
Gao F, Song SX, Chen L et al. E�cient set-correlation operator inside databases. JOURN AL OF COMPUTER SCIENCE
AND TECHNOLOGY 31(4): 683{701 July 2016. DOI 10.1007/s1139 0-016-1657-z

E�cient Set-Correlation Operator Inside Databases

Fei Gao1;2, Shao-Xu Song1;2;� , Lei Chen3, and Jian-Min Wang 1;2

1Tsinghua National Laboratory for Information Science and T echnology, Tsinghua University, Beijing 100084, China
2School of Software, Tsinghua University, Beijing 100084, China
3Department of Computer Science and Engineering, Hong Kong University of Science and Technology

Hong Kong, China

E-mail: gaofeihp@163.com; sxsong@tsinghua.edu.cn; leichen@cse.ust.hk; jimwang@tsinghua.edu.cn

Received February 26, 2016; revised May 5, 2016.

Abstract Large scale of short text records are now prevalent, such as news highlights, scienti�c paper citations, and
posted messages in a discussion forum, and are often stored as set records in hidden-Web databases. Many interesting
information retrieval tasks are correspondingly raised on the correlation query over these short text records, such as �nding
hot topics over news highlights and searching related scienti�c papers on a certain topic. However, current relational database
management systems (RDBMS) do not directly provide support on set correlation query. Thus, in this paper, we address
both the e�ectiveness and the e�ciency issues of set correla tion query over set records in databases. First, we present a
framework of set correlation query inside databases. To the best of our knowledge, only the Pearson's correlation can be
implemented to construct token correlations by using RDBMS facilities. Thereby, we propose a novel correlation coe�ci ent
to extend Pearson's correlation, and provide a pure-SQL imp lementation inside databases. We further propose optimal
strategies to set up correlation �ltering threshold, which can greatly reduce the query time. Our theoretical analysis proves
that with a proper setting of �ltering threshold, we can impr ove the query e�ciency with a little e�ectiveness loss. Fina lly,
we conduct extensive experiments to show the e�ectiveness and the e�ciency of proposed correlation query and optimizat ion
strategies.

Keywords set record, correlation query, correlation measure

1 Introduction

Short text records become more and more popu-
lar, and are often stored as set records in (hidden)
databases. For example, in many news agency web
sites, instead of o�ering full text documents, often,
news highlights are shown on the front page to attract
users' interests. These short news highlights are exam-
ples of set records. Given another example, in many
scienti�c paper citation web sites, such as CiteSeer and
ACM Portal, paper citations are given in the form of
short texts. Other examples of short texts as set records
include users' text inputs in the logs of a search engine,
reply messages in a discussion forum, and collections

of event names from heterogeneous sources. E�cient
set similarity operators over such set records have been
well studied[1-3] .

With the emergence of these short text records, a
very useful yet interesting query, correlation query, has
been introduced in many applications to �nd the cor-
related records (e.g., with similar topics[4]). For exam-
ple, in order to detect hot topics among the news high-
lights from di�erent news agencies (e.g., BBC, CNN,
and AOL), we can conduct a correlation query for each
highlight (a short set record) to �nd a number of other
highlights in the database that are correlated to the
query on similar topics. The set record that has the

Regular Paper
Special Section on Data Management and Data Mining 2016
The work was supported by the National Key Technology R&D Pro gram of China under Grant No. 2015BAH14F02, the National

Natural Science Foundation of China under Grant Nos. 615722 72, 61202008, 61325008, and 61370055, and the Tsinghua University
Initiative Scienti�c Research Program.

� Corresponding Author
© 2016 Springer Science + Business Media, LLC & Science Press, China

684 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

most quantity of correlated records can be treated as
the hot topic in the current database. Given another
example application on managing scienti�c literature
data, literature records can be collected from di�erent
personal web pages, o�cial publication web sites (IEEE
or ACM), and conference proceedings. As shown in Ta-
ble 1, we usually store paper citations as set records in
databases. Again, it is promising to conduct a query
of correlated records over set records in this database.
For example, suppose that a fresh postgraduate stu-
dent wants to search papers related to \record linkage".
A comprehensive correlation query result is expected
to return the literatures in \ duplicate record detection",
\ reference reconciliation" and \ entity resolution" as well.

Table 1. Set Records in a Scienti�c Literature Database

ID Paper (Set Records)

1 Duplicate record detection: A survey; Ahmed K. Elma-
garmid et al. ; record linkage, data de-duplication, entity
resolution

2 Record linkage: Similarity measures and algorithms; SIG-
MOD Tutorial 2006

3 A latent Dirichlet model for unsupervised entity resolu-
tion; Lise Getoor; www.cs.umd.edu/ ~getoor

4 Reference reconciliation in complex information spaces;
Xin Dong; record linkage, merge/purge, de-duplication,
reference matching, object identi�cation, identity uncer -
tainty

Such correlations over events appearing together are
not only useful in identifying events from heteroge-
neous sources[5-6] , but also important in inferring miss-
ing/inconsistent events[7-8] .

Motivated by these interesting applications, we
study the correlation query over set records in
databases.

Unfortunately, current relational database manage-
ment systems (RDBMS) do not directly provide sup-
port on correlation query. A novel framework should
be studied by using current RDBMS facilities to sup-
port the correlation query on set records e�ectively
and e�ciently inside databases. We emphasize the
importance of implementing correlation query inside
RDBMS, since it can be naturally extended to corre-
lation join [9] over set records as well. With the imple-
mentation in RDBMS, correlation query can bene�t in
the following aspects. First, we can utilize the optimiza-
tion facilities provided by RDBMS engine, such as join
order selection, to automatically achieve the optimal
performance[10-12] . Second, with the help of RDBMS,
we can handle very large size of correlations for real-
world vocabularies, for example, considering the vo-
cabulary from the Web. Therefore, in this study, we

mainly focus on seeking and querying correlations in-
side databases.

The correlation queries have been studied in datas-
pace systems[13] , where heterogeneous data coexist.
Di�erent from querying correlated contents in an at-
tribute in databases, the query in dataspaces searches
contents in the speci�ed attributes as well as the
heterogeneous attributes related to the speci�ed ones.
Advanced mechanisms have been adopted to support
and optimize the quires in dataspaces, e.g., by us-
ing materialization techniques[14] or query rewriting
with integrity constraints [15] . The major di�erences,
i.e., querying correlated contents in one attribute in
databases and searching in heterogeneous attributes in
dataspaces, prevent applying the dataspaces methods
to databases. Instead of developing new techniques like
dataspaces, in this work, we target on supporting corre-
lation queries inside databases by utilizing the current
optimization facilities in RDBMS.

Contributions. In this paper, motivated by the huge
amount of set records stored in databases, we address
both the e�ectiveness and the e�ciency issues in the
correlation query over set records in databases. To
the best of our knowledge, this is the �rst attempt
to support correlation query over set records inside
databases. Di�erent from our proposal, most existing
approaches either are too complicated to implement
inside databases, e.g., by clustering[16] /probabilistic
models[17-18] , or require external knowledge[19-20] /pre-
labeled training data[21] (see detailed discussion in Sec-
tion 2). To the best of our knowledge, only the Pear-
son's correlation coe�cient [22] can be implemented in-
side databases, and this coe�cient is compared as the
baseline method with our proposal in the experimen-
tal evaluation in Section 6. Supporting set correlation
query inside databases is particularly important for two
reasons: 1) existing optimization facilities in RDBMS
such as index can be directly employed to e�ciently
perform the correlation query; and 2) it can be natu-
rally extended to correlation join over set records[9] .

Our contributions in this paper are summarized as
follows.

� We introduce a framework for representing and
querying correlations in databases (in Section 3),
and present a pure-SQL implementation of correla-
tion query by utilizing the optimization facilities in
current RDBMS. By utilizing the facility provided by
RDBMS, we can process the correlation query e�-
ciently and address the issue of scalability. Further-
more, the SQL-based implementation of correlation

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 685

query can be extended easily to support other appli-
cations on set records.

� We develop a novel token inverted correlation
function based on the co-occurrence statistics of tokens
in records (in Section 4), which extends and outper-
forms the Pearson's correlation coe�cient in terms of
e�ectiveness.

� Our theoretical analysis proves that with a certain
�ltering threshold, we can improve query e�ciency with
a little e�ectiveness loss (in Section 5). Our extensive
experiments also con�rm the optimization analysis.

� Our proposed method achieves about 20% higher
accuracy of query results and costs little extra runtime
compared with the similarity matching query. The pro-
posed approach scales well under large data sizes in the
experiments (in Section 6).

