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Abstract In this paper, we study the estimation variance of a set of glo bal illumination algorithms based on indirect
light path reuse. These algorithms usually contain two passes | in the �rst pass, a small number of indirect light samples
are generated and evaluated, and they are then reused by a large number of reconstruction samples in the second pass. Our
analysis shows that the covariance of the reconstruction samples dominates the estimation variance under high reconstruction
rates and increasing the reconstruction rate cannot e�ecti vely reduce the covariance. We also �nd that the covariance
represents to what degree the indirect light samples are reused during reconstruction. This analysis motivates us to design a
heuristic approximating the covariance as well as an adapti ve sampling scheme based on this heuristic to reduce the rendering
variance. We validate our analysis and adaptive sampling scheme in the indirect light �eld reconstruction algorithm an d
the axis-aligned �ltering algorithm for indirect lighting . Experiments are in accordance with our analysis and show that
rendering artifacts can be greatly reduced at a similar comp utational cost.

Keywords Monte Carlo method, global illumination, variance, indire ct light path reuse

1 Introduction

Physically-based Monte Carlo rendering methods
are widely used for light transport simulation because
of its generality and pixel-level accuracy. Light trans-
port is estimated using a number of random samples.
The rendering quality is determined by the bias and
the variance of the estimation, which have been inten-
sively studied for decades and used to evaluate various
rendering algorithms.

In recent years, an emerging class of biased Monte
Carlo algorithms have been proposed to render inter-
reection e�ects based on indirect light path reuse[1-2] .
These algorithms usually consist of two passes, one for
indirect light sampling and the other for indirect light
reconstruction. Each indirect light sample evaluated in
the �rst pass can be reused by multiple reconstruction
samples in the second pass, and thus contributes to nu-
merous pixels in the �nal image. Experiments demon-
strate that impressive rendering results can be achieved

by reusing a very small number of indirect light sam-
ples, making this class of algorithms very promising in
various applications. On the other hand, the proba-
bilistic properties (i.e., bias and variance) have not been
formally studied for this class of algorithms as for tra-
ditional Monte Carlo algorithms, and in practice, some
artifacts can still be observed in their �nal images. It
is still not clear about how and where the rendering ar-
tifacts are caused in theory. A probabilistic analysis of
these algorithms would help to better understand and
improve them.

In this paper, we take the �rst step to understand
the probabilistic properties of the above indirect light
path reuse algorithms by studying their estimation vari-
ance. The estimation variance consists of two parts,
the variance term and the covariance term of the recon-
struction samples. Our study shows that increasing the
reconstruction rate can only reduce the variance term
while the covariance term remains almost unchanged.
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Therefore the covariance term dominates the estima-
tion variance given su�cient reconstruction rates. We
also �nd that the covariance term actually represents to
what degree the indirect light samples are reused dur-
ing reconstruction. The more reconstruction samples
an indirect light sample is used by, the more signi�cant
the covariance term becomes.

Based on this variance analysis, we propose a
scheme to adaptively generate indirect light samples
to reduce the covariance term. Since it is di�cult to
accurately evaluate the covariance term in practice, we
design a heuristic as a good reection of the covariance
term, which can be e�ciently calculated with very low
indirect light sampling rates and reconstruction rates.
The heuristic is then used to compute the adaptive
distribution of indirect light samples. The adaptive
scheme is validated in the indirect light �eld recon-
struction algorithm [1] and the axis-aligned �ltering al-
gorithm for indirect lighting [2] . We show that rendering
artifacts can be greatly reduced at a similar computa-
tional cost.

2 Related Work

Probabilistic Analysis of Monte Carlo Rendering.
Probabilistic analysis has been extensively explored
since Monte Carlo methods[3] were proposed for light
transport simulation. For unbiased algorithms, re-
searchers are only concerned with the estimation vari-
ance which highly depends on the correlation between
the random samples. The independent sampling pro-
cess employed by path tracing[3] and BDPT (bidirec-
tional path tracing) [4-5] carries variance proportional to
the inverse of the sampling rate[6] . The covariance term
between the correlated samples slows down the conver-
gence speed[7] as what happened to metropolis sampling
scheme[8] . The correlation can be either suppressed to
bene�t the converging process[9] or introduced inten-
tionally to improve the smoothness between pixels[10]

and frames[11] .
The estimation bias becomes a signi�cant problem

for biased algorithms, such as virtual point lights[12-13]

and photon mapping[14] . There are usually two sam-
pling rates of photons and camera paths as exempli�ed
in photon mapping. The bias is thoroughly studied on
the estimation of a single camera path with respect to
the photon number and kernel function[15] . Analogous
to unbiased methods, the correlation between camera
paths is critical to the convergence process, but this
is seldom studied in the scenario of photon mapping.

Moreover, the correlation is eliminated with in�nite
photon numbers, as the progressive scheme converges
consistently[16] . The estimation bias and variance can
be better balanced by combining photon mapping and
BDPT with multiple importance sampling [17-18] . Re-
cently, high quality indirect light �elds can be re-
constructed and evaluated from limited indirect light
samples[1] .

