
Li J, Liu L, Wu Y et al. Pragma directed shared memory centric optimizations on GPU s. JOURNAL OF COMPUTER
SCIENCE AND TECHNOLOGY 31(2): 235{252 Mar. 2016. DOI 10.100 7/s11390-016-1624-8

Pragma Directed Shared Memory Centric Optimizations on GPU s

Jing Li 1;2, Member, CCF, Lei Liu 1, Member, CCF, Yuan Wu 3, Xiang-Hua Liu 3, Yi Gao 3

Xiao-Bing Feng1, Member, CCF, ACM, IEEE , and Cheng-Yong Wu1, Senior Member, CCF, Member, ACM

1State Key Laboratory of Computer Architecture, Institute o f Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3Beijing Samsung Telecom Research and Development Center, Beijing 100028, China

E-mail: f lijing01, liulei g@ict.ac.cn;f yuan002.wu, xianghua.liu, yi1980.gaog@samsung.com;f fxb, cwug@ict.ac.cn

Received January 4, 2015; revised August 25, 2015.

Abstract GPUs become a ubiquitous choice as coprocessors since they have excellent ability in concurrent processing. In
GPU architecture, shared memory plays a very important role in system performance as it can largely improve bandwidth
utilization and accelerate memory operations. However, even for a�ne GPU applications that contain regular access pat terns,
optimizing for shared memory is not an easy work. It often req uires programmer expertise and nontrivial parameter selection.
Improper shared memory usage might even underutilize GPU resource. Even using state-of-the-art high level programming
models (e.g., OpenACC and OpenHMPP), it is still hard to util ize shared memory since they lack inherent support in
describing shared memory optimization and selecting suitable parameters, let alone maintaining high resource utiliz ation.
Targeting higher productivity for a�ne applications, we pr opose a data centric way to shared memory optimization on GPU .
We design a pragma extension on OpenACC so as to convey data management hints of programmers to compiler. Meanwhile,
we devise a compiler framework to automatically select opti mal parameters for shared arrays, using the polyhedral model.
We further propose optimization techniques to expose higher memory and instruction level parallelism. The experiment al
results show that our shared memory centric approaches e�ectively improve the performance of �ve typical GPU applicati ons
across four widely used platforms by 3.7x on average, and do not burden programmers with lots of pragmas.

Keywords GPU, shared memory, pragma directed, data centric

1 Introduction

The proliferation of GPUs has been witnessed over
the past few years for their high processing power. How-
ever, the raw computation power of GPUs is often un-
derutilized by slow accesses to o�-chip global memory.
In contrast, shared memory, which locates inside GPU
chip, o�ers much faster data access with terabyte level
throughput and cycle level latency. Acting as a soft-
ware controlled cache, shared memory facilitates huge
performance gain in numerous applications[1-4] .

E�cient management of shared memory in GPU
is a signi�cant yet challenging problem, as it depends
on programmers' knowledge and experiences, which are
di�cult and impractical to automate. Even for a�ne

loops with relatively regular memory access patterns
(which are typical in GPU applications), programmers
often su�er from \headache" when trying to optimize
for shared memory. With a large number of candidate
arrays which exceed shared memory capacity, smart
choices need to be made on which arrays and how many
array elements are most suitable to load into shared
memory. Things will go even worse if shared memory
usage triggers bank conicts and limits parallel thread
blocks (TBs), both of which will cause poor resource
utilization.

To address the programing challenges for typical
GPU applications with a�ne loops, we should consider
the following key factors.

Regular Paper
This work was supported by the National High Technology Rese arch and Development 863 Program of China under Grant

No. 2012AA010902, the National Natural Science Foundation of China (NSFC) under Grant No. 61432018, and the Innovation Research
Group of NSFC under Grant No. 61221062.

© 2016 Springer Science + Business Media, LLC & Science Press, China

236 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

First of all, targeting higher programming pro-
ductivity, we need a simple way to convey program-
mer knowledge and experience to compiler, which
then takes over and automatically optimizes for shared
memory. Taking advice from programmers, pragma
directed programming model (e.g., OpenACC1O and
OpenHMPP 2O) has been introduced to simplify GPU
programming. However, none of these models provides
convenient solution to utilize shared memory. Cache
pragma in OpenACC does not target non-coalescing
global accesses, which is a huge performance loss. Be-
sides, it is not the best choice to specify reused elements
of each thread ascache does, since arrays in shared
memory are allocated and shared by each TB. In con-
trast, OpenHMPP regards shared memory as an ad-
vanced optimization, and does not provide additional
support for either reuse or coalescing in shared mem-
ory. Thus, developers are responsible for managing
data between shared and global memory, which is as
complex as CUDA/OpenCL programming. From pre-
vious analysis, we can conclude that data management
hints should include reuse as well as coalescing, and
should be mapped to the working set of a TB. Pro-
grammers are in the right position to provide this in-
formation as arranging parallelism already provides a
clear image on data access patterns.

Secondly, in order to relieve programmers from com-
plex parameter selection, we should devise a frame-
work to develop array correlations and choose shared
array related parameters automatically. This frame-
work should consider both data reuse and coalescing
(see CUDA C Programming Guide 3O for more details)
to obtain optimal solutions in terms of o�-chip traf-
�c. Most of current studies ask programmers to do the
work: they expect programmers to explicitly identify
all subarrays with reuse potentials, which sometimes
might be inconvenient due to complex array access
functions. OpenHMPP further requires programmers
to infer shared array sizes. Though OpenACC develops
shared array sizes automatically, it cannot handle huge
shared memory demand, which is bad for parallelism.
Therefore, it will be a great relief for developers if the
compiler can induce candidate arrays and shared array
size automatically.

Moreover, GPU resources, especially memory band-
width and compute cores, should be carefully managed
to avoid underutilization. Bank conict and partition

camping are the most common reasons that serialize
memory requests and waste high GPU bandwidth. Pre-
vious studies[1-2;5-8] manage to avoid memory level con-
icts from di�erent aspects, but none of them provides
solutions in all cases. Improving instruction level para-
llelism (ILP) is believed to be an e�ective solution to
keep GPU cores busy[9-11] . However, few compilers
have managed to automatically expose ILP of GPU ker-
nels, not to mention determining the suitable amount
of ILP e�ciently. In addition, the timing of optimizing
for ILP should be evaluated carefully. Since without
shared memory optimization, increasing ILP of kernels
with ine�cient access patterns only aggravates mem-
ory stall and degrades performance. Subsection 3.3.2
on ILP and shared memory discusses this in detail.

With the existing factors in mind, our solution to
improve shared memory utilization is data centric prag-
mas and a supporting compiler framework. We make
the following contributions. 1) We design a set of prag-
mas that can convey data management hints of pro-
grammers including advice on data partition and de-
sired memory patterns. All candidate arrays related to
user pragmas will be analyzed for coalescing and reuse
opportunities. It is worth noting that our pragmas pro-
vide optimization suggestions from a data centric point
of view, which makes our design superior to current
pragma directed solutions. 2) We utilize the polyhedral
model to choose appropriate arrays and array partition
sizes in shared memory. These choices come down to an
optimization problem, which targets minimum o�-chip
tra�c. 3) We further explore memory and instruction
level parallelism automatically to put GPU resources
into full play. These advanced optimizations eliminate
bank and channel conicts and expose parallel instruc-
tions, according to underlying architecture.

By extending our pragma to OpenACC, we evaluate
our approach with �ve typical benchmarks across four
widely used platforms (e.g., NVIDIA GTX 690, AMD
HD7850). The experimental results show that we can
achieve an average of 3.7x performance improvement
with one simple pragma.

We �rst explore our data centric pragmas designed
for shared memory in Section 2. Section 3 illustrates
corresponding compiler framework based on polyhedral
model for shared memory utilization, along with ad-
vanced optimizations targeting memory and instruction
level parallelism. The experimental methodology and

1O http://www.openacc-standard.org/, Dec. 2014.
2O http://en.wikipedia.org/w/index.php?title=OpenHMPP& oldid=614132944, Oct. 2014.
3O http://docs.nvidia.com/cuda/cuda-c-programming-guid e/index.html, Dec. 2014.

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GP Us 237

results are presented in Section 4. Finally, we discuss
related work in Section 5 and conclude the paper in
Section 6.

2 Shared Memory Oriented Pragmas

An important feature of our work is its capability
to convey data management hints of programmers to
a compiler. We achieve this feature by shared mem-
ory oriented pragmas. In this section, we �rst present
the design of the pragma, and then illustrate its usage
by an example before comparing it with mainstream
accelerator APIs. We choose to base our approach on
OpenACC, which provides good support in extracting
parallelism.

2.1 Pragma Design

Our shared memory oriented pragma is designed to
describe data partition and optimization hints to assist
automatic compiler optimization. Fig.1 shows its syn-
tax written in Backus-Naur Form (BNF). On the whole,
a share pragma contains a list of array partitions with
optimization hints on shared memory.