The rest of this paper is organized as follows. In
Section 3, we introduce a query framework with respect
to correlations on the set record, and the corresponding
implementation in RDBMS. Section 4 presents the de�-
nition of token correlations, as well as the construction
of correlations inside databases. Section 5 addresses
how to answer correlation queries e�ciently, and pro-
vides theoretical analysis for optimization issues. Sec-
tion 6 demonstrates the performance of our approach
in the experiments. Finally, we conclude this paper in
Section 7. A preliminary version of this paper appears
in [23].

2 Related Work

In this paper, we focus on the correlation query over
set records in databases. Our study not only is inter-
ested in the similarity of set records but also concerns
the latent correlations in both of tokens and records.
Thus, the related work of our proposal can be mainly
divided into two categories: set similarity operators and
exploiting correlations.

2.1 Set Similarity Operators

Techniques on set similarity operators over set
records have been well studied[1-3] , where the match-
ing similarity is mainly considered between set records.
Intuitively, the matching similarity calculates the de-
gree of overlap between set records. Gravanoet al.[24]

developed the approximate queries on text records in
RDBMS by using edit distance with q-grams. Cohen[25]

proposed a word token based cosine similarity with in-
verse document frequency (idf) which can detect the
similarity of records with various word orders and data

missing. Gravano et al.[26] proposed a more e�ective
approach by usingq-grams, which can handle spelling
errors. However, the correlations in both tokens and
records are ignored in the vector space model[27] and
similarity matching based approaches.

The e�ciency, always an important issue in
databases, has also been emphasized for set similarity
operators[10-12] . In particular, Beckmann et al.[11] ext-
ended the RDBMS attributes to store sparse (set) data
as interpreted �elds. Chaudhuri et al.[10] studied a simi-
larity join operator on text attributes which are also
organized in a vertical style. Motivated by these ap-
proaches of successfully storing set records, our corre-
lation query framework also considers using the vertical
storage.

Besides the direct overlapping between set records,
learnable similarity metrics on set records have been
investigated in recent studies. For example, Jin et
al.[21] proposed a supervised term weighting scheme
by considering the interaction between word frequency
and category information of documents. Bilenko and
Mooney[28] computed the comparison similarity vector
of two records and classi�ed the vector depending on
whether it is a similarity value output. Sarawagi and
Bhamidipaty [29] proposed an active leaning approach
by picking up the most uncertain data which will be
labeled manually. These approaches are learning tech-
niques that need training datasets. Di�erent from the
learning approach, in this paper, we mainly focus on the
approaches that explore correlations inside the dataset
and do not require pre-labeled training data.

Hofmann[30-31] proposed the probabilistic latent se-
mantic analysis (PLSA) which addresses the problem of
di�erent words with a similar meaning or the same con-
cept. However, the probabilistic latent semantic analy-
sis as an extension of latent semantic analysis LSA[32]

is a type of dimension reduction techniques. Rather
than removing the tokens, our correlation-based query
enriches the correlations between tokens and �nds the
correlations between tokens without any class knowl-
edge.

2.2 Exploiting Correlations

Instead of set similarity, in this paper, we mainly
focus on set correlation. To evaluate the correlated set
records, most of the correlation query approaches[33-35]

use the Pearson's correlation coe�cient[22] to measure
correlations. The Pearson's correlation considers the
token frequency in set records. However, according to
the information property of texts, a token that appears

686 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

frequently in the records in a dataset, e.g., stop-words,
might not always be important in evaluating the re-
lationships of records[36-37] . Therefore, we propose a
novel token correlation function by extending the Pear-
son's correlation in Subsection 4.1. The experiments
show that our proposed token correlation function out-
performs the Pearson's correlation coe�cient.

Besides the widely used Pearson's correlation,
Chaudhuri et al.[38] also applied the principle of proba-
bility in modeling the relevance (correlation), with the
help of pre-executed workload information for estima-
tion. The correlations in [38] are established among the
attributes of structured data, while our token correla-
tions can be constructed on unstructured text records.
Dong et al.[16] proposed a technique that clusters items
(in web service records) into groups as semantically
meaningful concepts. Rather than pair-wise relations
of correlations, the items in a cluster are correlated by
sharing the same concept. Note that it is di�cult to
implement the complex clustering algorithms by rely-
ing only on the database querying languages, and thus
this method is not directly applicable in RDBMS. Our
study focuses on the approach that can be e�ciently
deployed in database systems, such as the Pearson's
correlation.

Moreover, Sahami and Heilman[19] measured the
correlation between short set records by leveraging web
search results to provide greater context for short texts.
Speci�cally, the proposed approach extends the context
of the text records by exploiting more information from
the web search engine. Then the similarity is evaluated
on the extended records. Thus, this approach relies on
the quality of search engine, and is not e�cient due to
the cost of searching related information in the Web.
Chirita et al.[39] proposed the query expansion by us-
ing users' personalized information. Several techniques
for determining expansion terms from personal docu-
ments are introduced, including co-occurrence statistics
and external thesauri. Theobald et al.[40] also stud-
ied the query expansion in a dynamical and incremen-
tal way. Liu et al.[20] utilized the WordNet to formu-
late the correlation between word tokens in documents.
However, these techniques require knowledge outside
databases and can hardly be directly applicable using
current RDBMS facilities. In this paper, instead of us-
ing the general domain knowledge outside databases,
we are interested in conducting correlation queries in-
side databases.

The retrieval of small text records as sentence level
is also studied in [41-45]. Li and Croft[44-45] learned sen-

tence level information patterns from the training data
to identify potential answers. Murdock and Croft [46]

conducted the sentence retrieval as translations from
the query to the results. A parallel corpus has to be
exploited for training the translation model. Fung and
Lee[47] also developed the correlations of new words for
translation, by considering the co-occurrence of other
(seed) words in the sentences. The new words are mod-
eled by a vector of \common" context words rather
than the frequency of token pairs, i.e., seed words,
and the correlations are constructed based on the over-
laps of seed word vectors. However, it is not easy to
select e�ective seed words for the entire vocabulary
rather than a small set of new unknown words. Cao
et al.[48] developed a dependency model to incorporate
the co-occurrence information in language modeling.
Again, the proposed techniques with language models
are too complicated to be supported by using the cur-
rent RDBMS facilities and not directly applicable in
our correlation query problem inside databases. With-
out requiring training data, which is usually domain-
speci�c, our proposed method seeks the correlations in-
side databases for general purpose.

Unfortunately, as discussed above, most of these
previous techniques do not provide e�cient supports on
the correlations of set records in RDBMS directly. To
the best of our knowledge, only the Pearson's correla-
tion coe�cient [22] can be implemented inside databases.
Therefore, our study provides a framework to support
the correlation query in RDBMS, and the Pearson's cor-
relation coe�cient is also implemented in the proposed
framework as the baseline method.

3 Set Correlation Query

In this work, we consider set records stored in rela-
tional databases. This section provides a framework to
support correlation query inside databases. Formally,
we de�ne the correlation query problem over set records
as follows: given queryq (a set record with several to-
kens as well), the correlation query returns recordsr
ranked by cor(q; r), where cor is the correlation be-
tween q and r .

3.1 Query Framework

Due to the sparse features of text data, we extend
a vertical schema to store set records[11] . The data sto-
rage scenario in query framework is illustrated in Fig.1.
Speci�cally, we segment each record into a set of to-
kens (e.g., words orq-grams) and store all the pairs of

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 687

token tid and record rid in the table records (tid; rid).
As presented in Section 4, we can compute a correla-
tion weight of each token pair in the database. These
token correlations corresponding to their weights are
represented in the view, correlation (t i ; t j ; wij), where
wij denotes the correlation weight cor(t i ; t j) between
tokens t i and t j .

Query Correlation Records

qid tid tid ridtid i

q1

q1

q1

q1

t 1

t 2

t 3

t m

t 1

t 2

t 2

t i

t 2

t 3

t 2

t i

r 1

r 1

r 2

r n

t 3

t 3

t 2

t j

W 13

W 23

W 22

W ij

tid j W ij

Fig.1. Storage scenario of correlation query.

Similarity matching based query of short text
strings in databases has been studied by [10, 25-26,
49]. The query is directly performed on records based
on matching tokens between the query and records. As
shown in Fig.2(a), we can evaluate the similarity match-
ing query in our framework by conducting a join opera-
tion on the query and the records tables with query.tid
= records.tid , i.e., the similarity matching query:

Ts query ./ tid records:

The similarity matching query generates all candidate
records which have common matching tokens with the
query, when the results of Ts are grouped by the
records.rid . For each group of a record, we can com-
pute an aggregation score as the matching similarity,
e.g., sim (q; r) = jq \ r j.