Adaptive Sampling. Adaptive sampling has been in-
tensively studied for decades. It always plays an impor-
tant role in path tracing because of the heavy cost of
stochastic sampling[3] . Traditionally adaptive sampling
schemes distribute samples throughout the image space
where the light path samples are parameterized[19-21] .
High dimensional space sampling is also a research fo-
cus for complex rendering e�ects such as motion blur
and depth of �eld [22] . The most widely used heuris-
tics for sample generation are based on statistics on
color values, including color contrast[19] , variance[23] ,
Shannon entropy[21] and their hybrid combination [24] .
Frequency properties are also important for adaptive
sampling[20;25] . It has been proved both in theory and
in practice that it is important to take the knowledge
of rendering scenes into account[2] .

Frequency Analysis of Light Transport. Frequency
analysis[26] is a powerful tool for analyzing light trans-
port simulation. Making use of the analysis results,
e�cient methods of sampling and reconstruction have
been utilized to render plenty of global illumination ef-
fects, including motion blur [27] , depth of �eld [28] , soft
shadow[29-30] and global illumination [2;31] . Frequency
analysis can be used to evaluate the bias and the vari-
ance of estimations[32-33] . Covariance is evaluated on
the frequency content of light transport[31] to improve
the global illumination rendering, but it is di�erent
from the covariance term between samples discussed in
this paper.

Image Space Denoising. The substantial variance
of Monte Carlo sampling can be alleviated by image
space �ltering and denoising in a post-processing step.
This type of method implicitly follows the same idea
of reusing indirect light paths by sharing the indi-
rect light samples across pixels as a process of �lter-
ing. The multi-scale representation of wavelets has
been proven to be an e�cient approach[25;34]. Bi-
lateral �ltering [35] is often preferred over Gaussian
�ltering to better preserve edges. Non-local means
�ltering [36] utilizes similarities between pixels to avoid
over-blurring. Aiming to preserve rendering features
while smoothing out noise, many heuristics have been
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taken into account when designing �lters[37-38] . Statis-
tical models[39-40] also help to di�erentiate Monte Carlo
noise from physically-based rendering e�ects.

3 Variance Analysis and Adaptive Sampling

In the following, we �rst briey introduce indirect
light path reuse (Subsection 3.1), analyze its estimation
variance (Subsection 3.2 and Subsection 3.3), then de-
scribe our covariance heuristic and adaptive sampling
scheme (Subsection 3.4), and �nally apply the analysis
and adaptive sampling to indirect light �eld reconstruc-
tion (Subsection 3.5). The notations used in this section
are selectively highlighted in Table 1.

Table 1. Selected Notations

Notation De�nition

P Number of pixels

M Indirect light sample number of all pixels

M p Indirect light sample number of pixel p
~M p Average of M p

N Reconstruction sample number of a pixel

M 1 ; M 1;p ; ~M 1;p ; N 1 M; M p ; ~M p ; N in heuristic computing

M 2 ; M 2;p ; ~M 2;p ; N 2 M; M p ; ~M p ; N in �nal rendering

� k The k-th indirect light samples of all pixels

I p Estimation of pixel p

wp;i;k The i -th weighting of I p on � k

lp;i The i -th indirect light sample of pixel p

Var [�] Evaluation of variance

Cov [�; �] Evaluation of covariance

Vp Variance term in Var [I p ]

Cp Covariance term in Var [I p ]

H p Heuristic of pixel p

hp;k Evaluation of H p w.r.t. � k

3.1 Indirect Light Path Reuse

Indirect light path reuse is a set of global illumi-
nation algorithms which usually contains two passes.
In the �rst pass, a small number of indirect light sam-
ples � k are evaluated independently and cached. And
then in the second pass, these samples are reused by a
large number of reconstruction samples which are much
cheaper. The evaluations of reconstruction samplesl i
are eventually the weighted average of the indirect light
samples� k .

lp;i =
1

M

MX

k=1

wp;i;k � k ; (1)

wherewp;i;k is the non-negative weighting andM is the
number of indirect light samples of all pixels.

The key idea of indirect light path reuse is that
the evaluation of a single indirect light sample can be
shared among a few reconstruction samples, and a sin-
gle reconstruction sample can make use of a number of
indirect light samples. In the paper, we assume that
the number of reconstruction samples reusing a single
indirect light sample is proportional to the reconstruc-
tion rate, and the number of indirect light samples used
by a single reconstruction sample is independent of the
indirect light sampling rate. Most algorithms based on
indirect light path reuse satisfy the two assumptions.
For clarity, we refer to the samples from the �rst pass
as indirect light samples and the samples from the sec-
ond pass as reconstruction samples in the rest of the
paper.