� sharePragma ::= \#pragma acc share(" arraySpecs\)"

� arraySpecs ::= arraySpec f \, "arraySpecs g

� arraySpec ::= subArray f \:coalesce" g

� subArray ::= arrayName f \["[expr j\ � "]\]" g*

� expr ::= constant f [\+" j \ � " j \ � " j \/"] expr g

� constant ::= T B X j T B Y j T B Z j integer

Fig.1. Syntax of shared memory oriented pragma.

Array partitions in share pragma represent the
working set of a TB. From a data centric point of view,
developers describe the desired workload of each TB
with array partitions in share pragma. In this way,
developers can observe and adjust the working set of
each TB directly, instead of just a few array elements of
each thread. This is reasonable for accelerator-oriented
APIs, such as openHMPP, as arrays in shared mem-
ory are allocated and accessed in chunks. More impor-
tantly, expressing desired memory patterns on a chunk
of array is more intuitive than on a few elements.

As optimal array partitions depend on several fac-
tors (e.g., TB size, problem size, shared memory size),
it is challenging for a programmer to provide accurate
array partitions. Therefore, we remove this complica-
tion for programmers by supporting parametric array
partitions in share. An array partition is declared by

specifying the length on each dimension, which can be
a constant number, a TB primitive, an expression or a
vague one (represented by \� "). Constants are positive
numbers obtained from previous experience or reuse
distance analysis, and they can describe array reuse pre-
cisely. Introducing TB primitives (such as T BX , T BY

and T BZ) allows a natural array partitioning since the
working set of a TB is usually related to TB size. Ex-
pressions are composed of constant numbers and TB
primitives, designed to cope with more complex parti-
tion plans. The symbol \ � " represents a vague number
between zero and the length of the corresponding array
dimension, which allows exible subarray partitioning.
Both TB primitives and vague symbol \ � " provide para-
metric array partitions, which will be determined by our
compiler later. It is worth noting that for multiple sec-
tions that utilize our pragma, we keep separate copies of
all parameters, such as TB primitives, BLOCK SIZE.
Therefore, our compiler framework is able to solve each
set of parameters independently, so as to expose maxi-
mal potential in all sections.

Programmers can providesharepragma without go-
ing through much trouble. Having an overall under-
standing of the target section, programmers can easily
identify arrays that are critical to performance. More-
over, based on analysis and experience, programmers
can describe the working set of a TB with parametric
array partitions, which further simpli�es their work.

As for the optimization hints, sharepragma focuses
on two common shared memory utilization scenarios:
data reuse and memory coalescing. By default, each
array partition in shareutilizes shared memory to reuse
data. They will be read into shared memory and our
compiler will ensure maximum reuse on it. Besides, we
provide a keywordcoalesceto deliver global memory co-
alescing hints to our compiler. When discovering non-
coalescing global access, programmers can explicitly re-
quire the array partition be loaded into shared memory
by adding the keyword coalesceto it. Hence, some un-
necessary compiler analysis can be avoided with the
programmer knowledge on non-coalescing array parti-
tions. It is then left for the compiler to adjust these
non-coalescing global references.

2.2 Discussion

To better explain how share pragma o�ers a more
convenient way to describe array optimization deci-
sions, we use general matrix multiplication (gemm) in
Fig.2 as an example.

238 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

(a) (b) (c)

Fig.2. Code samples of general matrix multiplication using di�erent APIs. (a) OpenACC extended with share pragma. (b) Optimized
kernel of share pragma. (c) OpenHMPP.

To describe our data centric shared memory opti-
mization plan in gemm, we add oneshare pragma (line
1 in Fig.2(a)). Being repeatedly read in this loop nest,
input arrays A and B are regarded as seed arrays (ar-
rays that are suitable for shared memory optimization).
Based on our analysis, both seed arrays contain high
order data reuse. Therefore, we partition the working
set of TBs with A [T BY][�] and B [�][T BX] to ensure
maximal reuse within each TB. In addition, detecting
non-coalescing access in arrayA , we add a keyword
coalesceto inform the compiler. Our compiler then
loads array partitions of A into shared memory to avoid
non-coalescing references. Fig.2(b) shows the optimized
kernel code that our compiler produces. The compiler
analysis workow on gemmwill be discussed in the next
section.

After detailed introduction to our design, we believe
it is necessary to compare it with mainstream accelera-
tor APIs. On one hand, cachepragma of OpenACC is
inferior in expressiveness. First, it does not take global
coalescing into consideration. Second, shared memory
will not be utilized when reused data exceeds shared
memory capacity. Therefore, OpenACC cannot utilize
shared memory in matrix multiplication, since cache
cannot �x non-coalescing reference ofA and on chip
shared memory is not able to hold the reused data
in A and B . On the other hand, OpenHMPP pro-
grammers are burdened with low level programming
details. Thus, programming with OpenHMPP is no
less complex than that with CUDA/OpenCL. As shown
in Fig.2(c), programmers are responsible of inducing

shared array sizes (lines 3 and 4) and copying data
into shared memory (lines 20� 22). Besides, program-
mers need to perform blocking manually to �t all reused
data into shared memory (lines 16� 26). Note that the
OpenHMPP version is very similar to our optimized
kernel, but we do not need complex hand-coding.

3 Shared Memory Centric Optimizing

Compiler

3.1 Overview

With data management hints from programmers,
our compiler now utilizes this information to generate
high performance GPU kernel code. As shown in Fig.3,
overall framework of our proposed compiler can be di-
vided to two parts: SM opt. phase in the �gure (gray
box at the top) is designed to perform polyhedral-based
shared memory optimization; advanced opts. phase
(gray box at the bottom) carries out advanced opti-
mizations on memory and instruction level parallelism.
We elaborate these two processes in Subsection 3.2 and
Subsection 3.3 respectively.

We focus on a�ne loops whose loop bounds and ar-
ray access functions are a�ne combinations of outer
loop indices and global parameters[12-13] . With this
restriction, our compiler is able to analyze access pat-
terns and perform shared memory centric optimizations
at compile-time. Though restricted to a�ne loops,
our compiler is still widely applicable as a�ne loops
play a critical role in many computation-intensive pro-

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GP Us 239

grams, which makes them popular targets to accelerate
on GPUs[14] .

SM Opt. Phase

B. Extract FeaturesC. Find Opt. Part .

A. Induce Candidate Partitions

Program

Opt. GPU
Program

Reused
Reference

1

Non - Coalescing
Transaction

2

Seed Array
Partition

Seed ArraSeed ArraSeed Arra
2

Iter. Domain
Split

Iter
3

Candidate
Selection

1
Candidate
Partitions
Candidate

4

Solution Space
Construction

1

Optimal
Partition

2

SM Code
Generation

Conflict
Elimination

2

ILP Code
Generation

4
Optimal ILP

Factor Search
Optimal ILP Optimal ILP Optimal ILP

3

Advanced

Opts . Phase Conflict
Detection1

SM
Pragmas

Y

N

Fig.3. Framework of the proposed compiler.

3.2 Shared Memory Optimization Based on
Polyhedral Model

To relieve programmers from exploring all ar-
ray partition schemes and parameters, we design our
polyhedral-based compiler analysis to develop array
correlations and select array partitions automatically.

For each combination of an input program and a pa-
rameterizedsharepragma, our compiler needs to induce
all array partition plans, extracts kernel features (data
reuse and coalescing that can be achieved by utilizing
shared memory), and �nally decides an optimal parti-
tion. We use the polyhedral model to assist candidate
partition and feature extraction, thanks to its ability to
capture array references and iteration domains.

Terminologies. Before discussing our parameter se-
lection, we �rst introduce some terminologies. Arrays
speci�ed by share pragma are called seed arrays. In
a�ne loop nests, iteration domain I of a statement can
be described as a polytope bounded by loop indexes and
global parameters. For each a�ne array access, we use
an access functionF (I) to map from iteration space I
to array data space. In order to parallelize a loop for
GPU, we use schedule� (I) and placementQ(I) to as-
sign a new time stamp and an owner processor to each
iteration instance. Detailed de�nitions can be found in
[12-13, 15-16].

3.2.1 Inducing Candidate Partitions

As shared memory optimizations are performed on
each array partition, obtaining parametric candidate
partitions is necessary. To this end, our compiler �rst
selects candidate arrays that might bene�t from shared
memory in input program. Then, we partition seed ar-
rays according to programmer speci�cation, which is in
turn used to split iteration domain. Given the iteration
domain splits and candidate arrays, our compiler can
induce a set of candidate partitions. The dotted box A
in Fig.3 illustrates above workow.

Candidate Selection.Seed arrays are believed to be
the primary focus of programmers, but chances are that
there exist other candidate arrays that call for shared
memory optimization. Due to two practical considera-
tions, we �nd it is necessary to induce a �nal candidate
set based on seed arrays. First, programmers might fail
to identify all arrays that bene�t from shared memory
since they do not care about arrays beyond their inter-
ests. Second, complex array correlations make it even
more di�cult to specify array partitions.