To answer correlation queries, we have to consider
all the pairs of tokens (t i ; t j) between queryq and record
r . Based on these token pairs with correlations, we
can determine the correlation ofq and r . Therefore, as
shown in Fig.2(b), we consider the correlations between
set records in the query and records directly one by one.
Speci�cally, for each pair of query and record (q; r), we
have to search the correlation data frequently, since the
correlations between tokens in the query and records are
represented in the correlation view. For the storage in
Fig.1, we conduct a Cartesian product on the tables of
query and records to generate a large number of results
as candidates. Then, token correlations are performed
on these pairs of candidates to select the records with

the highest correlations, i.e., theq-r -c correlation query
order:

Tc (query � records) ./ tid i ;tid j correlation:

This q-r -c order considers all the possible combinations
of token pairs across the query and each record, and
then checks whether the correlations between those to-
ken pairs exist. Again, after �nding all the candidates
of query results in Tc, the e�cient facilities in RDBMS,
such as GROUP BYand ORDER BY, can be utilized di-
rectly for aggregating and ranking the results.

(a)

(b)

Correlation

Correlation

(c)

Query Records

Query Records

Query Records

Fig.2. Query framework. (a) Similarity matching. (b) q-r -c
query order. (c) q-c-r query order.

Since the data are stored in a database, we can au-
tomatically optimize the correlation query by utilizing
the e�cient facilities in RDBMS, such as join order se-
lection. Note that the results of Cartesian product are
large in size according to theq-r -c correlation query
order, where most pairs of tokens might not have cor-
relations. Thus, rather than enumerating all the pairs
of tokens between the query and records, we select the
tokens with correlations �rst. For the storage in Fig.1,
we �rst perform the join operation on tables of query
and correlation, rather than the connect operation of
query and records. Since the query size is small, the
result of the �rst join step will be small as well. Then,
we query the small size output in the records like the
similarity matching approaches. Consequently, the cor-
relation query is rewritten in the q-c-r order:

T 0
c (query ./ tid i correlation) ./ tid j records;

i.e., �rst generating all the tokens correlated with the
tokens in the query, and then performing the e�cient

688 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

matching with records based on common (matched) to-
kens. We use SQL to implement correlation queries,
and thus the query optimizer of RDBMS can automati-
cally be used to select the above correct join order based
on the join sizes and available indexes.

Note that this framework can be naturally extended
to correlation join over set records as well. That is,
we replace query with set records on attributeA1 in
Fig.1, and records denote the set records on attribute
A2. Then, the correlation join over A1 and A2 can be
evaluated, which is out of the scope of this paper.

3.2 Record Correlation

We now de�ne the correlation between two set
records. There are many distance functions designed
for measuring set similarity, including matching coef-
�cient, Jaccard coe�cient, Euclidean distance, Cosine
similarity and so on[27] . These distance functions con-
sider pairs of matched tokens between two sets, where
the relationships between matched tokens are one-to-
one. In our correlation query case, instead of matched
token pairs, we study correlated token pairs between
query q and record r . Note that the correlations be-
tween tokens are many-to-many relationship, that is,
one token may be correlated with several tokens in the
other set record.

Given a query q and a recordr , let C(q; r) represent
the set of all the pairs of tokens betweenq and r whose
token correlations are greater than 0:

C(q; r) = f cor(t i ; t j) j t i 2 q; tj 2 r; cor (t i ; t j) > 0g;

where cor(t i ; t j) denotes the token correlation between
t i and t j , i.e., wij in Fig.1. In the following Section 4,
we introduce the construction of such token correla-
tions, by either the Pearson's correlation in (2) or our
proposed inverted correlation in (4). We evaluate both
token correlation measures through extensive experi-
ments and report the results in Section 6.

Correlation Count Score. Based on the setC(q; r)
of token correlations, we are now ready to introduce
the correlation score between two set records. Follow-
ing the matching coe�cient sim(q; r) = jq \ r j for text
records[27] , which investigates the size of matched to-
kens as the similarity score, we may also study the size
of token correlations in two records as the record cor-
relation.

Speci�cally, let cor(q; r) denote the correlation be-
tween queryq and recordr . We count the total number

of token correlations that exist between query q and
record r , i.e.,

cor(q; r) = jC(q; r)j;

where operatorjxj denotes the size of the setx, e.g., the
number of token correlations in C(q; r). As illustrated
below, the count score can be implemented in RDBMS
through the COUNT aggregation operator.

It is worth noting that other than the Jaccard coef-
�cient J (q; r) = j q\ r j

j q[r j normalized by the total number
of tokens in two records, we do not introduce normali-
zation in the record correlation. Recall that the set
similarity considers the one-to-one matching relation-
ship of tokens between records, where the maximum
value of matched tokensjq \ r j is jq [r j. Thereby, it
is reasonable to use the token size to normalize. How-
ever, due to the many-to-many token correlation rela-
tionship, the number of token correlations between two
records can be greater than the token sizejq[r j. Con-
sequently, it is not reasonable to apply the token size
as the normalization to the record correlation score.

Correlation Weight Score. Other than counting the
number of tokens in sets as the matching coe�cient
or Jaccard coe�cient, Cosine similarity considers the
weight of tokens in the similarity score[27] . Following
the same line, we can also utilize correlation weight in
each pair of token correlations and conduct a weighted
correlation evaluation by considering the token correla-
tion weights.

We aggregate all the token correlationscor(t i ; t j) in
the set of C(q; r) as the record correlation:

cor(q; r) =
X

t i 2 q

X

t j 2 r

cor(t i ; t j): (1)

As mentioned, such record correlation score can be
naturally computed by the SUM aggregation query
provided by RDBMS, once all the token correlations
cor(t i ; t j) are obtained.

Discussion. It is notable that the SUM aggregation
for computing the correlation weight score in RDBMS
is costly compared with the COUNT operator for the
count score. According to our theoretical analysis in
Section 5, the correlation count and weight scores pro-
vide a trade-o� between e�ectiveness and e�ciency, es-
pecially when the correlation size is large. As veri�ed
in the experiments in Section 6, the count and weight
scores o�er alternatives for time and accuracy advances
in correlation queries.

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 689

3.3 Correlation Query Implementation

According to the query framework in Subsection 3.1,
we store the query in the table query (qid). The �rst al-
gorithm as shown in Fig.3, count score approach, counts
the number of all of correlations for each record. In
particular, given the query, token correlations with re-
spect to each record are grouped together byrid of the
record. Then, the count score is computed through the
COUNT(*)aggregation in each group. The returned re-
sults of rid are ordered in descending order according
to the scores.

Fig.3. Correlation query with count score.

Though the algorithm is implemented with q-c-r or-
der, we can rely on the query optimizer of RDBMS to
select the optimal join order, most probably the q-c-
r order. This is exactly the beauty of implementing
the correlation query inside databases, i.e., automati-
cally utilizing the optimization facilities provided by
RDBMS.

The second algorithm as shown in Fig.4 implements
the correlation query with the weight score function in
(1). Di�erent from the aforesaid count algorithm, it
aggregates all the correlation weights of each record,
through the SUMaggregation. Again, we can still rely
on RDBMS to automatically optimize the query.

Fig.4. Correlation query with weight score.

Finally, in order to evaluate and compare the corre-
lation query with the similarity matching query, we also

present the implementation of the matching coe�cient
sim(q; r) = jq \ r j[27] (see Fig.5). The following al-
gorithm counts all the matching tokens between query
q and record r as the similarity score and ranks the
records in the descending order.

Fig.5. Similarity query.

4 Correlation Construction

As the framework illustrated in Fig.1 and Fig.2,
the key issue of supporting correlation query is to con-
struct token correlations inside databases. Many so-
phisticated studies[16-21] on measuring token correla-
tions have been proposed in information retrieval litera-
ture. Unfortunately, due to the limitation of facilities
provided by current RDBMS, most of such advanced
techniques cannot be supported by databases. To
the best of our knowledge, only the Pearson's correla-
tion coe�cient [22] can be implemented inside databases.
Therefore, in this section, we extend the Pearson's cor-
relation, namely inverted correlation, and provide cor-
responding database implementation.

4.1 Token Correlation

Assume that we have segmented an unstructured
set record into a set of tokens, e.g., words orq-grams.
The Pearson's correlation coe�cient [22] can be used to
compute the correlations between tokenst i and t j .

cor(t i ; t j)

=
Pr(t i ; t j) � Pr(t i) Pr(t j)

p
Pr(t i) Pr(t j)(1 � Pr(t i))(1 � Pr(t j))

; (2)

where Pr(t i) is the support of t i , i.e., Pr(t i) = f (t i)
N ,

f (t i) is the number of records containing tokent i and
N is the total number of records. In other words, Pr(t i)
also denotes the probability that token t i appears in a
record in the database. However, according to the in-
formation property of texts, a token that appears fre-
quently in the records in a dataset, i.e., highf (t i) value,
might not be important in evaluating the correlations of
records[36-37] . For example, the word token \and" may

690 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

appear frequently in set records. However, the corre-
lation between token t i and token \and" does not help
greatly in �nding correlated records.