3.2 Estimation Variance of Random Samples

Following the Monte Carlo rendering framework,
the �nal rendering color I p of a pixel p is the averaged
evaluations of all reconstruction sampleslp;i . Assum-
ing that the reconstruction samples are uniformly dis-
tributed throughout the image space, we have

I p =
1
N

NX

i =1

lp;i ; (2)

whereN is the reconstruction rate within the pixel. Its
variance is composed of two terms corresponding to the
variance and the covariance oflp;i respectively:

Var [I p] =
1

N 2 (Vp + Cp) ; (3)

Vp =
NX

i =1

Var [lp;i ]; (4)

Cp =
NX

i =1

NX

j =1 ;j 6= i

Cov [lp;i ; lp;j ]; (5)

whereVar [�] and Cov [�; �] denote the evaluation of vari-
ance and covariance respectively.

The covariance term Cp is always 0 if independent
sampling is employed (e.g., path tracing[3] ), where the
estimation variance Var [I p] is only determined by the
variance term Vp. Because ofN 2 in the denominator
of (3), variance Var [I p] is proportional to the inverse
square of the reconstruction rateN [6] . That is the rea-
son why high quality rendering requires a substantial
number of reconstruction samples.
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3.3 Covariance Evaluation

The covariance term Cp can be signi�cant in al-
gorithms based on indirect light path reuse, because
the covariance between di�erent reconstruction samples
Cov [lp;i ; lp;j ] could be non-zero.

With the evaluation of lp;i in (1), the covariance be-
tween two reconstruction samplesCov [lp;i ; lp;j ] can be
calculated according to the bilinearity of covariance:

Cov [lp;i ; lp;j ] =
MX

k=1

wp;i;k wp;j;k Var [� k ]: (6)

Substituting (6) into the covariance term in (5), we get

Cp =
MX

k=1

0

@Var [� k ]

0

@
NX

i =1

NX

j =1 ;j 6= i

wp;i;k wp;j;k

1

A

1

A : (7)

Therefore Cov [lp;i ; lp;j ] and Cp are non-negative as
both the weighting wp;i;k ; wp;j;k and the variance of in-
direct light samples Var [� k ] are non-negative.

A reconstruction sample is usually evaluated only
from its most relevant indirect light samples, and thus
most wp;i;k are zero. From another perspective, an in-
direct light sample only contributes to a small portion
of reconstruction samples. An indirect light path sam-
ple � k is reused by a reconstruction samplelp;i only
if the weighting is positive wp;i;k > 0. According to
the covariance term in (7), an indirect light sample � k

contributes to the covariance term when it is reused
by more than one reconstruction sample. This means
that there is at least one pair of i and j satisfying
wp;i;k wp;j;k > 0 for the indirect light sample � k . Hence
we conclude that the covariance termCp of the esti-
mation variance Var [I p] comes from the indirect light
samples that are reused by multiple reconstruction sam-
ples.

Di�erent from the variance term Vp in (4) which
only has N items of Var [lp;i ], the covariance term Cp

in (7) has N (N � 1) M items. In many algorithms of
indirect light path reuse, the number of reconstruction
samples reusing each indirect light sample is propor-
tional to N , keeping the ratio of non-zero evaluations
wp;i;k wp;j;k in (7) unchanged. Therefore, increasing the
reconstruction rate N cannot e�ectively reduce the con-
tribution of the covariance term to the estimation vari-
ance (i.e., 1

N 2 Cp). This critical di�erence indicates that
the covariance term Cp will dominate the estimation
variance Var [I p] when a su�ciently high indirect light
sampling rate N is used.

3.4 Covariance Heuristic and Adaptive
Sampling

Given the indirect light sampling rate and the recon-
struction rate, the rendering quality can be improved
by adaptively distributing the indirect light samples to
reduce the covariance termCp in (7). A covariance-
guided adaptive sampling scheme is thus needed.

In practice, the covariance term Cp cannot be ac-
curately calculated at a reasonable computational cost.
We would like to approximate Cp as a heuristic evalu-
ated with a low sampling rate and reconstruction rate.
Our idea is to assume the variance of indirect light sam-
ples Var [� k ] to be a constant value and remove it from
(7). Heuristic H p is thus de�ned as

H p =
MX

k=1

NX

i =1

NX

j =1 ;j 6= i

wp;i;k wp;j;k =
MX

k=1

hp;k ; (8)

hp;k =

 
NX

i =1

wp;i;k

! 2

�
NX

i =1

w2
p;i;k : (9)

The heuristic in (8) can be well motivated by a special
situation, where the weighting valueswp;i;k are all the
same. In this situation, the optimal evaluation of the
covariance term can be achieved if every indirect light
sample is reused by exactlyN

M reconstruction samples,
whereH p = N

�
N
M � 1

�
. This suggests that the indirect

light samples should be distributed evenly throughout
all reconstruction samples. The generalization of non-
uniform wp;i;k can be taken as a special weighting of
reuse. Note that according to (8) and (9), the compu-
tational complexity of the heuristic is O(NM ).