Based on the consensus that developers have insight
into target programs, a candidate set will be populated
with the given seed arrays. The problem of candidate
selection can be solved by mapping it to an equivalent
problem of �nding the transitive closure of seed arrays
in an undirected graph, which is created with vertices
representing each array reference in the target loop nest
and an edge exists between two vertices in presence of
a dependence. It is worth noting that only arrays that
share dependence with seed arrays insharepragma are
brought into the candidate set. As far as the program-
mer is concerned, this candidate set is still the key to
the target section. Besides, without share pragma, all
arrays in the target section would be considered as can-
didates. Hence, our compiler would take a lot more time
to analyze.

Consider gemmin Fig.2(a). After applying data de-
pendence analysis, we add arrayC to the candidate set
as it depends on bothA and B .

Seed Array Partition. Candidate partition is not
that straightforward as it can only be induced indi-
rectly through iteration domains. Candidate partitions
should conform with seed partitions (they should be ac-
cessed in the same iterations), and iteration subspace
is the one thing that links them.

We can infer a partition matrix of a seed array from
user pragmas such that each row represents a partition
hyperplane and the size of each row vector represents
the partition length. For example, partition matrices

240 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

of array A and B in Fig.2(a) demonstrate parametric
partitions of size T BY � k1 and k2 � T BX , wherek1; k2

represent the vague numbers \� " that fall between 0
and n:

PA =

T BY 0

0 k1

!

; PB =

k2 0

0 T BX

!

:

Iteration Domain Split. By reversing a�ne access
functions, we can induce an iteration subspaceIS for
each combination of seed partition and array reference,
which constitutes a set of iteration subspacesISSet.
IS A kl is the iteration domain partition induced from
the l-th a�ne reference to array A in the k-th state-
ment.

IS A kl = F � 1
A kl (DS A); 1 6 l 6 p;1 6 k 6 q;

where q is the amount of statements that accessA , p
is the total references toA in the k-th statement, FA kl

represents the a�ne access function, andDS A is the
data space ofA induced from PA .

Though provided by programmers, seed arrays are
not guaranteed to induce identical iteration subspaces.
In order to maximize the di�erence between iteration
subspaces of di�erent seeds, we \intersect" all \com-
patible" iteration subspaces in ISSet: two iteration sub-
spaces are considered compatible if 1) they are identical
in all dimensions or 2) they di�er in a dimension that
either subspace utilizes the vague symbol \� ". Com-
patible subspaces can be intersected as a new iteration
subspace that combines all compatible dimensions.

For example in Fig.2(a), the a�ne access functions
of the references to all arrays are represented as:

FA 11 =

1 0 0 0 0

0 0 1 0 0

!

�

0

B
@

I 1

n
1

1

C
A ;

FB 11 =

0 0 1 0 0

0 1 0 0 0

!

�

0

B
@

I 1

n
1

1

C
A ;

FC 11 =

1 0 0 0 0
0 0 1 0 0

!

�

0

B
@

I 2

n
1

1

C
A ;

where I 1 =

0

B
@

i

j
k

1

C
A and I 2 =

i

j

!

are the iteration

vectors. Therefore, we can easily induce the iteration
subspacesIS A = i : [0 : n : T BY]; k : [0 : n : �] and
IS B = j : [0 : n : T BX]; k : [0 : n : �] by apply-
ing the inverse access functions to seed partitionsDS A

and DS B . We can further combine IS A and IS B as
they are identical on the dimension k and do not in-
terfere with each other on dimensioni and dimension
j . Intersecting IS A and IS B produces a new iteration
subspaceIS AB = i : [0 : n : T BY]; j : [0 : n : T BX]; k :
[0 : n : �].

Candidate Partition. Given the iteration domain
splits and candidate arrays, we can induce candidate
partitions for each IS m in ISSet. Take array B for
example, we transform the iteration domain split to a
candidate partition for each a�ne reference of B , be-
fore combining these candidate partitions to a rectangle
hull ((1)).

DS B m = f RectHull (FB kl (IS m))

j 1 6 l 6 p;1 6 k 6 qg: (1)

Depending on the number of a�ne references to the
same array, we obtain candidate partition of di�erent
shapes. With a single a�ne reference, asIS m splits
the iteration domain into non-overlapping polytopes,
applying an a�ne transformation on it results in non-
overlapping candidate partition; but for multiple a�ne
accesses, we take the rectangle hull of all candidate par-
titions to obtain a maximal coverage on all partitions.
This leads to the redundant copy of array elements in
di�erent partitions. For instance, with an iteration do-
main split IS = i : [0 : N : 8], the candidate par-
titions for array references B [i + 1] and B [i � 1] are
B [� 1 : N � 1 : 8] andB [1 : N : 8], respectively. Neigh-
boring rectangle hulls of the candidate partitions (e.g.,
B [� 1 : 9] and B [8 : 17]) overlap on two elements. It
is worth noting that sharing array elements between
partitions does not violate program correctness, as the
target section is free of loop carried dependences. Oth-
erwise, it is not suitable for parallel execution on GPU.
Therefore, dependences on these duplicated elements
can be preserved.

Considering the loop in Fig.2(a), it is now straight-
forward to partition candidate arrays according to the
iteration split IS AB . Speci�cally, we obtain DS 0

A =
[0 : n : T BY][0 : n : �], DS 0

B = [0 : n : �][0 : n : T BX]
and DS 0

C = [0 : n : T BY][0 : n : T BX] as candidate
partitions. Note that variables or TB primitives in par-
tition matrices of seed arrays are regarded as parame-
ters, which will propagate to all candidate partitions.

3.2.2 Extracting Features

Since o�-chip accesses are costly, we intend to
choose an array partition plan that minimizes the o�-
chip tra�c. With this goal in mind, our compiler

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GP Us 241

extracts the number of reused references and non-
coalescing transactions, as shown in the dotted box la-
beled B in Fig.3, to compose the maximum number of
global references that could be omitted if shared mem-
ory were used.

Reused Reference.Reusing data in shared memory
contributes to less o�-chip tra�c. To quantize poten-
tial bene�t of bringing an array partition into shared
memory, we evaluate the volumes of reused references
in shared memory, which can be obtained by intersect-
ing data spaces of all references to the same array ((2))
(Duplicate returns the number of duplicate points in a
polytope). In addition, we utilize (3) to collect candi-
date arrays with signi�cant data reuse into a ReuseSet.
A threshold � r is introduced to �lter candidate arrays
with insigni�cant data reuse (i.e., the amount of reused
data is negligible compared with the size of the data
subspace), as they not only provide limited bene�t for
memory reduction, but also complicate our optimal par-
tition search and code generation processes. Based on
our experiments and experience,� r usually falls be-
tween 1.4 and 2, depending on shared memory size
on a platform. Currently, we �x � r that contributes
to optimal performance on each platform, but a more
automatic parameter selection will be available in the
future.

ReuseSizeA = Duplicate (FA kl (IS k)) ;

ReuseSizeA = 1 6 l 6 p ^ 1 6 k 6 q; (2)

ReuseSet= f A j ReuseSizeA > � r �j DS A j;

ReuseSet= A 2 Candidatesg: (3)

Both array A and array B in Fig.2(a) have high
order data reuse. AsA[i][k] is repeatedly referenced in
loop j , the reuse size ofA sums up to T BY � n � n,
which is n times of its data space sizejDS 0

A j. Similarly,
every element in array DS 0

B is accessedn times. On
the contrary, no reuse exists forC[i][j] as the reuse set
is exactly the same size asDS 0

C .
Non-Coalescing Transaction. Coalescing global

transactions through shared memory greatly acceler-
ates o�-chip accesses. Therefore, we need to �rst iden-
tify ine�cient global references in candidate arrays and
then estimate global transactions that can be acceler-
ated by our compiler.

Locating non-coalescing transactions demands a
close understanding of the memory access pattern of
each statement instance. We thereby borrow the de�-
nition of adjacency constraints on schedule and place-
ment from [14].

Time schedule adjacency constraint ((4)) requires
two statement instances that access adjacent elements
of an array to be executed at the same time instance.

Space placement adjacency constraint ((5)) requires
two statement instances that access adjacent elements
of an array to be mapped to adjacent processors.

F (x m) + (0 : : : 1)T = F (ym); x m ; ym 2 IS m ;

� (x m) = � (ym); (4)

Q(x m) = Q(ym): (5)

Those array references that violate either constraint
fall into CoalesceSet((6)). For each non-coalescing refe-
rence in CoalesceSet, we obtain the global transactions
required by recording unique transaction IDs ((7)). No-
tice that for arrays inferred by coalescein our pragma,
our compiler skips the check for non-coalescing refer-
ences and directly evaluates this global transaction size.

CoalesceSet

= f A j � (x m) 6= � (ym)jQ(x m) 6= Q(ym)g; (6)

CoalesceT ranA

=
X

x 2 IS m

j Unique(
Of fset (FA (x))

T ranSize
) j; (7)

where TranSize is the global transaction size on cur-
rent platform, O�set represents the o�set of a reference
in global memory, and Unique returns a unique base
address for each array reference.

As indicated by OpenACC pragmas in Fig.2(a), our
compiler induces the following time schedule and space
placement ofS1 and S2 on GPU:

� (I S1) = k and Q(I S1) = i � T BX + j ,

� (I S2) = n and Q(I S2) = i � T BX + j .