Thus, to evaluate the correlations between tokens,
we �rst introduce the concept of inverted probability
which has been successfully adopted in the inverse doc-
ument frequency (idf)[36-37] . The idf is based on the
essential intuition that a token appearing frequently in
di�erent documents (records) is not a good discrimina-
tor and should be associated with a low feature weight,
while a token with a low document frequency means
that it is more relevant to those documents where it
appears. The basic formula of idf is:

idf (t i) = log
1

Pr(t i)
= log

N
f (t i)

;

where N denotes the total number of documents
(records), and f (t i) is the number of documents
(records) that contain token t i . Similar to the case of
documents in idf, we replace the documents by our set
records in this study.

Speci�cally, motivated by the success of the inverted
document frequency in retrieval of correlated text docu-
ments, we propose the inverted probability of tokent i ,
which is de�ned as:

P i(t i) = log
1

Pr(t i)
= log

N
f (t i)

;

where P i(t i) denotes the inverted probability of to-
ken t i . A higher frequency f (t i) of token t i appearing
in records indicates a lower inverted probability value
P i(t i). Moreover, considering the case that two tokens
t i and t j appear together, we de�ne the joint inverted
probability of t i and t j as:

P i(t i ; t j) = log
1

Pr(t i ; t j)
= log

N
f (t i ; t j)

;

where f (t i ; t j) denotes the number of records where
both tokens t i and t j appear, i.e., the joint frequency
of (t i ; t j).

Note that we can model the correlation relationship
of token co-occurrence using a conditional probability.
Given two tokens t i and t j , the conditional probability
of t j appearing in a record whent i has already appeared
in the same record is:

Pr(t j j t i) =
Pr(t i ; t j)

Pr(t i)
; (3)

where Pr(t i ; t j) denotes the probability of t i and t j ap-
pearing together in a record.

Now, similar to the conditional probability in (3),
we can compute the token correlations according to the
inverted probability with token frequency. Note that
the conditional probability describes an asymmetric re-
lationship from t i to t j . With the inverted probability,
we de�ne the asymmetric correlation from token t i to
t j as:

Cor(t j j t i) =
P i(t i)

P i(t i ; t j)
=

log N
f (t i)

log N
f (t i ;t j)

;

where we haveCor(t j j t i) 6= Cor(t i j t j). However,
in the real world, we prefer to describing the correla-
tions between two tokens in a symmetric way, i.e., ift i

is correlated with t j , then t j is also correlated with t i .
Therefore, we de�ne the token correlations formally in
a symmetric style by considering bothCor(t j j t i) and
Cor(t i j t j).

De�nition 1 (Token Inverted Correlation). Given
two tokens t i and t j , the token correlation betweent i

and t j can be represented by:

cor(t i ; t j) = Cor(t j j t i)Cor(t i j t j)

=

8
<

:

log N
f (t i) log N

f (t j)

(log N
f (t i ;t j))2 ; if f (t i ; t j) 6= 0 ;

0; if f (t i ; t j) = 0 ;
(4)

wheref (t i) and f (t j) denote the number of records con-
taining t i and t j respectively, f (t i ; t j) is the number of
records with both t i and t j , and N is the total number
of records in the database.

The semantic meaning of the correlation between
tokens t i and t j is described as the probabilistic rela-
tionship of these two tokens appearing together in the
same records within the whole database. Speci�cally,
the larger the value of f (t i ; t j) is, the higher the corre-
lation between t i and t j is. Thus, two tokens appearing
together frequently have a high correlation. On the
other hand, for a �xed f (t i ; t j) observation, if the fre-
quency valuesf (t i) and f (t j) of tokens t i and t j are
large, the correlation is low. Thereby, if two tokens
t i and t j always appear together in the same records,
i.e., f (t i ; t j) = f (t i) = f (t j), we have the correlation
cor(t i ; t j) = 1. The intuition can also be extended
to the correlation between the token t i and itself, i.e.,
cor(t i ; t i) = 1. If two tokens t i and t j never appear
together in the same records, i.e.,f (t i ; t j) = 0, then
there is no correlation between these two tokens, i.e.,
cor(t i ; t j) = 0. In fact, according to the de�nition of
token correlation, we have the following property.

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 691

Property 1. If the correlation cor(t i ; t j) between
two tokenst i and t j exists, we have the correlation value
in the range of 0 < cor (t i ; t j) 6 1.

Proof. At �rst, in the real application, we have
f (t) � N , i.e., N

f (t) > 1. If the correlation between two
tokenst i and t j exists, then these two tokens should ap-
pear together in some records, i.e., 0< f (t i ; t j) � N .
Since each log N

f (t) > 0 and log N
f (t i ;t j) > 0, the condi-

tion 0 < cor (t i ; t j) is satis�ed. Moreover, intuitively,
the situation that t i and t j appear together in the
records, implicates that t i must exist in these records.
Therefore, we havef (t i ; t j) 6 f (t i) and f (t i ; t j) 6 f (t j)
which implies log N

f (t i) 6 log N
f (t i ;t j) and

Cor(t j j t i) =
log N

f (t i)

log N
f (t i ;t j)

6 1:

It is the same for Cor(t i j t j) 6 1. Consequently, we
also have cor(t i ; t j) 6 1. To sum up the above ar-
guments, the correlation with 0 < cor (t i ; t j) 6 1 is
satis�ed. �

4.2 Database Implementation

We start from the dataset that has already been
represented in the table records (tid; rid). First, we
count the times of each token pair appearing in the
records, i.e.,f (t i ; t j) in (4), and store the generated tu-
ples (t i ; t j ; f (t i ; t j)) in the correlation view with schema
correlation (tid 1; tid 2; weight). Note that f (t i) of each
token is also computed by this step and represented as
(t i ; t i ; f (t i)). Then, we count the number of all records
in the table of records, namely@N. Next, we perform the
correlation computation according to (4), considering a
tuple of correlation c3 in the algorithm with (tid1,
tid2, weight) . Let c1.weight be the frequency of
token c3.tid1 and c2.weight be the frequency of to-
ken c3.tid2 . According to the de�nition in (4), the
correlation weight of c3 can be computed as:

LOG(@N=c1:weight) � LOG(@N=c2:weight)
POWER(LOG(@N=c3:weight); 2)

:

Finally, we update the correlation weight in correlation.
The SQL statement for token correlation construction
is described as follows in Fig.6.

Fig.6. Token correlation construction.

5 Correlation Filter

According to the correlation query framework, the
number of token correlations a�ects the performance of
correlation queries. Thus, we try to improve the query
e�ciency by reducing the size of token correlations. We
investigate the interaction between the number of token
correlations (correlation count) and the importance of
token correlations (correlation weight). Intuitively, two
tokens with low correlation weights have small proba-
bility of appearing together. In other words, they are
less important in our correlation query. In fact, noisy
data often exist in real applications, and some false
correlations with low weights might be generated by
isolated noise. Therefore, we can set a minimum cor-
relation threshold � to �lter out those token correla-
tions with low correlation weights. If the threshold � is
small, noisy correlations are taken into account in rank-
ing the results. Consequently, the noisy correlations
a�ect the results largely, especially in the correlation
count method. On the other hand, with the increase of
threshold � , only those correlations with high weights
(which are close to 1) are reserved. Thereby, the di�e-
rence between correlation count and weight scores also

692 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

becomes small. Two approaches tend to get similar
query results, while the count aggregation is more ef-
�cient than weight aggregation. Indeed, in this case
of large threshold � , since less correlations are consi-
dered, the correlation query results will be close to the
similarity matching method as well. From the above
discussion, we can �nd out that setting a proper �lter-
ing threshold is essential to improve both the e�ciency
and the e�ectiveness of a correlation query.

5.1 Foundations

A good �lter should remove non-important correla-
tions and reserve the important correlations as many
as possible. Here, the importance of correlations is rep-
resented by the correlation weight. In the rest of this
subsection, we provide an estimated range of correla-
tions as a guideline of threshold selection, and prove
that we can use less correlations to represent more im-
portant correlations in this estimated correlation range.

In order to evaluate the balance of reserving more
important correlation information and reducing more
correlations, we compare the distributions of correla-
tions on correlation numbers and correlation weights.
We show the statistics of correlation distributions of
RCV1 and NSF datasets in Fig.7. For a correlation
weight x, the frequency distribution bar f (x) denotes
the normalized number of correlations with weight x,
i.e., correlation weight distributions. From Fig.7, we
�nd that the correlations are not distributed uniformly
in the whole range of correlation value (0; 1]. A curve
of the normal distribution is also plotted to compare
with the frequency distribution, and we observe similar
patterns in both two datasets.

Based on the frequency distribution observation on
the RCV1 and the NSF datasets, we model the corre-
lation distribution as the normal distribution. Let ran-
dom variable X be the token correlation weight, and
we consider the following two distributions.

