig.12 to simplify its
STA code. Knowing that all p's myEARLY paths go through

ip
op FF compensates the need to di�erentiate rising transi-
tions from falling transitions in myEARLY . Sub�gure (a) shows
the event orderings speci�ed by p before (top) and after (bottom)
adding FF as intermediary checkpoint. Sub�gure (b) shows the
new constraints sta1 and sta2, after checkpoint insertion. Con-
straints sta1 and sta2 have been veri�ed by using their NuSMV
translations instead of those of p in lines 24{30 of Fig.13. The
guard in myPOD of sta2 plays the role of the baton in a relay
race, handing over the task of blocking myLATE from sta1 to
sta2.

Our STA code calculations are conservative. They
tend to ignore any guards, and focus only on the event
changes in the relative timing constraint formulation of

Subsection 3.3.2. This is possible because we compen-
sate for missing details by adding checkpoints. More-
over, static timing validation is more forgiving than
behavior-based timing veri�cation: it su�ces to sat-
isfy maxEARLY < (min LATE + margin ) even were the
minimum and maximum delays to belong to false paths.

Note:
Signal names that we obtain from the model checker

all specify gate outputs | never gate inputs. How-
ever, p's myEARLY and myLATE implicitly represent
events that happen not just at the output of the gate
but also in the wires branching out to each subsequent
gate's input. We must code these events accordingly
lest there be gaps in the coverage ofp. The pseudo-
random delay insertion test scenario described at the
end of Subsection 2.4 might or might not detect such
coverage gaps. Therefore, instead of looking for changes
at p's myEARLY and myLATE output signals, the
STA code looks for changes at the gate inputs con-
nected to these signals. For example, instead of look-
ing for buf ck:val� , a change at the clock bu�er out-
put in Fig.1 (right-column-top), the STA code looks for
F F:ck� , a change at the 
ip
op's clock input.

3.6 Summary for Timing Veri�cation
Framework

Our Design Library, Fig.1 (center-column), stores
a set of handshake components for use in larger self-
timed systems. For each component, the Design Li-
brary stores a circuit description, a protocol descrip-
tion, a description of the timing constraints for the cir-
cuit, and static timing analysis code to validate and
enforce these constraints in the �nal system. The cir-
cuit and its timing constraints are known to follow the
protocol properly because they have gone through the
veri�cation steps outlined here. Because these veri�ca-
tion steps happen early in the design process, we have
the leisure to apply an in-depth veri�cation process.

We make use of a model checker as part of the ver-
i�cation process. The model checker veri�es that each
component, or rather its timing constrained circuit,
obeys the protocol speci�ed for its interface signals.
The model checker also veri�es the \digital health" of
a component. \Digital health" includes such proper-
ties as semimodular gate behavior and as absence of
set-reset drive �ghts, a \digital health" property not
used in this paper but important for the veri�cation
of GasP components. The static timing analysis code
covers additional timing constraints, such as minimum
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clock pulse widths for all the edge-triggered 
ip
ops in
the Click circuit. The 
ip
op models in this paper are
too abstract for the model checker to detect the need
for such pulse width constraints.

In building the Design Library, we strive for mod-
ularity and generality. The Design Library is orga-
nized by component. Even the static timing analysis
code generated in step 4 is partitioned over the com-
ponents. For each handshake component, we seek cir-
cuit descriptions as well as protocol, constraint, and
code descriptions that are understandable to the com-
ponent's designer, easy to maintain, and robust to cir-
cuit modi�cations applied later in the design process.
Where possible, the descriptions in the Design Library
are parametrized to address a variable number of chan-
nels. Whenever we use the term pattern, as in design
pattern or timing pattern, it is to emphasize the gener-
ality of that particular description.

4 Comparison to Related Work

Throughout this paper, we have identi�ed related
work in context. We have identi�ed essential decisions
and explained where, how, and why our decisions di�er
from those of others. For instance, in Subsection 2.4, we
highlighted three static timing analysis (STA) decisions
that one must make: where and when to insert delay to
repair invalid timing constraints, and what STA engine
to use. The purpose of Section 4 is to highlight where
our key decisions are new or di�erent.

One important choice is to select a general-purpose
model checker rather than one specialized to the tim-
ing veri�cation of self-timed circuits. The active and
diverse user community of the NuSMV model checker
that we use in this paper gave us high con�dence that
the software would be correct as well as enable us to
control our experiments. The work reported in [37]
also uses the NuSMV general-purpose model checker.
Even so, model checkers developed speci�cally for tim-
ing veri�cation of self-timed circuits | notably [26, 33]
| have important value because of the new theories
they founded and the new experiments they enabled.
However, our experience with specialized model check-
ers for tool support has been a struggle due to hidden
assumptions and hard to �nd bugs, possibly reinforced
by the monolithic solution approach.

We model semimodular gate behavior and generate
timing constraints that guarantee a gate's semimodular
behavior if needed, as do [26, 29, 33, 37]. But we use a
new de�nition of semimodularity, adapted for relative

timing, which we �rst published in [42]. The new def-
inition, coded in lines 14{18 of Fig.7, prevents blocked
gate output transitions from causing semimodularity
failures. The idea is simple: a transition that is blocked
by a timing constraint is already disabled and therefore
cannot be disabled further. Note that the general gate
models that we use and share with [43] make it much
easier to swap in a new de�nition of semimodularity
than it would be, were we to use a dedicated model for
each gate with a di�erent logic function as is done in
[23, 37].