Based on the above heuristic, we now adaptively
generate indirect light samples to reduce the covari-
ance term. Our approach contains two stages, namely
heuristic computation and �nal rendering. Both stages
have two passes of indirect light sampling and recon-
struction. In the heuristic computation stage, we em-
ploy a low indirect light sampling rate M 1 and recon-
struction rate N1 to compute heuristic H p of every
pixel. Let M 1;p denote the indirect light samples gene-
rated within pixel p. Thus M 1 =

P P
p=1 M 1;p , where P

is the number of pixels. In the �nal rendering stage,
we use the same high reconstruction rateN2 for every
pixel, but generate a di�erent number M 2;p of indirect
light samples for each pixelp according to the computed
heuristic H p. The total indirect light sampling rate is
computed asM 2 =

P P
p=1 M 2;p , and the average ofM 2;p

is denoted as ~M 2;p = M 2
P . A heuristic H p with a large

value suggests a high sampling rateM 2;p . Then both
the M 1 and M 2 indirect light samples in the two stages
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are used together by theN2 reconstruction samples to
produce the �nal image.

The basic idea of this adaptive sampling scheme is
to perform dense sampling in regions with intensive in-
direct light path reuse. A large hp;k indicates that its
corresponding indirect light sample is reused by many
reconstruction samples. Dense sampling around this
indirect light sample could reduce the number of recon-
struction samples using the same indirect light sample
in proportion. In other words, hp;k measures the prob-
ability of generating indirect light samples with respect
to pixel p. A large H p thus indicates a high change of
dense sampling in pixelp.

3.5 Indirect Light Field Reconstruction

The indirect light �eld reconstruction algorithm [1]

e�ciently evaluates the light �eld in the world space by
reusing indirect light samples between pixels. In this
paper, we extend this algorithm with our adaptive sam-
pling scheme introduced in Subsection 3.4. The general
framework is summarized in Fig.1.

In the �rst pass of indirect light sampling, the im-
age is rendered by path tracing with a very low indirect
light sampling rate to generate M indirect light paths.
Each indirect light path generates a disk located at the
second reection point, where the shading value is com-
puted and stored. The shading values recorded on the
disks are the evaluations of the indirect light samples� k

in (1). The radius of each disk is inversely proportional
to the density of disks nearby. A dense distribution of
disks leads to a small radius and vice versa. This makes
the algorithm satisfy the assumptions mentioned at the
beginning of Section 3.

In the second pass of reconstruction, the image is
rendered with a high reconstruction rate, generatingN
reconstruction light paths for each pixel. Each recon-

struction light path reects only once, and then inter-
sects with disks generated in the indirect light sampling
pass. The weighted average of the shading values at the
intersecting disks is taken as the illumination. Finally
the reconstruction light path regards the intersection
points as points located on lights with the accumulated
illumination as the radiance, and �nishes computing its
shading lp;i as in (1). The weighting wp;i;k in (1) can
be formulated accordingly:

wp;i;k = cp;i up;i;k ;

whereup;i;k is the weighting used to average the shading
values � k , and cp;i is the radiance transfer coe�cients
of the reconstruction samples. Bothup;i;k and cp;i are
non-negative and

P M
k=1 up;i;k = 1.

4 Experimental Results

We have implemented the described algorithms on
a PC with an Intel i7-3770K 3.50 GHz quad-core CPU
and 4 GB memory, and a GTX680 graphics card. The
images in this paper are rendered with the resolutions
of 512� 512 or 720� 480. The estimation variance
of an image is statistically computed by rendering 256
times with the same parameter settings but di�erent
stochastic processes.

4.1 Estimation Variance

We perform an experiment to visualize the inuence
of the indirect light sampling rate M and reconstruc-
tion rate N on the covariance termVp and the variance
term Cp respectively. For the Cornell Box scene, we
�rst render an image with a low sampling rate and
a low reconstruction rate (M p = 1 ; N = 128) (see
Fig.2(a)). Under such a setting, both Vp and Cp con-
tribute signi�cantly to the rendering variance. Then we

(a)

Camera Camera

(b) (c) (d)

Primary Hit

Primary Hit with Large Heuristic

Disk of Secondary Hit

Disk with Large Heuristic

Primary Ray

Secondary Ray

Reconstruction Ray

Fig.1. Indirect light �eld reconstruction and adaptive sam pling. (a) Initial sampling: uniform indirect light sampli ng. (b) Heuristics
evaluation. The indirect light samples of disks intersecte d by di�erent reconstruction samples cause the covariance t erm Cp . (c)
Adaptive indirect light sampling according to the heuristi c achieved from (b). The sample density around the reused ind irect light
sample is increased and its radius is reduced in proportion. (d) Reconstruction. The degree of indirect light sample reu se is reduced
by reconstructing from the adaptive generated samples.
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Fig.2. Rendering variance of indirect light �eld reconstru ction.
The �gure is rendered with di�erent parameter settings: (a)
M p = 1, N = 128; (b) M p = 16, N = 128; (c) M p = 1,
N = 1 024. The �rst row shows the rendering results while the
second row shows the corresponding rendering variances (sc aled
by 210 ).

render the scene with an increased indirect light sam-
pling rate M p = 16 and the same reconstruction rate
N = 128 (see Fig.2(b)). In this situation, there are suf-
�cient indirect light samples, thereby the probability of
reusing a single indirect light sample among di�erent re-
construction samples is small. Thus the rendering vari-
ance mainly comes from the variance termVp. On the
other hand, rendering with a low indirect sampling rate

M p = 1 and a high reconstruction rate N = 1 024 will
greatly reduce the contribution of the variance term Vp

and makes the rendering variance come mainly from the
covariance termCp (see Fig.2(c)). Adding up the vari-
ances of Fig.2(b) and Fig.2(c) results in a value similar
to the variance of Fig.2(a) (see Fig.2).