Hence, we conclude thatA in Fig.2(a) su�ers from
non-coalescing global reference as it violates the time
schedule constraint. For the iteration instances that
access adjacent elements inA[i][k] (i.e., x = (i; j; k)T

and y = (i; j; k + 1) T), they do not execute at the same
time as � (x) = k but � (y) = k + 1. According to (7),
for each concurrent access toA[i][k], a global transac-
tion that starts at A + (i � n + k) � 4 is returned. As
a result, a total of T BY � n global transactions are re-
quired to read the data space ofA . However, accesses
to B and C comply with both constraints and therefore
do not belong to CoalesceSet.

3.2.3 Finding Optimal Partition

As presented in the dotted box named C of Fig.3,
our compiler takes features of all candidate partition

242 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

plans as input, and builds a solution space for each
partition plan based on restrictions of GPU resources.
By evaluating all solution spaces, we solve an optimal
candidate partition plan and corresponding parameters
which maximize the bene�t of shared memory.

Solution Space Construction. Evaluating a candi-
date partition plan can be reduced to a con�ned opti-
mization problem, which targets maximal Pro�t under
the resource constraints on GPUs. For each candidate
partition plan (IS m), the solution space of this con-
strained pro�t maximization problem can be modeled
as:

max: P rof it =
X

A 2 ReuseSet

ReuseSizeA + T ranSize �

max:P rof it =
X

B 2 CoalesceSet

CoalesceT ranB ; (8)

s:t :
X

A 2 ReuseSet jCoalesceSet

DS A 6 � s � SMSize; (9)

T BSize 6 T BSizeMax; (10)

T BSize �
SMSize

P
A 2 ReuseSet jCoalesceSet DS A

6 T SizeMax: (11)

We assess the potential pro�t of each partition plan
with (8), i.e., the global references that can be reduced
with shared memory optimization.

GPUs enforce several hardware restrictions on re-
sources to guarantee high parallelism. The number of
processors puts limit on attainable parallelism, such as
the maximum number of threads and TBs that can be
hosted. Similarly, shared memory size also con�nes
the number of concurrent TBs. Our compiler ties to
seek a partition plan that satis�es all hardware restric-
tions, including shared memory size, maximal amount
of TB and threads on each SM ((9)� (11)). (9) utilizes
a threshold � s to restrict the shared memory consump-
tion in each TB. It not only prevents excessive shared
memory usage to boost TB level parallelism, but also
attends to architectural restrictions on shared memory
(e.g., though each SM on AMD GCN GPUs is equipped
with 64 KB shared memory, only 32 KB is useable for
each TB). Therefore, the absence of� s tends to result in
ine�cient (even invalid) code that falls short on para-
llelism. From our experiments and experience, we pick
a value between 0.125 and 0.25 for� s to allow for four
to eight concurrent TBs on an SM. In the future, we
plan to automate the selection of� s.

Accordingly, the solution space forgemmin Fig.2(a)

can be presented by:

max: P rof it

= T BX � T BY � n � 8 + 256 � T BY � n

= 8 � n � T BY � (T BX + 32) ; (12)

s:t : (T BX � k1 + T BY � k2) � 4

6 0:25� 48� 1 024; (13)

T BX � T BY 6 1 024; (14)

32 6 T BX 6 1 024; T BX = 2 m 1 ;

m1 2 [5; 6; :::]; (15)

1 6 T BY 6 1 024; T BY = 2 m 2 ;

m2 2 [0; 1; :::]; (16)

T BX � T BY �
48 � 1 024

(T BX � k1 + T BY � k2) � 4
6 2 048; (17)

0 6 k1 6 n;

0 6 k2 6 n;

where (13) con�nes the shared memory consumption
of a TB, (14)� (16) ensure the amount of threads in a
TB does not become illegal, and (17) requires the total
threads in an SM do not break hardware restriction.
As a common practice on GPU, we only search for TB
size that is a power of 2 in each dimension. Besides,
we expect aT BX larger than 32 ((15)), otherwise the
a�ne reference to B [k][j] would not coalesce.

Optimal Partition. Our compiler designs following
rules to choose the optimal iteration subspace and pa-
rameters.

If all candidate partitions are non-parametric, the
pro�t of each plan is a positive number. Thus, we can
choose the corresponding candidate partitions with the
highest pro�t.

In the case of parametric candidate partitions, we
are not able to compare pro�ts directly. In practice, the
linear programming model we proposed cannot guaran-
tee an optimal partition since the existing restrictions
might not be tight enough. However, all partition pa-
rameters are bounded by array dimension sizes, which
leads to a solution set with limited integers. There-
fore, we propose three steps to �nd an optimal parti-
tion. First, for each candidate partition plan, we ob-
tain a legal parameter space by enforcing the restric-
tions on GPU resources and array bounds. Second, we
traverse the legal parameter space and arrive at the
optimal parameter combination of each candidate par-
tition. Third, we choose the candidate partition and
parameter combination with the highest pro�t. Hence,

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GP Us 243

the size of our search space depends on the number of
candidate partition plans and the amount of legal pa-
rameter combinations, which are both polynomial as
presented in (18) and (19). Therefore, theoretically,
our approach ends in polynomial time. Notice that by
providing seed arrays and parametric array partitions,
programmers have e�ectively cut down the search space
for our compiler. Otherwise, we would blindly consider
every single array as a seed array and every possible
parameter combination for seed arrays.

NumCanP ar

=
X

NumSeed

NumAff ineReference; (18)

NumP araComb

=
Y

NumP arameter

NumLegalV alues: (19)

To solve an optimal partition for gemmin Fig.2(a),
our compiler tries out all legal TB sizes for T BX and
T BY . As the pro�t of utilizing shared memory equals
T BY � (T BX +32) ((12)), the larger T BY is, the higher
pro�t we can achieve. Due to TB size restrictions in
(14)� (16), the maximal T BY we can use is 32 (as
T BX is at least 32). Therefore, the optimal TB size
is 32� 32. In this case, the constraint on shared array
size is reduced tok1 + k2 6 96. As k1 and k2 only a�ect
shared memory usage of a TB, we set both variables to
32 for simplicity.

3.3 Advanced Optimizations on Parallelism

SM opt. phase can reduce o�-chip tra�c and ob-
tain performance boost through utilizing shared mem-
ory. However, memory bandwidth and compute cores
remain underutilized due to low memory and instruc-
tion level parallelism. Bank conicts, usually caused
by imperfect shared memory access patterns, force
memory transactions to delay and thus decrease over-
all performance[17] . ILP, which reects GPU core
utilization, is another important performance indica-
tor. Many studies tried to improve ILP from di�erent
aspects[9-11;17] , but none of them manages to choose a
proper amount of ILP automatically. Moreover, �nd-
ing the right timing to perform ILP is also nontrivial.
Therefore, our compiler detects and eliminates memory
bank conicts of an input kernel, before choosing and
increasing an optimal amount of ILP (as shown in the
gray box at the bottom of Fig.3).

3.3.1 Bank Conict Elimination

Similar to memory in multicore system[18] , GPU di-
vides shared memory into equally-sized memory banks
that can be accessed simultaneously for high band-
width. When multiple addresses in the same bank are
accessed at the same time, memory requests are seria-
lized. This is known as bank conict, which hurts mem-
ory level parallelism and undermines bene�ts of shared
memory optimization. To make the best of memory
bandwidth, it is therefore important to avoid bank con-
icts.

Bank conict is closely related to shared mem-
ory bank width and bank number (bank width and
bank num), and shared array data type and access
pattern (data type and array stride). Hence, avoid-
ing bank conict is complex for programmers, but can
be automated as compilers have easy access to above
information.

Conict Detection. We devise two methods to de-
tect bank conicts for each shared array access. First,
for simple (e.g., constant stride) array accesses, conict
degrees can be inferred by (20) and (21). We utilize
bank stride to normalize the di�erence in array strides
and data types. Second, when special conict rules or
variable array strides make above equations inaccurate,
low overhead simulations can be used to estimate con-
ict degrees[19-20] .

bank stride =
array stride � data type

bank width
; (20)

Degree =

8
>>>><

>>>>:

j1=bank stride j;

if bank stride < 1;

GCD(bank stride; bank num);

otherwise:

(21)

Conict Elimination. Targeting bank conicts in
di�erent cases, our compiler provides �ve transforma-
tions to avoid bank conicts and employs a decision
tree to select a suitable one. In general, the transfor-
mations we provide minimize bank conicts from the
perspective of data and code: data reorganization tar-
gets the most typical scenarios and features a data pre-
process stage; code restructure, which applies to more
general cases, trades some extra computations and com-
piler work for conict free accesses. As shown in Fig.4,
our decision tree relies on four code features to select a
suitable transformation, i.e., array of structure (AOS),
2D array with strided reference, stride size of the 2D
array, and associative operations to combine the con-
ict references. For each conict array, our compiler

244 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

Table 1 . Techniques to Avoid Bank Conicts

Data Reorganization Code Restructure
AOS-SOA Padding Transpose Thread Remap Access Reorder

Application scope Code feature AOS 2D, strided
array access,
array width mod
SM width 6= 0

2D, array
accessed by
column
repeatedly

| Associative
operation

Typical algorithms Complex number,
tree, graph,
neural network

Sort, scan, tree | | |

Properties Extra space �
p

� � �
Extra computation � � �

p p

Compiler search �
p

�
p p

Introduce conict � �
p

� �
Data preprocess

p p p
� �

Note: | indicates that an application scope does not apply to a technique. � indicates that a technique does not present a property.p
indicates that a technique presents a property.

checks for above code features and decides the appro-
priate transformation accordingly. We summarize our
techniques to avoid bank conicts in Table 1 and high-
light three of them.