Distribution 1 . Nc(� c; � 2
c): the distribution of X

in terms of the number of correlations. Each correlation
is treated as a unit of statistic sample. The probability
density function f c(x) describes the probability distribu-
tion of X on the number of correlations. The cumula-
tive distribution function Fc(x) denotes the probability
of X less than x, P(X 6 x), in terms of correlation
count. The estimation of � c and � 2

c can be described
as:

�̂ c = �x =
1
n

nX

i =1

x i ; (5)

�̂ 2
c =

1
n

nX

i =1

(x i � �x)2;

where n is the total number of correlations. The prob-
ability density function of Nc represents the distribu-
tion of X on correlation counts, e.g., the number of
correlations with the correlation weight in the range of
0:1 < X < 0:2.

0

0.5

1.0

1.5

2.0

2.5

f(
x)

x

Frequency Distribution
Normal Distribution

3.0

x

Frequency Distribution
Normal Distribution

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

(a)

(b)

0

0.5

1.0

1.5

2.0

2.5

f(
x)

Fig.7. Frequency distribution of correlations. (a) RCV1. (b)
NSF.

Distribution 2. Ns(� s ; � 2
s): the distribution of X

in terms of the weight of correlations. Each unit of
correlation weight is treated as a statistic sample, while
each correlation with weight x i is treated as a number
of x i statistic samples. The probability density func-
tion f s(x) describes the probability distribution ofX on
the weight of correlations. The cumulative distribution
function Fs(x) denotes the probability ofX less thanx,
P(X 6 x), in terms of correlation weight. The estima-
tion of � s and � 2

s is given by

�̂ s = �x = 1P n
i =1 x i

P n
i =1 x i x i ;

�̂ 2
s = 1P n

i =1 x i

P n
i =1 x i (x i � �x)2;

(6)

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 693

where
P n

i =1 x i denotes the total units of correlation
weights. The variableX is the same with that in distri-
bution 1, but the distributions of the variable are di�e-
rent. In distribution 1, one correlation with weight x i

is counted as once; however, for distribution2, we treat
the correlation as x i units and count one correlation
with weight x i for x i times. The probability density
function of distribution 2 represents the distribution of
X on correlation weights, e.g., the number of weight
units of correlations with the correlation weights in the
range of 0:1 < X < 0:2. Recall that our record correla-
tion function also aggregates the correlation weights.

Now we discuss the selection of the minimum thresh-
old � , in order to e�ciently and e�ectively achieve the
optimal query results. First, we present the relation-
ship between the estimate values� c and � s of distribu-
tion 1 Nc and distribution 2 Ns respectively. Then, for
a given valuex between� c and � s , we can exploit the
bounds of the cumulative distribution functions Fc(x)
and Fs(x). Finally, we prove that by setting a certain
�ltering threshold, we can remove more less important
correlations without losing much query e�ectiveness.

Lemma 1 . Let � c be the estimated value of distribu-
tion 1 Nc and � s be the estimated value of distribution2
Ns, and then we have� c 6 � s.

Proof. According to the property of correlation
weights having 0< x i < 1, we have

� s � � c

=
1

P n
i =1 x i

nX

i =1

x i x i �
1
n

nX

i =1

x i

=
n

P n
i =1 x2

i � (
P n

i =1 x i)2

n
P n

i =1 x i

=

P n
i =1

P n
j =1 (x2

i + x2
j) �

P n
i =1

P n
j =1 2x i x j

2n
P n

i =1 x i

=

P n
i =1

P n
j =1 (x i � x j)2

2n
P n

i =1 x i

> 0: �

Recall that we are interested in the count and weight
aggregation of correlations. Thereby, we investigate the
cumulative distribution functions of distributions Nc

and Ns. Let Fc(x) be the cumulative distribution func-
tion of distribution Nc, and Fs(x) be the cumulative
distribution function of distribution Ns. For instance,
Fig.8 illustrates two examples of the cumulative distri-
bution functions, where � c 6 � s according to Lemma 1.
It is notable that the Fc(x) accumulation for count is al-
ways larger than the weight oneFs(x). Indeed, we can

further obtain the accumulation bound with respect to
count and weight as follows.

0

0.2

0.4

0.6

0.8

1.0

F
(x

)

N c: Count

N s: Weight

x
0 0.2 0.4 0.6 0.8 1.0

Fig.8. Cumulative distribution.

Theorem 1. For any value x 2 [� c; � s], we have
Fs(x) 6 0:5 6 Fc(x).

Proof. If a variable X is normally distributed with
mean � and variance � 2, for any value t 2 [�1 ; + 1],
the probability density function f (t) is:

f (t) =
1

�
p

2�
e� (t � �) 2

2 � 2 ;

and the de�nition of cumulative distribution function
F (x) can be described as:

F (x) =
Z x

�1
f (t)dt:

According to the property of cumulative distribution
function, we have F (�) = 0 :5; for x > � , then
F (x) > 0:5; and vice versa. Considering the value
x 2 [� c; � s], in the distribution Nc, we have x > � c

and thus Fc(x) > 0:5, and also in the distribution Ns ,
x 6 � s indicates Fs(x) 6 0:5. �

5.2 Trade-O� Between E�ectiveness and
E�ciency

Based on the above analysis of foundations, we are
now ready to discuss the trade-o� between the correla-
tion query e�ectiveness and e�ciency through the cor-
relation �lter � . Motivated by the aforesaid conclusions
in Lemma 1 and Theorem 1, we mainly discuss the �lter
� in terms of � c and � s .

Observation 1. By setting the minimum threshold
of correlations � < � c, the number of correlations will
be large with high query time cost.

Recall that Fc(x) denotes the proportion of the
number of correlations with weights less thanx. For

694 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

a certain threshold � , the value of cumulative distribu-
tion function F (�) indicates the proportion that is �l-
tered out and (1 � F (�)) represents the reserved parts.
According to Theorem 1, as well as observed in Fig.8,
Fc(�) is less than 0.5 given� < � c. That is, only less
than 50% correlations are removed after �ltering, while
the remaining correlation size is still large (more than
50%). Consequently, the time cost of correlation query
will be high in this case. Note that the correlation
count method is e�cient in this scenario of large corre-
lation size, while the correlation weight score could be
e�ective by de-emphasizing noise. Therefore, the corre-
lation count and weight scores provide alternatives for
query e�ciency and e�ectiveness, respectively.

Observation 2. By setting the minimum thresh-
old of correlations � > � s, the correlation e�ectiveness
could be low.

Similarly, Fs(x) denotes the proportion of the to-
tal weights (importance) of correlations with weights
less than x. According to Theorem 1, the accumula-
tion Fs(�) of �ltered correlation weights is greater than
0.5 if the correlation �lter has � > � s . As illustrated
in Fig.8, with the increase of � in x-axis, the reserved
correlation weights, i.e., 1� Fs(�), reduce. In other
words, reliable correlations with high weights become
less and less, and thus the correlation query e�ective-
ness could be low. Indeed, the di�erence between the
correlation count and weight scores is small, since the
remaining correlations after �ltering have weights close
to 1 (which is equivalent to the count method).

Corollary 1. By setting the minimum threshold
� of correlation weight in the range of � c 6 � 6 � s ,
we can use less than50% of the number of correla-
tions to represent more than50%of correlation weights
(importance).

According to Theorem 1, by setting the minimum
threshold � of correlation weights in the range of� c 6
� 6 � s , the lower bound of the number of correlations
that are �ltered out is 50%, and the upper bound of
the total weight of correlations that are �ltered out is
also 50%. Therefore, by setting a minimum correlation
threshold � 2 [� c; � s], we can remove more than 50%
of less important correlations, but lose less than 50% of
correlation weights, i.e., the best balancing.

Let us use the example of the cumulative distribu-
tion function F (x) in Fig.8 again to illustrate the trade-
o�. As presented, the � c of Nc is about 0.5 and the� s

of Ns is about 0.6. In the range ofx 2 [0:5; 0:6], we
have Fc(x) > 50% andFs(x) 6 50%. With a threshold
of � (0:5 6 � 6 0:6), for example � = 0 :5, we can �l-

ter out about 50% of correlations but only lose 30% of
total correlation weights. In other words, by this �lter,
we can reduce the size of correlations largely but with
little loss on the correlation weights.

So far, we have proved that by using a �lter with
a threshold � around the range of [� c; � s], and we can
remove more correlations (counts) and lose less corre-
lation importance (weights). In practice, given a set
record database, we can compute token correlation dis-
tribution �rst, and then set up the �ltering threshold
according to the above derived optimal threshold range.
Our experiments in Section 6 show the trade-o� of e�ec-
tiveness and e�ciency in querying real data, and verify
the best balance by setting a correlation �lter � in the
range of [� c; � s].