This experiment shows that the processes to allevi-
ate the two kinds of variance are independent of each
other. In this paper, we assume that the reconstruc-
tion rate N is su�ciently large and focus on reducing
the variance related to the covariance termCp.

4.2 Adaptive Sampling

Fig.3 compares our adaptive sampling scheme with
uniform sampling. Figs.3(a)� 3(c) are rendered with
uniform sampling at di�erent indirect light sampling
rates. Fig.3(d) is the result generated by our adaptive
sampling scheme. The �nal reconstruction rate is the
same for all images. The indirect light sampling rate
M in Fig.3(b) is the same as the total sampling rate
M 1 + M 2 in Fig.3(d). The rendering time of Fig.3(c) is
similar to that of Fig.3(d). As shown in the second row
of Fig.3, our adaptive sampling scheme can signi�cantly
reduce the rendering variance, resulting in improved im-
age quality (please zoom in to compare the quality). In
the third row of Fig.3, we also show heuristicH p evalu-
ated with a low indirect light sampling rate, which well
predicts the rendering variance.

(a)
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e

R
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ts

(b) (c) (d)

Fig.3. Adaptive sampling in indirect light �eld reconstruc tion according to the heuristic of H p . The �rst row shows the rendering
results. The second row shows the variance. And the third row shows our heuristic H p (scaled by 22 ). (a) � (c) are rendered without
adaptive sampling. Their indirect light sampling rates are : M p = 1; M p = 4; M p = 5 respectively, and reconstruction sampling rates
are all N = 512. (d) is rendered with our adaptive sampling scheme, M 1;p = 1, N1 = 16, M 2;p = 3, N2 = 512. The rendering time of
(a) � (d) in seconds is 33, 37, 38 and 38 respectively.
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In our adaptive sampling scheme, under the same
total indirect light sampling rate M 1 + M 2, the ren-
dering quality and performance may be signi�cantly
a�ected by the value of M 1. A greater M 1 tends to
produce a more accurate prediction of the rendering
variance, at the cost of introducing more overhead in
evaluating the heuristic and thus downgrading the over-
all rendering performance (see Fig.4(a)). On the other
hand, the rendering variance does not drop monotoni-
cally with the increase of M 1 (see Fig.4(b)). This is
because a greaterM 1 means a smallerM 2, leading to
less indirect light samples that can be adaptively dis-
tributed. Furthermore, as shown in Fig.4, the di�e-
rence in rendering variance is quite minor compared
with the performance variation. Therefore, we always
chooseM 1 = 1 to favor the rendering performance.

1 2 3 4
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5 6 7
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(b)

Fig.4. Comparisons between M 1 and M 2 with adaptive sam-
pling. We maintain M 1;p + ~M 2;p = 8. The test scene is the same
as in Fig.2. (a) plots the rendering time. (b) plots the rende ring
variances.

With the reduced rendering variance, it is expected
that the temporal ickering artifacts in animation ren-
dering can also be reduced. As shown in the supplemen-

tary video, our adaptive sampling scheme can indeed
improve the temporal coherence by reducing the esti-
mation variance. Nevertheless, we acknowledge that
some artifacts still exist in our result, although they
have been much weakened in comparison to the uni-
form sampling results.

4.3 Comparisons of Adaptive Sampling
Schemes

As reviewed in Section 2, a large number of adap-
tive sampling schemes have been proposed in the past.
In Fig.5, we compare our covariance heuristic based
scheme with several representative methods.

The �rst category of methods we would like to com-
pare with were proposed for unbiased path tracing ren-
dering, e.g., [19] (see the �rst row of Fig.5) and [24] (see
the second row of Fig.5). Di�erent from indirect light
path reuse that consists of two separate passes of indi-
rect light sampling and reconstruction, path tracing has
a single pass that samples light paths to evaluate ev-
ery pixel. The samples are usually distributed accord-
ing to the evaluation di�erences of previous samples.
We adapt these methods to the indirect light sampling
pass for comparison. Michell[19] distributed samples ac-
cording to the color contrast. Xu et al.[24] utilized a
hybrid criterion including the inner-pixel entropy and
the inter-pixel coherency. Generally both of them are
computed with some statistical properties of color val-
ues. In our experiments, we useM 1;p = 16, which is
the same as the setting in their papers. In the second
stage, the samples of the �rst stage are not used in the
reconstruction pass for a fair comparison. Our adaptive
sampling scheme (see the �fth row of Fig.5) shows bet-
ter rendering quality with the same indirect light sam-
pling rate (M 1;p + ~M 2;p = 8). Note that the sampling
schemes in both [19] and [24] are based on heuristics
according to the rendering variance. However, their
heuristics computed with low sampling and construc-
tion rates contain signi�cant contributions from both
the variance term Vp and the covariance termCp, which
does not reect the real estimation variance of the ren-
dering results with high construction rates. Therefore,
their heuristics are not so e�cient as our heuristic in
adaptively distributing indirect light samples.