AOS?

2D & Strided?

Stride == Width?

Associative?

AOS - SOA

Thread Remap

Padding

Access Reorder

Transpose

Yes

Yes

Yes

Yes

No

No

No

No

Fig.4. Bank conict transformation decision tree.

Padding scatters accesses to di�erent banks by
adding empty columns to an array. For 2D arrays,
strided access and an array width that is not evenly di-
visible by shared memory width are two common code
features that invite padding. Strided access is common
in sort, scan, and tree algorithms as the stride dou-
bles at each level of shared memory access. Apart from
space cost, padding requires some compiler analysis to
pin down an optimal padding size.

Thread remap designs di�erent placement ma-
trices for each parallel loop to change access pat-

terns of consecutive threads. For example, diagonal
remapping[1] eliminates bank conicts by mapping con-
secutive threads to diagonal work items, which makes
use of a placement matrix Q, with each value being
Q00 = 1, Q01 = 0, Q10 = 1, Q11 = 1.

Thread remap does not introduce extra space or
bank conicts at the cost of some extra index compu-
tation. However, �nding the perfect placement matrix
requires exhaustive compiler search.

Access reorder schedules shared array accesses and
associative operations of consecutive threads to mini-
mize bank conicts. For example, by varying start
o�sets of each thread that accesses an array by row,
consecutive threads can operate on di�erent banks at
the same time[5] . Access reorder trades extra index
and o�set computation for higher memory level para-
llelism, without sacri�cing shared memory space. How-
ever, oat point operations should be handled with care
to avoid precision errors.

Since the width of shared arrays is often correlated
with TB width, which is a power of 2, bank conicts
are common after shared memory optimization. In the
same spirit, above detection and solutions can be easily
ported to avoid global memory channel conicts, which
share the same features with bank conicts.

3.3.2 ILP Enhancement

Supported by instruction pipelines and high mem-
ory bandwidth on GPU, ILP is achieved by schedul-
ing independent instructions for concurrent execution.
GPU performance bene�ts from high ILP in two ways:
better latency hiding and better resource utilization.
First, long latency instructions can interleave with inde-
pendent instructions to hide latency. Second, executing

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GP Us 245

more independent instructions at the same time makes
better use of available cores and bandwidth. Mean-
while, ILP is increasingly vital as modern GPUs are
o�ering more cores, schedulers, registers, and higher
bandwidth.

However, current accelerator oriented APIs choose
to ignore ILP and execute one work item per thread,
which results in poor performance. By contrast, we
propose to expose ILP by computingN elements per
thread, thus o�ering N times perfectly parallel instruc-
tions per thread. Moreover, we believe ILP enhance-
ment is more of an automatic optimization than a man-
ual one, since ILP factor is too complex for a program-
mer to decide.

ILP and Shared Memory. ILP and shared mem-
ory optimization should be applied together as they
are mutually bene�cial. On one hand, for memory
bound kernels with non-coalescing or bank conict
memory requests, additional memory instructions lead
to worse bandwidth utilization and delayed memory
operations[21] . Fig.5 demonstrates the performance loss
of ILP optimization in presence of non-coalescing mem-
ory operations. Consequently, ILP enhancement should
be carried out after our shared memory and bank opti-
mizations, which eliminate unsatisfactory memory pat-
terns. On the other hand, su�ering from poor para-
llelism, programs with excessive shared memory de-
mand are more likely to bene�t from ILP enhancement.

0

0.5

1.0

1.5

2.0

2.5

S
p

ee
du

p

re
ad

_co
al

re
ad

_no
nc

oa
l

writ
e

_co
al

writ
e

_no
nc

oa
l

ILP2

ILP4

Fig.5. Average speedup of ILP optimization for di�erent mem -
ory operations across all platforms.

Optimal ILP Factor Search. ILP factor a�ects the
workload of each thread and the available parallel in-
structions on a stream multiprocessor. The best ILP
factor depends on several parameters: available re-
sources, compute density, TB size, etc.

Though searching an optimal ILP factor seems to be
challenging, we can prune the search space to a great

extent based on two understandings. First, the ILP
factor is usually a power of 2. As it is conventional to
set TB size to 2n for many GPU kernels, an ILP factor
that is not a power of 2 cannot be divided by such TB
size and thereby results in illegal TB size. In this case,
restricted by the upper and the lower bound of a TB
size (e.g., 1 024 and 32), there are only �ve legal ILP
factors in each dimension. Second, to preserve memory
coalescing inX dimension of a TB, we choose to per-
form ILP optimizations on Y and Z dimensions, which
further reduces legal ILP factors.

Therefore, automatic ILP factor tuning can be
achieved by trying out all legal ILP factors of each ker-
nel. The highest speedup identi�es the optimal ILP
factor on current platform.

ILP Code Generation. We present the code trans-
formation of ILP optimization in Algorithm 1 and high-
light two techniques designed to ensure correct transla-
tion. As an input kernel is free of dependence in global
memory, we focus on dependence induced by shared
memory and local variables.

Algorithm 1. Code Transformation of ILP Optimiza-
tion
Require:

CUDA/OpenCL code before ILP optimization, code
direction along which ILP will be enhanced, dir
TB size on dir direction, sizedir
ILP factor, factor

Ensure:
ILP optimized CUDA/OpenCL code, ilp code

1: Liveness analysis of variables in code
2: for all code region separated by barriers in code do
3: Surround code region with ILP loop: [ilp index ,

0:sizedir : sizedir
factor]

4: Add all local ID references on dir direction with ilp index
5: for each variable live that lives at code region exit do
6: Array expansion to live [factor]
7: Replace access tolive with live [index]
8: end for
9: Loop invariant hoisting within code region

10: Add transformed code region and barrier into ilp code
11: end for
12: return ilp code

First, to preserve dependences on shared memory,
code replication is performed for each barrier-free code
block. As barriers are commonly used to separate read
and write phases on shared memory, unrolling an en-
tire kernel incurs premature usage of shared memory
values. In contrast, by unrolling read/write phases of
shared memory respectively, we are able to preserve
dependences and provide independent instructions as
well.

Second, array expansion is used to handle depen-
dence on local variables, which are often used to pass

246 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

temporary results through barriers. Violating depen-
dences on these local variables will induce polluted tem-
porary values. Array expansion secures these depen-
dences by using disjoint space to hold temporary val-
ues.

4 Experiments

In this section, we verify e�ectiveness of our shared
memory centric optimizations on four di�erent GPU
platforms. Speci�cally, we 1) analyze our performance
advantage over several mainstream GPU programming
models, 2) decompose the performance contribution of
each optimization and 3) verify the portability of our
optimizations.

4.1 Methodology

Compiler. We choose to implement our optimiza-
tions inside Cetus[22] , a source-to-source compiler for C
programs that inhabits OpenMP to CUDA translation
support[23] . Our compiler, which is built on Cetus ver-
sion 1.3.1, takes in pragma annotated sequential C pro-
grams and returns the optimized OpenCL kernel. We
usegcc version 4.4.7 to compile the optimized OpenCL
source code of our compiler. In comparison, we usePGI
version 14.6 andCAPSversion 3.4.4 to compile Ope-
nACC and OpenHMPP programs, respectively; and we
usenvcc 5.0 for CUDA code generation.

Benchmarks. We use �ve benchmarks: mt, gemm,
mv, gauss and hotspot . In Table 2, we briey describe
the benchmark algorithms and datasets. We also report
programming complexity using LOC of the sequential
algorithm. Meanwhile, we present LOP of OpenHMPP

algorithm and our share pragma to reveal the produc-
tivity and optimizing e�orts. We select these bench-
marks, which can be easily ported to GPU platforms, as
they require major optimization e�orts to obtain high
performance. As a typical memory bound application,
mt features 8 bytes of I/O tra�c and 4 arithmetic ope-
rations per thread. In addition to heavy I/O tra�c,
gemmand mvexhibit high compute intensity and signi�-
cant data locality. gauss and hotspot instead embody
di�erent degrees of data reuse within a TB. Moreover,
the computation intensity of both kernels is relatively
higher with dozens of multiply-add operations.