5.3 Correlation Filter Implementation

Finally, we present the algorithms shown in Fig.9 for
estimating the parameters of� c and � s, and conducting
the correlation �ltering. In the following SQL imple-
mentation, the �rst query returns the estimation of � c

according to the de�nition in (5), and the second query
result is the estimation of � s according to the de�nition
in (6). Note that the correlation weight between token
t i and itself is constant, i.e., cor(t i ; t i) = 1. Therefore,
we do not take those tuples of the self-correlations into
account and set a condition of tid1 <> tid2 in the
algorithm. Finally, we can implement the �lter with
threshold � and remove all the correlations with weights
less than the speci�ed threshold� .

Fig.9. Correlation �lter.

6 Experimental Evaluation

We now present our extensive experimental evalua-
tion, in both e�ectiveness and e�ciency. We com-
pare the correlation query with the similarity match-
ing query. Since the edit operation based approaches
like edit distance can only capture limited similarity

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 695

and fail in many cases such as various word orders[26] ,
we adopt the vector space based approach as the simi-
larity matching technique, i.e., the matching coe�cient
sim(q; r) = jq \ r j of text [27] . We also compare our in-
verted correlation in (4) with the Pearson's correlation
coe�cient [22] in (2).

6.1 Experimental Settings

The experiments are conducted on a machine with
Intel r Core 2 CPU (2.13 GHz) and 2 GB of memory.
RDBMS uses SQL Server 2005.

Datasets. We run the experiments on Reuters Cor-
pus Volume I (RCV1) [50] which is a widely used bench-
mark dataset with category labels in text retrieval area.
We abstract m (m = 10 in this experiment) words with
the highest tf� idf value from each article as the sum-
mary, and merge thesem words to an unstructured set
record. The category label of each article is also uti-
lized as the label of corresponding record. The second
dataset we use in the e�ectiveness experiments is the 20
Newsgroups (20NG)[51] . The 20NG data are also text
entries with data category labels. Similar to RCV1, we
use the 20NG dataset to evaluate the e�ectiveness in
the same way.

Evaluation Criteria. The evaluation criteria address
two aspects in the experiments, i.e., the e�ectiveness
and the e�ciency. Speci�cally, we select 100 records
from the dataset as queries. For the time performance
evaluation, we conduct all the queries and compute the
response time as runtime costs. In addition, we also re-
port the number of token correlations left after a mini-
mum correlation threshold applied, since it is directly
related to the running time. For the e�ectiveness, we

evaluate the accuracy in the top-k query results.

accuracy

=
number of results with the same label ofq

total number of results k
:

The accuracy value denotes the correctness of query
results, i.e., the query and the results belong to the
same labeled category. Higher accuracy of a query
means better e�ectiveness. Here, we do not adopt the
F -measure[52] with recall to evaluate the completeness
of the top-k results. It is meaningful to tell the high
correlation between \NBA" and \ basketball", but un-
reasonable (in real applications) to achieve a complete
answer set in top-k results, i.e., to enumerate and re-
turn all possible records that are correlated with the
query \ basketball". Therefore, rather than evaluating
the recall, we mainly concern the accuracy of correla-
tion query.

6.2 Evaluation on E�ectiveness

The �rst experiment is focused on the e�ectiveness
comparison of correlation query and similarity match-
ing based query. In this experiment, we do not conduct
the �lter on token correlations. The program runs on
50 000 records in the RCV1 dataset and 10 000 records
in the 20NG dataset. Figs.10 and 11 show the accu-
racy of top-k results by three di�erent approaches, in-
cluding the similarity matching, the inverted correla-
tion proposed in this paper, and the Pearson's corre-
lation coe�cient. As shown in the results, these three
approaches achieve high accuracy in the top-20 results.
These highly correlated result records have considerable
common tokens with each other, and thus the similarity
matching based query can also identify the correlation

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 0.90

 0.95

 1.00

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 0.90

 0.95

 1.00

20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Top -k

(a)

Inverted Correlation
Pearson 's Correlation
Similarity Matching

20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Top -k

(b)

Inverted Correlation
Pearson 's Correlation
Similarity Matching

Fig.10. E�ectiveness in RCV1. (a) Count score. (b) Weight sc ore.

696 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

Top -k Top -k

 0.40

 0.45

 0.50

 0.55

 0.60

 0.65

 0.70

 0.75

20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

(a)

 0.40

 0.45

 0.50

 0.55

 0.60

 0.65

 0.70

 0.75

20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

(b)

Inverted Correlation
Pearson 's Correlation
Similarity Matching

Inverted Correlation
Pearson 's Correlation
Similarity Matching

Fig.11. E�ectiveness in 20NG. (a) Count score. (b) Weight sc ore.

relationship. However, when larger sizes of query re-
sults are needed, for example top-100 or top-200, the re-
lationships between the query and records can hardly be
detected by only using the overlaps of matching tokens.
Therefore, with the increase of result sizes, the accuracy
of similarity matching-based query drops quickly, while
our correlation query achieves comparatively high ac-
curacy.

Most importantly, as shown in Figs.10(b) and 11(b)
with correlation weight score, our token inverted cor-
relation shows a higher accuracy compared with the
Pearson's correlation coe�cient, which also veri�es the
derivation in Subsection 4.1. However, under the cor-
relation count score in Figs.10(a) and 11(a), both our
inverted correlation and Pearson's correlation achieve
almost the same accuracy. The reason is that these two
methods are based on the co-occurrence of tokens, and
thus the numbers of correlations (count score) are the
same. To summarize, the experiment results demon-
strate the e�ectiveness of our correlation queries.

6.3 Trade-O� via Correlation Filter

In this experiment, we study the performance of
both e�ectiveness and e�ciency by applying the cor-
relation �lter. Recall that noisy correlations may a�ect
the query results. The �ltering strategy is to set a mini-
mum correlation weight threshold � . To estimate the
�ltering threshold, we observe the distribution of cor-
relations at �rst, and compute the estimation value of
� c = 0 :505 and � s = 0 :566 according to the de�nition
in Subsection 5.1.

First, by introducing a small �lter in the correlation
query, we can improve the e�ectiveness. As shown in
Fig.12, the accuracy of query results improves by using
the minimum threshold �lter � = 0 :4. By setting this
threshold, we �lter out the correlations with weights
less than 0.4, which are less important (such as noisy
data). However, if � is set too small, e.g., 0.3, few cor-
relations can be removed as shown in Fig.13. These re-
sults con�rm our analysis in observation 1 that a small

 0.70

 0.75

 0.80

 0.85

 0.90

 0.95

 1.00

 0.70

 0.75

 0.80

 0.85

 0.90

 0.95

 1.00

20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Top -k

(a)

h=0.00
h=0.30
h=0.40

h=0.50
h=0.55
h=0.60
Matching

20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Top -k

(b)

h=0.00
h=0.30
h=0.40

h=0.50
h=0.55
h=0.60
Matching

Fig.12. Filter evaluation. (a) Count score. (b) Weight scor e.

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 697

� < � c has a limited power in reducing correlations and
leads to high query cost in Fig.14(b).

 0

 5

 10

 15

 20

 25

0 0.30 0.40 0.50 0.55 0.60

N
um

b
er

 o
f C

or
re

la
tio

ns
 (

T
10

5)

Filter h

Fig.13. Number of correlations by �ltering.

On the other hand, if the threshold is set too large,
the accuracy drops as shown in Fig.12 with� = 0 :6. As
we increase the threshold� , more correlations are �l-
tered out, and the query can only rely on the matching
tokens and few correlations that are still left. Since we
could no longer keep all highly important correlations
by a smaller number of correlations, the accuracy drops
quickly as shown in Fig.12 with � = 0 :6. Indeed, the re-
sults of correlation query are also closer to the similarity
matching ones, when the threshold is brought near 1.
These results verify the conclusion in observation 2 in
Subsection 5.2 that a large� > � s could result in a low
query accuracy.

To illustrate the trade-o� between e�ectiveness and
e�ciency more clearly, we plot the accuracy and the
time performance with various � in Fig.14. Recall that
the estimation of � c and � s is a guideline strategy of

choosing threshold. According to Corollary 1, by set-
ting � c 6 � 6 � s, we can reduce more than 50% of
the number of correlations while reserving more than
50% correlation information. Therefore, in order to
improve the e�ciency without losing too much accu-
racy, the threshold � is preferred around the range of
[� c; � s] to guarantee the trade-o� between the corre-
lation count (size) and the correlation weight (impor-
tance). Consequently, for � = 0 :55 in [0:505; 0:566],
its accuracy is comparable to� = 0 :4 and signi�cantly
better than � = 0 :6 in Fig.14(a). Meanwhile, the time
cost of � = 0 :55 is much lower than that of � = 0 :4
but comparable to � = 0 :6 in Fig.14(b). The re-
sults in Fig.15 and Fig.16 also con�rm that by setting
� = 0 :55 2 [0:505; 0:566], we can reduce the number
of correlations signi�cantly (Fig.17(a)) with a little loss
on e�ectiveness (Fig.15) compared with� = 0 :4 or 0:5.
These results verify our conclusion of the best balance
between time performance and accuracy in Corollary 1
in Subsection 5.2.