The second category of methods we want to com-
pare with were proposed for image space �ltering.
These methods also take two passes | indirect light
paths are sampled in the �rst pass, and then the pixels
are evaluated by �ltering the indirect light samples in
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Fig.5. Comparisons with di�erent algorithms for adaptive s ampling. (a) Rendering results. (b) Variance. (c) Indirect light samples
used for the �nal reconstruction pass. (d) Adaptive sample d istributions (scaled by 2 � 6 ). The reconstruction rate is N = 512 for all
the sub-�gures. The indirect light sampling rates are M 1;p = 1 ; ~M 2;p = 7 for the 1st, 2nd, 5th rows and M 1;p = 16 ; ~M 2;p = 8 for
the 3rd and 4th rows. The root mean square errors of all result s (from top to bottom) are: 0.005 6, 0.005 7, 0.005 8, 0.005 5, 0 .005 4
respectively, while the root mean square error of original I LFR is 0.005 8. Our method has the lowest numerical error.

the second pass. Adaptive sampling is usually employed

in the �rst pass. We would like to adapt their adaptive
sampling methods to the �rst pass of indirect light �eld

reconstruction for comparison. We compare it with two

algorithms proposed by Li et al.[40] (the third row of

Fig.5) and Mehta et al.[2] (the fourth row of Fig.5). As
shown, our adaptive sampling scheme consistently out-

performs them in terms of rendering quality. Li et al.'s

algorithm works more similarly to the adaptive sam-

pling algorithms in path tracing such as [19] and [24].
The rendering error is predicted with respect to its re-

construction �ltering by Stein's unbiased risk estimator

(SURE)[40] . Its rendering quality thus su�ers from the

same reason that it considers the variance termVp and
the covariance term Cp together. Mehta et al.[2] per-

formed adaptive sampling based on geometric proper-
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ties. If the distances between the �rst and the second
hit points along the sampling light paths are very small
or vary signi�cantly, more sampling budget will be allo-
cated. This scheme produces the best result among all
the previous algorithms implemented here. Their sam-
pling scheme actually shares a similar intuition to ours.
Those close distances certainly indicate greater proba-
bilities that reconstruction samples intersect the same
disks, which often happens around detailed geometries.
Our heuristic designed to approximate the covariance
term is more than a geometric heuristic, and is appli-
cable to more complex scenarios.

4.4 Analysis of Recursive Filtering

Lehtinen et al.[1] introduced a method called recur-
sive �ltering to improve the rendering quality. With
recursive �ltering, the shading value on a disk is com-
puted by sampling several rays starting from the hit
point on the disk and intersecting other disks.

Recursive �ltering does not change the positions and
the radii of the disks, and thus the weighting wp;i;k is
not changed. What recursive �ltering actually reduces
is the variance of indirect light samplesVar [� k ] in (7),
which is ignored in our heuristic H p in (8). Thus, our
adaptive sampling is orthogonal to recursive �ltering.
Both recursive �ltering and our adaptive sampling can
signi�cantly improve the rendering quality (see Fig.6(b)
and Fig.6(c) respectively). According to the visualiza-
tion of the indirect light samples in the second row of
Fig.6, we can see that recursive �ltering and our adap-
tive sampling take di�erent approaches to reduce the
estimation variance around the corners. Recursive �l-

tering smooths out the variance of indirect light sam-
ples (Fig.6(b)), while our adaptive sampling distributes
more samples in those regions (Fig.6(c)). The combi-
nation of the two methods generates the best result.

4.5 Axis-Aligned Indirect Lighting Filtering

In this subsection, we extend the previous variance
analysis and adaptive sampling scheme to the algorithm
of axis-aligned indirect lighting �ltering [2] . The algo-
rithm also consists of two passes of indirect light sam-
pling and reconstruction. It produces smooth rendering
results by utilizing the shading positions in the world
space to compute the weights of inter-pixel �ltering in
the image space.

In the indirect light sampling pass, only one shad-
ing value � k is evaluated within a pixel, which means
there is only one indirect light sample for each pixel,
i.e., M p = 1 and M = P. Di�erent from the indirect
light �eld reconstruction algorithm in Subsection 3.5,
each� k in (1) is evaluated from multiple indirect light
paths within the same pixel,

� k =
1

Sp

SpX

s=1

~� k;s ; (10)

where Sp is the number of indirect light paths traced
within pixel p, and ~� k;s is the accompanying shading
values. Sp varies among di�erent pixels p. It is deter-
mined with an adaptive sampling scheme performed in
the beginning of the indirect light sampling pass.