Platforms. We evaluate our compiler on four GPUs:
NVIDIA GTX 690, NVIDIA GTX TITAN, AMD HD
7850 and NVIDIA Tesla C2050. As shown in Table 3,
substantial di�erences exist within these four platforms
ranging from the number of cores to shared memory
size. These di�erences pose severe challenges to the
performance portability of our compiler. For example,
GTX TITAN provides as many as 3 072 compute cores,
while Tesla C2050 has only 448 cores. Each stream mul-
tiprocessor of HD 7850 is equipped with 64 KB shared
memory, which is one third more than others.

4.2 Experimental Results

4.2.1 Comparison Against Mainstream Programming
Models

To illustrate the e�ectiveness of our compiler, we
compare the performance of our auto-generated ker-
nels against that of several mainstream GPU program-
ming models, i.e., OpenACC, OpenHMPP and CUDA
on GTX 690. Fig.6 reveals the performance compar-

Table 2 . Benchmarks

Name Description Input Data Type LOC (seq) LOP (share) LOP (hmpp)

mt Matrix transpose 1M � 64M Float 07 1 17
gemm General matrix multiplication 1M � 64M Float 14 1 22
mv Matrix vector multiplication 1M � 256M Float 09 1 17
gauss Blurring images with 5 � 5 �lter 1M � 256M Unsigned char 29 1 43
hotspot 2D thermal simulation kernel 16K (1K � 16K steps) Float 42 1 84

Note: LOC represents lines of code and pragmas in the input lo op, whereas LOP only counts lines of pragmas.

Table 3 . Platforms

GPU Core Clock Rate Memory Bandwidth Shared Memory Driver SD K
Number (MHz) (GB) (GB/s) (KB)

NVIDIA GTX 690 3 072 0 915 4 384.0 48 304.33 CUDA 5.0
NVIDIA GTX TITAN 2 688 0 837 6 288.4 48 319.37 CUDA 5.5
AMD HD 7850 1 024 0 860 2 153.6 64 AMD Catalyst 14.1 APP SDK v2.9
NVIDIA Tesla C2050 0488 1 150 6 144.0 48 285.05.33 CUDA 4.1

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GP Us 247

ison, with OpenACC being the baseline. While Ope-
nACC and OpenHMPP achieve 26% and 68% perfor-
mance against native CUDA code (which is consistent
with previous studies[24-26]), our compiler generates ef-
�cient kernels and yields over 90% of the performance
of hand-crafted CUDA code on average.

0

1

2

3

4

5

6

7

�M�T �G�E�M�M �G�A�U�S�S �H�O�T�S�P�O�T �M�VAverage

S
p

ee
du

p

PGI
OpenACC

CAPS Open -
HMPP

Share

CUDA

Fig.6. Performance comparison with PGI OpenACC, CAPS
OpenHMPP, and NVIDIA CUDA on GTX 690.

We choose PGI OpenACC compiler over CAPS
for its better implementation and higher performance.
Still, the experimental results show that our com-
piler achieves consistently better performance than PGI
OpenACC. All kernels annotated with OpenHMPP are
hand-coded to utilize shared memory, which takes great
e�ort judging from LOP (hmpp) in Table 2. Meanwhile,
we further improve memory and instruction parallelism
automatically, as illustrated in Subsection 3.3. It can
be inferred from Fig.6 that our compiler is superior
to OpenHMPP in most cases, o�ering an impressive
speedup of 1.3x on average.

We manually applied shared memory optimization
to CUDA versions of the benchmarks, in addition to
eliminating memory level conicts and increasing ILP.
Fig.6 shows that the performance gap between our
auto-generated kernels and the hand-written CUDA
codes is less than 9% on average, which is acceptable as
CUDA performs at most 30% better than OpenCL for
most applications[27-28] . hotspot is an exception which
our auto-generated OpenCL code presents better per-
formance than CUDA. This results from the di�erence
between OpenCL and CUDA, as they store arrays in
di�erent memory spaces for hotspot .

4.2.2 Shared Memory Centric Optimizations

In Fig.7, we present our speedups over naive
OpenCL implementations of each kernel, and we re-
port the performance decomposition of each optimiza-
tion on GTX 690 to illustrate their respective contribu-

tions. Speedups are averaged over all problem sizes. On
average, our compiler achieves 2.8x performance boost:
the speedups of benchmarks with serious memory bot-
tlenecks, i.e.,mt, gemm, and mv, reach 3.6x; other com-
putation intensive benchmarks (gauss and hotspot)
also reach 1.5x. Besides, all three shared memory cen-
tric techniques are proved to be e�ective. We further
analyze their respective performance impact in this sub-
section.

0

1

2

3

4

5

�M�T �G�E�M�M �G�U�A�S�S �H�O�T�S�P�O�T �M�VAverage

S
p

ee
du

p ILP

Bank
Conflicts

SM

Fig.7. Decomposition of speedups over naive kernels on GTX
690.

Shared Memory Optimization. Overall, shared
memory optimization can achieve an average of 1.8x
speedup, which contributes to 67% of the total per-
formance gain. Recall that all programmer needs to
provide to achieve these results is properly annotated
share pragmas. Then our compiler solves an optimal
partition scheme for arrays and utilizes shared memory
to reuse or coalesce o�-chip data automatically.

By examining the adjacency constraints, our com-
piler discovers non-coalescing global references inmt,
mv, and gemm. As discussed in Subsection 3.2, array
A in gemmfalls into CoalesceSetas the adjacent ele-
ments in A are not accessed at the same timestamp.
In the same spirit, the input vector in mvviolates the
time constraint, whereas the input matrices in both mt
and mvbreak the space constraint. Besides, we man-
age to identify a considerable amount of data reuse in
mvand gemm. Similar to A and B in gemm, the input
vector from mv is read repeatedly, which results in a
ReuseSetthat is many times larger than its candidate
partition. By adapting these non-coalescing requests
and reused data to shared memory, we achieve an im-
pressive speedup of 2.3x. Though having a great vol-
ume of reused data,gauss and hotspot respond rather
modestly to shared memory optimization (1.2x) due to
their cache friendly access patterns. Furthermore, the

248 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

bene�ts of reusing data are o�set by 55% more ALU
instructions introduced by shared memory utilization.
Hence, solely relying on shared memory for high per-
formance is insu�cient.

Bank Conict Elimination. Our compiler manages
to utilize memory bandwidth by detecting and avoiding
bank/channel conicts after analyzing array access pat-
terns. Among all benchmarks, high degree bank con-
icts are detected in mt and mv, as all threads within
a warp request data elements in the same bank. Our
compiler chooses to avoid bank conicts by padding
one column to each shared array, which is 2D and has
a stride smaller than array width. As a result, we are
able to reduce bank conicts and accelerate memory
access by 0.4x and 2.0x, respectively, boosting average
performance by 17%.

ILP Enhancement. To exploit performance poten-
tial of compute resources, our compiler enhances ILP by
�lling idle time slots of memory and arithmetic latencies
with independent instructions. As shown in Fig.7, en-
hancing ILP contributes to an average of 0.45x speedup.
While populating parallel instructions in compute in-
tensive applications achieves little runtime reduction
(0.2x), it is especially e�ective for I/O bound applica-
tions (an average of 0.8x speedup). With much longer
latency than arithmetic instructions, memory instruc-
tions enable better latency hiding and higher perfor-
mance speedup. However,mvis better o� without ILP
optimization as utilizing shared memory and eliminat-
ing bank conict already o�er su�cient parallelism.

In our framework, we try to improve performance
of kernels by utilizing GPU resources. Shared memory,
a perfect place to hold o�-chip data for reuse or coa-
lescing purposes, promises signi�cant speedup for mem-
ory operations. We take in programmers' optimiza-
tion advice, based on which we explore optimal array
partition scheme and produce shared memory optimal
code. While the bandwidth of shared/global memory
and hundreds of processing cores allow high memory
and instruction level parallelism, they might be un-
derutilized in GPU kernels. Consequently, we apply
automatic optimization to avoid memory conicts and
increase independent instructions. We show not only
that our compiler can �x ine�cient array references to
a large extent with shared memory but also that it can
re�ne memory and instruction level parallelism.

4.2.3 Performance Portability

In order to evaluate the performance portability of
our compiler, we port our benchmarks to four platforms

and present their performance results in Fig.8. The per-
formance improvement of each optimization is averaged
over all benchmarks. On the whole, our compiler is ef-
fective across all platforms, o�ering an average perfor-
mance gain of 3.7x. Among all optimizations, utilizing
shared memory remains a major performance booster
(o�ering 70% of total performance), with bank conict
avoidance and ILP enhancement each constituting 15%
of total performance.

0

1

2

3

4

5

6

7

GTX 690 GTX
TITAN

Tesla
C2050

HD 7850 Average

S
p

ee
du

p

ILP

Bank
Conflicts

SM

Fig.8. Decomposition of performance improvement across al l
platforms.