Finally, we also report the performance of count
and weight scores in Fig.14. When� is small, e.g.,
0.3, the weight method could denote the correlations
more accurately than the count one but needs more
time to compute. As discussed in Subsection 5.2, the
correlation count and weight methods provide alterna-
tives for query e�ciency and e�ectiveness. When the
threshold increases, the values ofFc(x) and Fs(x) be-
come closer in the cumulative distribution function. In
other words, the di�erence between the number of cor-
relations (Nc) and the importance of correlations (Ns)
is smaller. Therefore, both methods trend to have
similar performance in both accuracy and time cost in
Figs.14(a) and 14(b), respectively.

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 0.90

A
cc

ur
ac

y

(a)

Count
Weight

 0

 500

 1000

 1500

 2000

 2500

 3000

R
un

tim
e

(s
)

(b)

0 0.30 0.40 0.50 0.55 0.60

Filter h

0 0.30 0.40 0.50 0.55 0.60

Filter h

Count
Weight

Fig.14. Trade-o� between e�ectiveness and e�ciency. (a) Ac curacy (b) Runtime.

698 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10 20 30 40 50

A
cc

ur
ac

y

Data Size (T 103) Data Size (T 103)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10 20 30 40 50

A
cc

ur
ac

y

(a) (b)

h=0.00
h=0.30
h=0.40

h=0.50
h=0.55
h=0.60
Matching

h=0.00
h=0.30
h=0.40

h=0.50
h=0.55
h=0.60
Matching

Fig.15. Scalability on e�ectiveness in RCV1. (a) Count scor e. (b) Weight score.

 0

 500

 1000

 1500

 2000

 2500

 3000

R
un

tim
e

(s
)

 0

 500

 1000

 1500

 2000

 2500

 3000

R
un

tim
e

(s
)

(a) (b)

h=0.00
h=0.30
h=0.40
h=0.50

h=0.55
h=0.60
Matching

h=0.00
h=0.30
h=0.40
h=0.50
h=0.55

h=0.60
Matching

10 20 30 40 50

Data Size (T 103) Data Size (T 103)

10 20 30 40 50

Fig.16. Scalability on e�ciency in RCV1. (a) Count score. (b) Weight score.

 0

 5

 10

 15

 20

 25

 0

 2

 4

 6

 8

 10

 12

(a) (b)

h=0.00
h=0.30
h=0.40
h=0.50
h=0.55

h=0.60

N
um

b
er

 o
f C

or
re

la
tio

ns
 (

T
10

5)

N
um

b
er

 o
f C

or
re

la
tio

ns
 (

T
10

5) h=0.00
h=0.20
h=0.30
h=0.40
h=0.50

h=0.60

10 20 30 40 50

Data Size (T 103) Data Size (T 103)

10 20 30 40 50

Fig.17. Scalability on �lter. (a) RCV1. (b) NSF.

6.4 Evaluation on Scalability

This experiment demonstrates the scalability of our
approach in di�erent data sizes. We perform queries on
di�erent data sizes from 10 000 to 50 000 for 100 times.
For the e�ectiveness, we observe the number of results
returned in di�erent data scales and the accuracy of the
top-200 results for each data size. For the e�ciency,

we study the correlation size under several �lters and
compare the runtime costs with the similarity matching
based query.

In Fig.15, we compare the e�ectiveness of di�erent
approaches. Our correlation query achieves a higher ac-
curacy under di�erent data sizes. Moreover, the results
of correlation query with di�erent �lters are quite simi-
lar. By increasing the threshold, the accuracy arises

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 699

at � = 0 :4 and � = 0 :5, and then drops back to the
original level when � = 0 :6, but still without losing too
much accuracy.

In Fig.16, we illustrate the time performance of our
approach. The runtime costs largely depend on the size
of correlations in the computation. As shown in Fig.17,
the number of correlations increases approximately in
linear with the increasing of dataset size under di�e-
rent thresholds. By applying a �lter, we can reduce the
runtime costs largely. When the threshold� = 0 :6, the
time costs of correlation query are even quite similar
to the similarity matching based approach, under all of
the data sizes. Meanwhile, the e�ectiveness of corre-
lation query (Fig.15) is much higher than that of the

similarity matching query.

We also evaluate the scalability on the NSF dataset.
Since the records in the NSF dataset are not labeled
with categories, we can only conduct the time perfor-
mance experiments as illustrated in Fig.18. We get
similar curves of time costs as the results shown in
Fig.15 on RCV1 dataset. The time costs increase lin-
early with the increase of data size. When the thresh-
old � is set to 0.6, the time costs of correlation query
are comparable to the similarity matching based query.
On the other hand, as the same results described in
the previous experiments, the correlation query is more
e�ective than the similarity matching based approach.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 15 20 25 30

R
un

tim
e

(s
)

Data Size (T 103) Data Size (T 103)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 15 20 25 30

R
un

tim
e

(s
)

h=0.0
h=0.2
h=0.3
h=0.4
h=0.5

h=0.6
Matching

h=0.0
h=0.2
h=0.3
h=0.4
h=0.5

h=0.6
Matching

(a) (b)

Fig.18. Scalability on e�ciency in NSF. (a) Count score. (b) Weight score.

7 Conclusions

In this paper, motivated by the signi�cance of sup-
porting correlation query over set record in databases,
we proposed a novel query framework for set correla-
tion query by using RDBMS facilities. To the best
of our knowledge, this is the �rst work on support-
ing set correlation query inside databases, and only the
Pearson's correlation can be implemented to construct
token correlations by using current RDBMS facilities.
Thereby, we studied a novel correlation coe�cient to
extend Pearson's correlation, and provided a pure-SQL
implementation inside databases. We emphasized this
pure-SQL implementation of set correlation query in-
side RDBMS, which can be naturally extended to set
correlation join over set records as well. Moreover, our
theoretical analysis proved that with a proper setting
of �ltering on token correlations, we can improve the
query e�ciency with a little e�ectiveness loss. Finally,
our experiments demonstrated the superiority of our
approach in terms of both e�ectiveness and e�ciency.

References

[1] Arasu A, Ganti V, Kaushik R. E�cient exact set-similarit y
joins. In Proc. the 32nd VLDB , September 2006, pp.918-
929.

[2] Hadjieleftheriou M, Yu X, Koudas N, Srivastava D. Hashed
samples: Selectivity estimators for set similarity select ion
queries. PVLDB , 2008, 1(1): 201-212.

[3] Lee H, Ng R T, Shim K. Power-law based estimation of set
similarity join size. PVLDB , 2009, 2(1): 658-669.

[4] White R W, Jose J M. A study of topic similarity measures.
In Proc. the 27th SIGIR , July 2004, pp.520-521.

[5] Zhu X, Song S, Lian X, Wang J, Zou L. Matching heteroge-
neous event data. In Proc. SIGMOD , June 2014, pp.1211-
1222.

[6] Zhu X, Song S, Wang J, Yu P S, Sun J. Matching heteroge-
neous events with patterns. In Proc. the 30th ICDE , March
31-April 4, 2014, pp.376-387.

[7] Wang J, Song S, Zhu X, Lin X. E�cient recovery of missing
events. PVLDB , 2013, 6(10): 841-852.

[8] Wang J, Song S, Lin X, Zhu X, Pei J. Cleaning struc-
tured event logs: A graph repair approach. In Proc. the
31st ICDE , April 2015, pp.30-41.

700 J. Comput. Sci. & Technol., July 2016, Vol.31, No.4

[9] Song S, Chen L. Similarity joins of text with incomplete i n-
formation formats. In Proc. the 12th DASFAA , April 2007,
pp.313-324.

[10] Chaudhuri S, Ganti V, Kaushik R. A primitive operator fo r
similarity joins in data cleaning. In Proc. the 22nd ICDE ,
April 2006, p.5.

[11] Beckmann J L, Halverson A, Krishnamurthy R, Naughton
J F. Extending RDBMSs to support sparse datasets using
an interpreted attribute storage format. In Proc. the 22nd
ICDE , April 2006, p.58.

[12] Jain A, Doan A, Gravano L. SQL queries over unstruc-
tured text databases. In Proc. the 23rd ICDE , April 2007,
pp.1255-1257.

[13] Dong X, Halevy A Y. Indexing dataspaces. In Proc. SIG-
MOD , June 2007, pp.43-54.