In the reconstruction pass, the image will be �ltered
by a kernel function with a �xed window size through-
out the image. This means the reconstruction rate is

(a) (b)

In
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R
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ts

(c) (d)

Fig.6. Optimal solution with both recursive �ltering and ad aptive sampling. The �rst row shows the rendering results. T he second row
shows indirect light samples used for the �nal reconstructi on pass. (a) is without adaptive sampling or recursive �lter ing. (b) is with
recursive �ltering only, where the recursive sampling rate is 16. (c) is with adaptive sampling only. (d) is with both ada ptive sampling
and recursive �ltering. The reconstruction rate is N = 512 for all the four sub-�gures. The indirect light samplin g rates are M p = 8
for (a) and M 1;p = 1 ; ~M 2;p = 7 for (b) � (d). The rendering time of (a) � (d) in seconds is 41, 43, 40 and 42 respectively. The root mean
square errors of (a) � (d) are 0.022 4, 0.037 9, 0.019 1, 0.036 1, respectively.
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N = 1 for every pixel, and weighting wp;i;k in (1) is
non-zero when� k is within the window. A non-zero
wp;i;k is computed according to the positions of the pix-
els corresponding to the reconstruction samplelp;i and
the indirect light sample � k in the world space.

The reconstruction rate N = 1 indicates that each
indirect light sample � k is evaluated at most once by
a speci�c pixel p. Thus the covariance term Cp within
each pixel is constantly zero. However, the inter-pixel
correlation from indirect light path reuse still has sig-
ni�cant e�ects on the rendering quality.

If we consider a �ltering window � instead of a sin-
gle pixel p, the accumulated shading color of all pixels
~I � within this window can be evaluated similarly to (2)
with N = 1,

~I � =
1
T

TX

p=1

I p =
1
T

TX

p=1

lp;1;

whereT is the number of pixels in the �ltering window
� . As T and � are analogous toN and p respectively,
the variance analysisVar [I p] in (3) for pixel p can be
reformulated for the �ltering window � in a similar way,

Var
h

~I �

i
=

1
T 2 (V� + C� ) ;

V� =
TX

p=1

Var [lp;1];

C� =
TX

p=1

TX

q=1 ;q6= p

Cov [lp;1; lq;1]:

And the covariance term Cp in (7) can be similarly re-
formulated to be C� with respect to the �ltering window
� :

C� =
MX

k=1

0

@Var [� k ]

0

@
TX

p=1

TX

q=1 ;q6= p

wp;1;k wq;1;k

1

A

1

A : (11)

As an indirect light sample � k is �ltered by all pix-
els within the same �ltering window, every item of
wp;1;k wq;1;k could be non-zero. Therefore the covari-
ance term C� in (11) could be signi�cant.

A signi�cant covariance term C� in (11) indicates
that the estimation errors of all pixels in the same �l-
tering window are highly correlated. Intuitively, there is
a big probability that most pixels in a �ltering window
appear much brighter or dimmer than the ground truth,
which usually degrades the rendering quality with lots
of granule artifacts.

We can adopt an adaptive sampling scheme simi-
lar to that in Subsection 3.4 to alleviate the covariance

term C� in (11). Di�erent from heuristic H p in (8)
which is evaluated for a single pixel, heuristicH � uti-
lized here is the approximation of C� and computed
from all pixels in the �ltering window � .

H � =
MX

k=1

TX

p=1

TX

q=1 ;q6= p

wp;1;k wq;1;k =
MX

k=1

h�;k ;

h�;k =

 
TX

p=1

wp;1;k

! 2

�
TX

p=1

w2
p;1;k :

The adaptive sampling scheme also contains two
stages. In the �rst stage, we compute heuristic H �

with the same setting M 1;p = 1. The window size
is the same for all pixels, and the �ltering could be
highly anisotropic. In the second stage,M 2;p varies be-
tween pixels according to the computed heuristicH � .
We compute M 2;p indirect light samples � k in the in-
direct light sampling pass, and all shading values~� k;s

used in (10) are evaluated independently.
In the reconstruction pass, the reconstruction sam-

ple lp;i in (1) is evaluated by randomly choosing a single
indirect light sample � k from the M 1;p + M 2;p samples
in pixel p. Because the window size and the weight-
ing wp;1;k remain unchanged for di�erent M 2;p , our
adaptive sampling scheme does not violate the assump-
tions described in the beginning of Section 3. Generally
speaking, the adaptive sampling scheme here employs
a large M 2;p to reduce the number of reconstruction
samples reusing each indirect light sample� k with sig-
ni�cant �ltering weights wp;1;k .

As shown in Figs.7(a)� 7(c), standard axis-aligned
indirect lighting �ltering su�ers from granule artifacts
due to the inter-pixel covariance C� . We use heuris-
tic H � to adaptively generate indirect light samples
(Fig.7(f)), which has a high similarity to the variance
(Fig.7(e)) estimated in original image, and it e�ectively
reduces the artifacts (Fig.7(d)). Figs.7(b) and 7(d) are
rendered with a similar indirect light sampling rate, and
Fig.7(c) is rendered with a higher indirect light sam-
pling rate to keep the rendering performance similar to
that for Fig.7(d).