Portable Optimizations. Though our compiler is
generally e�ective on all platforms, we actually handle
our optimizations slightly di�erent as platforms exhibit
various features as described in Table 3. Our compiler
is able to choose similar parameters for GTX TITAN
and GTX 690, which are close in design and compute
capability. Therefore, we obtain similar performance
for each optimization on these platforms. In the mean
time, ILP optimization of our compiler prefers GPUs
with more registers, which can hold values for more
active instructions. Therefore, Tesla C2050 and HD
7850, with 2 times more registers for each processor,
enjoy �ner latency hiding and higher performance im-
provement from ILP optimization. Our shared memory
utilization contributes to an evidently higher speedup
(5.0x) on HD 7850, which o�ers a larger shared mem-
ory space and thus allows more parallel TBs. Moreover,
avoiding channel conicts on HD 7850 improves perfor-
mance by 2.0x for mt and mv. Adjacent TBs access
data that fall into the same memory channel, thus lim-
iting e�ective global memory bandwidth. Among all
solutions in Table 1, our compiler chooses to apply dia-
gonal remapping and arithmetic reordering to spread
concurrent requests, according to the decision tree.

Portable ILP Factor. The ILP factor directly re-
ects the number of parallel instructions, and should

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GP Us 249

be carefully chosen as a small one fails to hide latency
perfectly and a large one introduces superuous regi-
ster pressure. Our compiler manages to �nd optimal
ILP factors in terms of di�erent kernels, platforms, and
problem sizes. Table 4 displays the best ILP factors
chosen for each benchmark on all platforms. Notice
that as all TB sizes in our experiment are powers of
2, we choose ILP factors that are also 2n to avoid il-
legal TB size. As can be seen, we select larger ILP
factors for memory intensive applications, such asgemm
and mt, since o�-chip memory latency needs more par-
allel instructions to hide. Furthermore, our compiler
is aware of higher ILP demand on GTX 690 and GTX
TITAN, both of which issue more independent instruc-
tions per cycle. We also recommend a higher ILP factor
for Tesla C2050 to hide longer latency of memory and
computation. In addition, our compiler adapts to para-
llelism requests for di�erent input sizes. For mt on Tesla
C2050, our compiler chooses 2 as the optimal factor for
a 16M input and 4 for 64M; otherwise, there is a per-
formance di�erence as large as 0.3x if an identical ILP
factor is used.

Table 4. Optimal ILP Factor for All Benchmarks

Platform mt gemm mv gauss hotspot

GTX 690 4 8 1 2 2
GTX TITAN 2 8 1 4 1
Tesla C2050 4 8 1 4 2
HD 7850 4 4 2 4 1

In summary, our experimental results show that our
optimizing compiler generates high quality code on di-
verse platforms and often achieves comparable perfor-
mance, even compared with manually optimized code
in OpenHMPP and CUDA.

5 Related Work

5.1 Optimizing for Shared Memory

Manual Optimization. Utilizing shared memory
to achieve coalesced memory accesses[1-2] and to act
as a software managed cache[3-4] has been studied
thoroughly by researchers; however, most of them re-
main manual optimization. Optimizing for GPU calls
for considerable experience and a deep understand-
ing of hardware details[29] . Moreover, optimization
techniques need adjustment when ported to a new
platform [30] . In comparison, Our compiler simpli�es
the work of programmers by generating optimized code
automatically.

Optimizing Compiler Based on Compiler Analy-
sis. For the sake of programmability, correctness
and productivity, optimizing compilers are regarded
as a relatively easy and reliable shortcut to high
performance[5;7;31] . CUDA-lite [7] is one of the �rst com-
pilers to coalesce global memory requests with some
programmer annotation. CUDA-lite translates a naive
kernel annotated with parallelism and array informa-
tion into a memory coalesced version, using shared
memory as a temporary depot. In comparison, our
compiler requires only data management hints from
programmers. More importantly, our compiler aims
at global access coalescing and data reuse alike. Yang
et al.[5] designed an auto-optimizing source-to-source
GPU compiler, which manages to increase memory
throughput by employing shared memory. Although
utilizing shared memory for similar purposes, we ap-
proach this optimization from a data centric perspec-
tive. Besides, we trust programmers to provide better
insight into the memory pattern and data partition, and
take their advice for shared memory utilization.

Optimizing Compiler Based on Polyhedral Model.
As the basis for major advances in automatic program
optimization and parallelization [12-13] , the polyhedral
model has been introduced to build e�cient GPU com-
pilers. Baskaran et al. conducted a series of stud-
ies on translating a�ne loop nests to GPUs[32] and
built an automatic C-to-CUDA compiler [15] under the
polyhedral framework. They adjusted Pluto to �nd
a�ne transforms that enable global memory coalescing.
While C-to-CUDA always maps all arrays into shared
memory, our compiler can solve an optimal combination
of arrays and �lter out those that do not bene�t from
shared memory optimization or cannot �t into shared
memory. Therefore, we avoid ine�cient or invalid op-
timizations, which are possible in C-to-CUDA. Gpu-
loc is based on the algorithm proposed by Baghdadi
et al.[33] It uses a ranking-based technique[34] , which
targets only data locality, to manage data movement
between shared memory and global memory. By con-
trast, we consider coalescing global memory accesses
with shared memory, which is even more signi�cant in
improving performance. Moreover, GPUloc utilizes a
dual bu�er system, which wastes memory and limits
parallelism. In comparison, our compiler has a smaller
memory request.

Pragma Directed Programming. Portability and
productivity motivated the design of accelerator ori-
ented APIs, which aim to ease GPU programming by
designing OpenMP like pragmas. In the OpenACC

250 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

API, the programmer annotates the sequential code
with compiler directives, indicating those code regions
susceptible to be executed on GPU. Programmers can
have �ne control over parallelism and data manage-
ment. However, shared memory optimization inside
OpenACC is not satisfactory. Targeting data reuse,
OpenACC requires the programmer to specify the ele-
ments that will be reused for each thread. In contrast,
we designshare pragma to handle data reuse as well
as data coalescing scenarios. Moreover, from a data
centric point of view, we allow a more exible way
to describe data management decisions compared with
OpenACC. OpenHMPP distinguishes from OpenACC
in its ability to perform low-level optimizations, includ-
ing shared memory optimization. However, in order to
utilize shared memory, programmers are responsible of
moving data in and out of shared memory as well as
reading data from shared memory, which is as complex
as programming in CUDA/OpenCL. On the contrary,
our compiler accepts a few hints from programmers and
does not bother programmers with code generation.

5.2 Optimizing for ILP

Volkov [11] studied the performance impact of paral-
lel instructions and inspired many studies[9-10] to op-
timize ILP of GPU applications. He revealed that en-
hancing ILP facilitates latency hiding and can be an
e�ective performance technique. However, [9-10] fail
to notice the performance defect with ILP optimiza-
tion in case of bad memory access patterns. In con-
trast, we choose to perform ILP optimization on top of
our shared memory utilization to eliminate interference
from bad memory patterns. Moreover, our compiler
enables automatic ILP code generation and ILP fac-
tor selection, and therefore relieves programmers from
troublesome coding and cross platform tuning.

A more recent work[9] managed to improve ILP for
GPU by scheduling PTX instructions across branches
on critical path. Our ILP optimization works on source
code level instead. Nevertheless, their work could com-
plement ours and further improve ILP on PTX code
level.

6 Conclusions

In this paper, we introduced several shared memory
related optimization techniques for better bandwidth
utilization and parallelism on GPUs. We leveraged
programmer knowledge for pragmas concerning data
partition. Then, our compiler tries to harness shared

memory for data reuse and coalescing opportunities.
Besides, we designed two automatic optimizations on
top of shared memory: bank conict avoidance and
ILP enhancement, which target higher memory and in-
struction parallelism, respectively. A set of compiler
techniques was proposed to generate optimized kernel
code. Our experimental results showed that the opti-
mized code achieves high performance, often superior
to current accelerator oriented APIs.

Our future research will focus on enhancing the ap-
plicability of our compiler framework, including au-
tomatically selecting the thresholds, and coping with
larger applications with multiple a�ne sections. We
will also combine ILP optimization with register tiling
in our compiler so as to improve how to select ILP fac-
tors.

References

[1] Ruetsch G, Micikevicius P. Optimizing matrix trans-
pose in CUDA. http://www.cs.colostate.edu/ � cs675/Mat-
rixTranspose.pdf, Jan. 2009.

[2] Fujimoto N. Faster matrix-vector multiplication on GeF orce
8800GTX. In Proc. IEEE International Symposium on
Parallel and Distributed Processing , Apr. 2008.

[3] Van Werkhoven B, Maassen J, Bal H E, Seinstra F J. Op-
timizing convolution operations on GPUs using adaptive
tiling. Future Gener. Comput. Syst. , 2014, 30: 14-26.

[4] Nguyen A, Satish N, Chhugani J, Kim C, Dubey P. 3.5-D
blocking optimization for stencil computations on modern
CPUs and GPUs. In Proc. the 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis , Nov. 2010.

[5] Yang Y, Xiang P, Kong J, Zhou H. A GPGPU compiler
for memory optimization and parallelism management. In
Proc. the 31st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation , Jun. 2010,
pp.86-97.

[6] Kandemir M, Kadayif I, Sezer U. Exploiting scratch-pad
memory using Presburger formulas. In Proc. the 14th In-
ternational Symposium on Systems Synthesis , Sept. 2001,
pp.7-12.