[14] Song S, Chen L, Yuan M. Materialization and decomposi-
tion of dataspaces for e�cient search. IEEE Trans. Knowl.
Data Eng. , 2011, 23(12): 1872-1887.

[15] Song S, Chen L, Yu P S. On data dependencies in datas-
paces. In Proc. the 27th ICDE , April 2011, pp.470-481.

[16] Dong X, Halevy A Y, Madhavan J, Nemes E, Zhang J.
Similarity search for web services. In Proc. the 30th VLDB ,
August 29-September 3, 2004, pp.372-383.

[17] Song S, Chen L. Probabilistic correlation-based simil arity
measure of unstructured records. In Proc. the 16th CIKM ,
November 2007, pp.967-970.

[18] Song S, Zhu H, Chen L. Probabilistic correlation-based sim-
ilarity measure on text records. Inf. Sci. , 2014, 289: 8-24.

[19] Sahami M, Heilman T D. A web-based kernel function for
measuring the similarity of short text snippets. In Proc. the
15th WWW , May 2006, pp.377-386.

[20] Liu S, Liu F, Yu C, Meng W. An e�ective approach to
document retrieval via utilizing WordNet and recognizing
phrases. In Proc. the 27th SIGIR , July 2004, pp.266-272.

[21] Jin R, Chai J Y, Si L. Learn to weight terms in informa-
tion retrieval using category information. In Proc. the 22nd
ICML , August 2005, pp.353-360.

[22] Xiong H, Shekhar S, Tan P N, Kumar V. Exploiting a
support-based upper bound of Pearson's correlation coef-
�cient for e�ciently identifying strongly correlated pair s.
In Proc. the 10th KDD , August 2004, pp.334-343.

[23] Song S, Chen L. E�cient set-correlation operator insid e
databases. In Proc. CIKM , October 2010, pp.139-148.

[24] Gravano L, Ipeirotis P G, Jagadish H V, Koudas N,
Muthukrishnan S, Srivastava D. Approximate string joins
in a database (almost) for free. In Proc. the 27th VLDB ,
September 2001, pp.491-500.

[25] Cohen W W. Integration of heterogeneous databases with -
out common domains using queries based on textual simi-
larity. In Proc. SIGMOD , June 1998, pp.201-212.

[26] Gravano L, Ipeirotis P G, Koudas N, Srivastava D. Text
joins in an RDBMS for web data integration. In Proc. the
12th WWW , May 2003, pp.90-101.

[27] Salton G. Automatic Text Processing: The Transformati on,
Analysis, and Retrieval of Information by Computer. Ad-
disonWesley, 1989.

[28] Bilenko M, Mooney R J. Adaptive duplicate detection usi ng
learnable string similarity measures. In Proc. the 9th KDD ,
August 2003, pp.39-48.

[29] Sarawagi S, Bhamidipaty A. Interactive deduplication using
active learning. In Proc. the 8th KDD , July 2002, pp.269-
278.

[30] Hofmann T. Probabilistic latent semantic analysis. In Proc.
UAI , July 1999, pp.289-296.

[31] Hofmann T. Probabilistic latent semantic indexing. In Proc.
the 22nd SIGIR , August 1999, pp.50-57.

[32] Deerwester S C, Dumais S T, Landauer T K, Furnas G
W, Harshman R A. Indexing by latent semantic analysis.
JASIS , 1990, 41(6): 391-407.

[33] Brin S, Motwani R, Silverstein C. Beyond market baskets :
Generalizing association rules to correlations. In Proc. SIG-
MOD , May 1997, pp.265-276.

[34] Jermaine C. The computational complexity of high dimen -
sional correlation search. In Proc. ICDM , November 2001,
pp.249-256.

[35] Xiong H, Shekhar S, Tan P N, Kumar V. TAPER: A two-
step approach for all-strong-pairs correlation query in la rge
databases. IEEE Trans. Knowl. Data Eng. , 2006, 18(4):
493-508.

[36] Sparck Jones K. Index term weighting. Information Storage
and Retrieval , 1973, 9(11): 619-633.

[37] Robertson S. Understanding inverse document frequenc y:
On theoretical argument for IDF. Journal of Documenta-
tion , 2004, 60(5): 503-520.

[38] Chaudhuri S, Das G, Hristidis V, Weikum G. Probabilisti c
ranking of database query results. In Proc. the 30th VLDB ,
August 29-September 3, 2004, pp.888-899.

[39] Chirita P A, Firan C S, Nejdl W. Personalized query ex-
pansion for the web. In Proc. the 30th SIGIR , July 2007,
pp.7-14.

[40] Theobald M, Schenkel R, Weikum G. E�cient and self-
tuning incremental query expansion for top- k query pro-
cessing. In Proc. the 28th SIGIR , August 2005, pp.242-249.

[41] Metzler D, Dumais S T, Meek C. Similarity measures for
short segments of text. In Proc. the 29th ECIR , April 2007,
pp.16-27.

[42] Allan J, Wade C, Bolivar A. Retrieval and novelty detec-
tion at the sentence level. In Proc. the 26th SIGIR , August
2003, pp.314-321.

[43] Balasubramanian N, Allan J, Croft W B. A comparison of
sentence retrieval techniques. In Proc. the 30th SIGIR , July
2007, pp.813-814.

[44] Li X, Croft W B. Improving novelty detection for general
topics using sentence level information patterns. In Proc.
the 15th CIKM , November 2006, pp.238-247.

[45] Li X, Croft W B. Novelty detection based on sentence leve l
patterns. In Proc. the 14th CIKM , November 2005, pp.744-
751.

[46] Murdock V, Croft W B. A translation model for sentence re -
trieval. In Proc. HLT/EMNLP , October 2005, pp.684-691.

[47] Fung P, Yee Lo Y. An IR approach for translating new
words from nonparallel, comparable texts. In Proc. the 36th
COLING-ACL , August 1998, pp.414-420.

Fei Gao et al.: E�cient Set-Correlation Operator Inside Databases 701

[48] Cao G, Nie J Y, Bai J. Integrating word relationships
into language models. In Proc. the 28th SIGIR , July 2005,
pp.298-305.

[49] Arasu A, Ganti V, Kaushik R. E�cient exact set-similari ty
joins. In Proc. the 32nd VLDB , September 2006, pp.918-
929.

[50] Lewis D D, Yang Y, Rose T G, Li F. RCV1: A new bench-
mark collection for text categorization research. Journal of
Machine Learning Research , 2004, 5: 361-397.

[51] Lang K. NewsWeeder: Learning to �lter netnews. In Proc.
the 12th ICML , June 1995, pp.331-339.

[52] Van Rijsbergen C J. Information Retrieval. Butterwort h-
Heinemann, Newton, MA, USA, 1979.

Fei Gao is a Ph.D. student in the
School of Software, Tsinghua University,
Beijing. Her research interests include
data quality and record matching. text
text text text text text text text text
text text text text text text text text
text text text text text text text text
text text text text text text text text

text text

Shao-Xu Song is currently an
assistant professor in the School of Soft-
ware, Tsinghua University, Beijing. He
received his Ph.D. degree in computer
science from the Hong Kong University
of Science and Technology, Hong Kong,
in 2010. His research interests include
data quality and data cleaning. He has

published more than 30 papers in major conferences and
journals, including SIGMOD, KDD, VLDB, ICDE, TODS,
VLDBJ, TKDE, etc.

Lei Chen received his B.S. degree
in computer science and engineering
from Tianjin University, Tianjin, in
1994, his M.A. degree from Asian
Institute of Technology, Bangkok,
Thailand, in 1997, and his Ph.D.
degree in computer science from the
University of Waterloo, Canada, in

2005. He is currently a professor in the Department of
Computer Science and Engineering, Hong Kong University
of Science and Technology, Hong Kong. His research
interests include crowdsourcing over social media, social
media analysis, probabilistic and uncertain databases, and
privacy-preserved data publishing. So far, he published
over 200 conference and journal papers. He got the Best
Paper Awards in DASFAA 2009 and 2010. He is a PC
Track chair for SIGMOD 2014, VLDB 2014, ICDE 2012,
CIKM 2012, SIGMM 2011. He has served as a PC member
for SIGMOD, VLDB, ICDE, SIGMM, and WWW. Cur-
rently, he serves as an associate editor-in-chief for IEEE
Transactions on Knowledge and Data Engineering. He is
a member of the VLDB endowment committee and the
chairman of ACM SIGMOD China Chapter.

Jian-Min Wang is a full professor
in the School of Software, Tsinghua
University, Beijing. He received his
Ph.D. degree in computer science from
Tsinghua University, Beijing, in 1995.
His research interests include unstruc-
tured big data management, workow
and BPM technology, and large-scale

data analytics. He has published 100 papers in major
journals and conferences, including TKDE, SIGMOD,
VLDB, ICDE, SIGKDD, SIGIR, AAAI, CVPR and ICCV.