4.6 Discussion

We hope our work can stimulate further work on
the probability analysis of this kind for indirect light
path reuse algorithms. Our variance analysis is just
the �rst step towards better understanding the proba-
bilistic properties of these algorithms. The estimation
error of Monte Carlo methods is composed of variances
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(a) (b) (c)

(d) (e) (f)

Fig.7. Adaptive sampling for axis-aligned indirect lighti ng �ltering (AAILF). (a) AAILF, M p = 1. (b) AAILF, M p = 1 :5. (c) AAILF,
M p = 2 :8. (d) Our method, M p = 1 :5. (e) Estimated variance. (f) Adaptive sample distributio n. (a) � (c) are rendered without our
adaptive sampling scheme for � k and the indirect light sampling rates M p of (a) � (c) are 1, 1:5 and 2:8 respectively. (d) is rendered

with adaptive sampling of � k , M 1;p = 1 and ~M 2;p = 0 :5. (e) is the estimation variance Var
h

~I �

i
of �ltering windows in (a) (scaled

by 28 ). (f) is the sample distribution of (d) (scaled by 2 � 5). The rendering time from (a) to (d) in seconds is 2 :2, 2:6, 3:5 and 3:4
respectively, and the corresponding RMSE is 0.039 8, 0.039 7 , 0.039 6 and 0.039 1 respectively. The indirect light sampli ng rates are
comparable between (b) and (d). The rendering performances are comparable between (c) and (d).

and biases. In this paper, we focus on variance re-
duction only. Like many other adaptive sampling al-
gorithms, extra biases are introduced because the �-
nal reconstruction uses the samples generated in both
steps. Although the numerical errors show our methods
reduce the overall estimation errors, the concrete anal-
ysis of bias is a good direction of further exploration.
An important limitation of our work is that we only
reduce the variance within a frame instead of a whole
sequence. Therefore, our algorithm is still not reliable
for animation rendering. Please refer to the supplemen-
tal video 1O for comparisons.

The two algorithms where we apply our adaptive
sampling method are both for fast rendering. In this
case, a smallM and a largeN are cost-e�ective, because
the indirect light sample is much more expensive than
a reconstruction sample. Thus the covariance heuristic
in this paper is with very minor computation overhead.
A larger M and multiple bounces reconstruction rays
can be used given enough computation time budget. Its
theoretical analysis is similar but the e�cient parame-
ter settings require much more experimental analysis.

However, neither indirect light �eld reconstruction
nor axis-aligned �ltering has been proved to be an ef-
�cient alternative for high quality rendering yet. Peo-
ple usually refer to bidirectional path tracing and pho-
ton mapping for high quality rendering. We compare
our method (ILFR with adaptive sampling) with pho-
ton mapping in Fig.8. The �nal gathering stage in
photon mapping is much similar to the reconstruction

stage in ILFR. Also, the reuse of photons will lead to
some artifacts caused by covariance. In this compari-
son, our method could better erase the artifact at cor-
ners in comparable rendering time. However, extending
our analysis to photon mapping is nontrivial. Photon
mapping is a bidirectional method and our analysis is
based on unidirectional methods. Although the heuris-
tic may be extendable, a practical issue is that we do
not have an e�ective way to do adaptive sampling in
photon mapping. Extending our analysis to photon
mapping will be an interesting future work. Notice
that we do not claim our method is generally better
than photon mapping in this comparison. ILFR is de-
signed for fast rendering. Photon mapping will be much
better for complex lighting, especially for caustics and
multi-bounce indirect lighting.

(a) (b) (c)

Fig.8. Comparison between photon mapping and our method.
(a) Photon mapping. (b) Photon mapping, M = 2. (c) Ours,
M = 4. Photon mapping uses a �nal gathering step with 512
rays per pixel, and our method uses the same number of recon-
struction rays. The performance of these two results is comp a-
rable, which is 35 s and 38 s respectively.

1O http://www.haoqin87.com/publications/cov/video JCST.mp4, Mar. 2016.
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A complete analysis of covariance should include the
variance term Var [� k ] in (7), which is ignored in our
heuristic in (8). Thus a complementary scheme is not
to reuse path samples with large variance[41] . The vari-
ance has been intensively studied before[42] , which can
be combined with our method for better e�ciency in
the future.

5 Conclusions

We presented a variance analysis for a set of global
illumination algorithms based on indirect light path
reuse, where a small number of indirect light samples
are �rst generated and evaluated. These indirect light
samples are then reused by a large number of recon-
struction samples. Our analysis shows that the covari-
ance of the reconstruction samples dominates the ren-
dering variance if the reconstruction rate is su�ciently
large, and increasing the reconstruction rate cannot ef-
fectively reduce the covariance. Based on this analy-
sis, we designed a heuristic approximating the covari-
ance as well as an adaptive sampling scheme based on
this heuristic to e�ciently reduce the rendering vari-
ance. The analysis and the adaptive sampling scheme
are validated in the indirect light �eld reconstruction
algorithm [1] and the axis-aligned �ltering algorithm for
indirect lighting [2] .

In the future, we would like to improve our work
as follows. The adaptive sampling scheme can be ex-
tended to be a multiple-stage solution that heuristic
H p and the sample distribution can be optimized itera-
tively. The �ltering kernels in the reconstruction pass
can be optimized according to the rendering variance
heuristic H p.
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