[7] Ueng S Z, Lathara M, Baghsorkhi S, Hwu W. CUDA-Lite:
Reducing GPU programming complexity. In Proc. the Lan-
guages and Compilers for Parallel Computing , July 3-Aug.
2, 2008, pp.1-15.

[8] Yang Y, Xiang P, Mantor M, Rubin N, Zhou H. Shared
memory multiplexing: A novel way to improve GPGPU
throughput. In Proc. the 21st International Conference on
Parallel Architectures and Compilation Techniques , Sept.
2012, pp.283-292.

[9] Jablin J A, Jablin T B, Mutlu O, Herlihy M. Warp-aware
trace scheduling for GPUs. In Proc. the 23rd Interna-
tional Conference on Parallel Architectures and Compila-
tion , Aug. 2014, pp.163-174.

Jing Li et al.: Pragma Directed Shared Memory Centric Optimizations on GP Us 251

[10] Sch•afer A, Fey D. High performance stencil code algori thms
for GPGPUs. Procedia Computer Science , 2011, 4: 2027-
2036.

[11] Volkov V. Better performance at lower occupancy.
www.cs.berkeley.edu/ � volkov/volkov10-GTC.pdf, Dec.
2014.

[12] Bondhugula U, Hartono A, Ramanujam J, Sadayappan P. A
practical automatic polyhedral parallelizer and locality op-
timizer. In Proc. the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation , Jun.
2008, pp.101-113.

[13] Bastoul C. Code generation in the polyhedral model is ea s-
ier than you think. In Proc. the 13th International Con-
ference on Parallel Architectures and Compilation Tech-
niques, Sept. 29-Oct. 3, 2004, pp.7-16.

[14] Baskaran M M, Bondhugula U, Krishnamoorthy S, Ra-
manujam J, Rountev A, Sadayappan P. A compiler frame-
work for optimization of a�ne loop nests for GPGPUs. In
Proc. the 22nd Annual International Conference on Super-
computing , Jun. 2008, pp.225-234.

[15] Baskaran M, Ramanujam J, Sadayappan P. Automatic C-
to-CUDA code generation for a�ne programs. In Proc. the
19th Joint European Conference on Theory and Practice of
Software, International Conference on Compiler Construc-
tion , Mar. 2010, pp.244-263.

[16] Pouchet L N. Polyhedral compilation foundations. ht-
tp://web.cs.ucla.edu/ � pouchet/lectures/doc/888.11.2.pdf,
Dec. 2014.

[17] Murthy G S, Ravishankar M, Baskaran M M, Sadayap-
pan P. Optimal loop unrolling for GPGPU programs. In
Proc. the 2010 IEEE International Symposium on Parallel
& Distributed Processing (IPDPS), Apr. 2010.

[18] Liu L, Li Y, Cui Z, Bao Y, Chen M, Wu C. Going vertical
in memory management: Handling multiplicity by multi-
policy. In Proc. the 41st ACM/IEEE International Sympo-
sium on Computer Architecture (ISCA), Jun. 2014, pp.169-
180

[19] Gao S. Improving GPU shared memory access e�ciency
[Ph.D. Thesis]. University of Tennessee, 2014.

[20] Gou C, Gaydadjiev G. Addressing GPU on-chip shared
memory bank conicts using elastic pipeline. International
Journal of Parallel Programming , 2013, 41(3): 400-429.

[21] Ryoo S, Rodrigues C I, Baghsorkhi S S, Stone S S, Kirk D B,
Hwu W W. Optimization principles and application perfor-
mance evaluation of a multithreaded GPU using CUDA. In
Proc. the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming , Feb. 2008, pp.73-82.

[22] Lee S I, Johnson T, Eigenmann R. Cetus | An extensible
compiler infrastructure for source-to-source transforma tion.
In Lecture Notes in Computer Science 2958 , Rauchwerger
L (ed.), Springer Berlin Heidelberg, 2004, pp.539-553.

[23] Lee S, Min S, Eigenmann R. OpenMP to GPGPU: A com-
piler framework for automatic translation and optimizatio n.
In Proc. the 14th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming , Feb. 2009,
pp.101-110.

[24] Wienke S, Springer P, Terboven C, an Mey D. OpenACC
| First experiences with real-world applications. In Lec-
ture Notes in Computer Science 7484 , Kaklamanis C, Pap-
atheodorou T, Spirakis P G (eds.), Springer Berlin Heidel-
berg, 2012, pp.859-870.

[25] Catanzaro B, Garland M, Keutzer K. Copperhead: Com-
piling an embedded data parallel language. Technical Re-
port, UCB/EECS-2010-124, EECS Department, University
of California, Berkeley, Sept. 2010.

[26] Reyes R, L�opez I, Fumero J, de Sande F. A preliminary
evaluation of OpenACC implementations. The Journal of
Supercomputing , 2013, 65(3): 1063-1075.

[27] Fang J, Varbanescu A, Sips H. A comprehensive perfor-
mance comparison of CUDA and OpenCL. In Proc. the In-
ternational Conference on Parallel Processing , Sept. 2011,
pp.216-225.

[28] Karimi K, Dickson N G, Hamze F. A performance com-
parison of CUDA and OpenCL. arXiv: 1005.2581, 2010.
http://arvix.org/abs/1005.2581, Jan. 2016.

[29] Li C, Yang Y, Dai H, Yan S, Mueller F, Zhou H. Un-
derstanding the tradeo�s between software-managed vs.
hardware-managed caches in GPUs. In Proc. the 2014 IEEE
International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), Mar. 2014, pp.231-242.

[30] Chen G, Wu B, Li D, Shen X. PORPLE: An extensible
optimizer for portable data placement on GPU. In Proc.
the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec. 2014, pp.88-100.

[31] van den Braak G, Mesman B, Corporaal H. Compile-time
GPU memory access optimizations. In Proc. the 2010 In-
ternational Conference on Embedded Computer Systems
(SAMOS), Jul. 2010, pp.200-207.

[32] Baskaran M M, Bondhugula U, Krishnamoorthy S, Ra-
manujam J, Rountev A, Sadayappan P. Automatic data
movement and computation mapping for multi-level paral-
lel architectures with explicitly managed memories. In Proc.
the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming , Feb. 2008, pp.1-10.

[33] Baghdadi S, Gr•o � linger A, Cohen A. Putting automatic
polyhedral compilation for GPGPU to work. In Proc. the
15th Workshop Compilers for Parallel Computers , Jul.
2010.

[34] Gr•o � linger A. Precise management of scratchpad memories
for localising array accesses in scienti�c codes. In Proc. the
18th International Conference on Compiler Construction ,
Mar. 2009, pp.236-250.

Jing Li received her B.S. degree
in software engineering from Wuhan
University, Wuhan, in 2012. Currently
she is a Ph.D. candidate of Institute of
Computing Technology (ICT), Chinese
Academy of Sciences (CAS), Beijing.
Her research interests include program-
ming language and optimization on

GPUs.

252 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

Lei Liu received his B.S. degree
in computer science from Changchun
University of Science and Technology,
Changchun, in 2001, M.S. degree in
computer science from Jilin University,
Changchun, in 2004, and Ph.D. degree
in computer architecture from ICT,
CAS, Beijing, in 2010. He participated

in the Advanced Compiler Technology Laboratory (ACT)
of ICT, CAS, in 2010, and is now an assistant professor
of ICT, CAS. His research interests include programming
language and compiler optimization.

Yuan Wu received his B.S. degree
in computer science and technology
from Zhengzhou University, Zhengzhou,
in 2012. He is now a senior engineer
of Samsung Electronics, Beijing. His
research interests include compiler
optimization and performance analy-
sis.

Xiang-Hua Liu received his B.S.
degree in electrical engineering from
Beijing Institute of Technology, Beijing,
in 1998, M.S. degree in electrical
engineering from Beijing Institute of
Technology, Beijing, in 2001, and Ph.D.
degree in electrical and information
engineering from Beihang University,

Beijing, in 2005. Currently he is a principle engineer
of Samsung Electronics, Beijing, working on compiler
development and software optimization.

Yi Gao received his B.S. degree in
computer software in 2002, and M.S.
degree in computer architecture in
2005, both from Peking University,
Beijing. He is now a senior engineer
of Samsung Electronics, Beijing. His
research interests include compiler
optimization and performance analy-
sis.

Xiao-Bing Feng received his B.E.
degree in computer software from
Tianjin University, Tianjin, in 1992,
M.S. degree in computer software from
Peking University, Beijing, in 1996, and
Ph.D. degree in computer architecture
from ICT, CAS, Beijing, in 1999. Now
he is a professor and Ph.D. supervisor

of ICT, CAS. His research interests include compiler
optimization and binary translation.

Cheng-Yong Wu received his B.S.
degree in mathematics from Fudan
University, Shanghai, in 1991, M.S. de-
gree in computer science from Beihang
University, Beijing, in 1996, and Ph.D.
degree in computer architecture from
ICT, CAS, Beijing, in 2000. Now he is a
professor and Ph.D. supervisor of ICT,

CAS. His research interests include compiler optimization
and binary translation.