Like [23, 29, 33, 37], we verify that a component,
or rather its timing constrained circuit, obeys the pro-
tocol speci�ed for its interface signals. This includes
verifying that the component's handshake transitions
are legal, as expressed by the safety properties in lines
30 and 31 of Fig.5(b). In our work and in [33], obey-
ing the protocol also means that the circuit can make
progress in certain states even if the environment fails to
make progress, as expressed in lines 33{37 of Fig.5(b).
Progress under a lazy environment is modeled in the
theory of Delay-Insensitive Algebra, but not in the the-
ory underlying [23, 29, 37]. Unlike others, we also verify
that all reachable protocol scenarios remain available
for implementation. This is expressed by the choice
equivalence properties coded in lines 39{50 of Fig.5(b).

The timing constraints that we model and verify
constrain the ordering of speci�c events that originate
from a common start event. We formulate and name
these constraints in a way similar to [23, 37], by spec-
ifying the common start event, and the constrained
early and late events. The resulting event ordering
speci�cations are calledrelative timing constraints, af-
ter [41]. Because of their simple formulation, rela-
tive timing constraints are easy to model and add to
an already existing netlist con�guration in the model
checker, as illustrated in Subsection 3.3.2 and Subsec-
tion 3.4. But the same formulations that are so simple
to read, model, and verify can be di�cult to translate
for static timing analysis (STA). Translation into STA
code may require one to specify intermediary check-
points and corresponding events, as illustrated in Sub-
section 3.5 and Fig.14. The addition of checkpoint
events makes a relative timing constraint look more like
a chain constraint[33;35] . Chain constraints specify the
paths over which the delays to the early and late events
must be calculated. As such, chain constraints already
contain most of the semantic details that we add in
Subsection 3.5 to simplify STA code generation. Con-
sequently, chain constraints are much easier to translate
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into STA code than relative timing constraints. How-
ever, chain constraints are also much harder to model
than relative timing constraints.

Fortunately, we seldom need to add more than a few
checkpoints to simplify STA code generation. These
checkpoints can be added systematically to existing
relative timing constraints, using the stoplight model
of Fig.10(a), as demonstrated in Fig.14. This 3-state
model is new. It generalizes the 2-state model in [37]
to guarded events | the guard indicates whether or not
the event instance applies.

The key focus in this paper, more so than in any re-
lated work we have seen, is to ensure that not only the
circuit of a handshake component but also its timing
constraints and static timing analysis code are su�-
ciently general for use in a Design Library. This paper
is silent about using timing constraints to guide synthe-
sis and layout of the design or parts of it, as explored
in, for instance, [23, 25, 53], but we anticipate that such
extensions will follow a similar pattern.

5 Conclusions

This paper introduced ARCtimer, a framework for
generating and verifying timing constraints for hand-
shake components, as needed to make the compo-
nent's gate-level circuit follow the component's hand-
shake protocol. The component thus veri�ed goes into
a library for later system use. This library, the De-
sign Library of Fig.1 (center-column), stores general
descriptions, called patterns, of the component's cir-
cuit and protocol and timing constraints. The Design
Library also stores static timing analysis code to val-
idate and enforce the component's constraints in any
self-timed system built using the library. Because the
timing constraints ensure that each component faith-
fully follows its protocol, and because each protocol is
delay insensitive, the resulting systems are delay insen-
sitive. By constraining time locally, we free it globally
| this hallmark of self-timed design established since
Seitz' equipotential regions and self-timed signaling[54]

applies not only to designing and parsing self-timed sys-
tems but also to verifying and validating them, as this
paper con�rms.

We wrote this paper to help readers understand
trade-o�s and decisions. It explains where in the design

ow a framework like ARCtimer �ts. It identi�es essen-
tial decision points, the choices one can make, what we
and others chose, and why. Although this paper is not
intended as a survey, it refers to many related studies

and discusses them in context. We encourage readers
to reproduce our work and our results. To enable read-
ers to do so, the paper provides high-level algorithmic
descriptions where possible, as well as low-level details
where we think it helps to have a starter set of code
that is known to work. We show our NuSMV model
checker code not only to give readers a head start, but
also to indicate that it is not hard to generate such code
automatically from the component information stored
in the Design Library.

Last but not least, we call upon readers for their
collaboration in moving this �eld forward. Many of to-
day's self-timed design tools are monolithic. The time
has come to make exchangeable theory and tool parts.
This paper identi�es three problem areas shared by all
self-timed circuit families and thus prime areas for ex-
changeable solutions. The three problem areas are:
static timing analysis with loops kept intact (Subsec-
tion 2.4), delay-insensitive protocol speci�cations (Sub-
section 3.1), and failure analysis heuristics to derive
timing constraints (Subsection 3.3, footnote 10). This
paper also identi�es a solution approach to facilitate
the exchange of theory and tools between self-timed cir-
cuit families by using the organizational discipline that
binds them all: design patterns.
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