›› 2015,Vol. 30 ›› Issue (3): 629-638.doi: 10.1007/s11390-015-1549-7

所属专题: Theory and Algorithms

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

基于水平集的增强工艺鲁棒性反向光刻快速算法及其应用

Zhen Geng1(耿臻), Zheng Shi1(史峥), Xiao-Lang Yan1(严晓浪), Kai-Sheng Luo2(罗凯升), Wei-Wei Pan1(潘伟伟)   

  1. 1. Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China;
    2. National Information Control Laboratory, Chengdu 610036, China
  • 收稿日期:2014-03-27 修回日期:2014-11-19 出版日期:2015-05-05 发布日期:2015-05-05
  • 作者简介:Zhen Geng received his B.S. degree in electronic and information engineering from North China University of Water Resources and Electric Power, Zhenzhou, in 2010. Now he is a Ph.D. candidate in circuit and system in Zhejiang University, Hangzhou. His research interests include design for manufacturability and yield enhancement technology.
  • 基金资助:

    This work was supported by the National Natural Science Foundation of China under Grant Nos. 61204111 and 61474098. A preliminary version of the paper was published in the Proceedings of CAD/Graphics 2013.

Fast Level-set-based Inverse Lithography Algorithm for Process Robustness Improvement and Its Application

Zhen Geng1(耿臻), Zheng Shi1(史峥), Xiao-Lang Yan1(严晓浪), Kai-Sheng Luo2(罗凯升), Wei-Wei Pan1(潘伟伟)   

  1. 1. Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China;
    2. National Information Control Laboratory, Chengdu 610036, China
  • Received:2014-03-27 Revised:2014-11-19 Online:2015-05-05 Published:2015-05-05
  • About author:Zhen Geng received his B.S. degree in electronic and information engineering from North China University of Water Resources and Electric Power, Zhenzhou, in 2010. Now he is a Ph.D. candidate in circuit and system in Zhejiang University, Hangzhou. His research interests include design for manufacturability and yield enhancement technology.
  • Supported by:

    This work was supported by the National Natural Science Foundation of China under Grant Nos. 61204111 and 61474098. A preliminary version of the paper was published in the Proceedings of CAD/Graphics 2013.

由于193nm的光源仍然在先进的集成电路(IC)工艺节点中使用,反向光刻技术(ILT)成为当前最为热门的分辨率增强技术(RETs)之一.在所有的反向光刻算法中,基于水平集的反向光刻技术(LSB-ILT)是一种可行的选择,并在工业界获得良好的量产效果.然而,现有的ILT算法只考虑在标准工艺条件下优化掩模,没有对工艺偏差带来的影响给予足够的考虑,因此优化出来的掩模在光强和焦距发生变化时的性能显示较差.在本文中,我们提出了一种新的基于水平集的增强工艺鲁棒性反向光刻算法,并具有较快的收敛速度.为了考虑工艺变化对优化过程的影响,我们采用了一种新的目标函数,将工艺变化带(PV band)的目标函数与标准工艺条件下的目标函数相结合.我们还采用了混合共轭梯度(CG)的方法,以缩短算法的运行时间.我们对2013年ICCAD的比赛样例进行实验,结果表明,新算法的得分比ICCAD 2013比赛的前两名的得分平均高出6.5%.我们还在实验中采用了削弱式相移掩模(ATT-PSM),这些测试样例来自于工业界.研究结果表明,我们的新算法具有较快的收敛速度,与不考虑PV band的水平集反向光刻算法相比,减少工艺制造指数(PMI)达38.77%.

Abstract: Inverse lithography technology (ILT) is one of the promising resolution enhancement techniques (RETs), as the advanced integrated circuits (IC) technology nodes still use the 193nm light source. Among all the algorithms for ILT, the level-set-based ILT (LSB-ILT) is a feasible choice with good production result in practice. However, existing ILT algorithms optimize mask at nominal process condition without giving sufficient attention to the process variations, and thus the optimized masks show poor performance with focus and dose variations. In this paper, we put forward a new LSB-ILT algorithm for process robustness improvement with fast convergence. In order to account for the process variations in the optimization, we adopt a new form of the cost function by adding the objective function of process variation band (PV band) to the nominal cost. We also adopt the hybrid conjugate gradient (CG) method to reduce the runtime of the algorithm. We perform experiments on ICCAD 2013 benchmarks and the results show that our algorithm outperforms the top two winners of the ICCAD 2013 contest by 6.5%. We also adopt the attenuated Phase Shift Mask (att-PSM) in the experiment with test cases from industry. The results show that our new algorithm has fast convergence speed and reduces the process manufacturability index (PMI) by 38.77% compared with the LSB-ILT algorithm without PV band.

[1] Ma X, Arce G R. Computational Lithography. Wiley, 2011.

[2] Lam E Y, Wong A K. Nebulous hotspot and algorithm variability in computation lithography. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2010, 9(3): 033002.

[3] Nocedal J,Wright S. Numerical Optimization (2nd edition). New York: Springer, 2006.

[4] Liu Y, Zakhor A. Binary and phase shifting mask design for optical lithography. IEEE Transactions on Semiconductor Manufacturing, 1992, 5(2): 138-152.

[5] Granik Y. Fast pixel-based mask optimization for inverse lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2006, 5(4): 043002.

[6] Yu P, Shi S X, Pan D Z. Process variation aware OPC with variational lithography modeling. In Proc. the 43rd Annual Design Automation Conference, Jul. 2006, pp.785-790.

[7] Yu P, Pan D Z. TIP-OPC: A new topological invariant paradigm for pixel based optical proximity correction. In Proc. ICCAD, Nov. 2007, pp.847-853.

[8] Poonawala A, Milanfar P. Mask design for optical microlithography — An inverse imaging problem. IEEE Transactions on Image Processing, 2007, 16(3): 774-788.

[9] Shen S, Yu P, Pan D Z. Enhanced DCT2-based inverse mask synthesis with initial SRAF insertion. In Proc. SPIE 7122, Oct. 2008, pp.712241.

[10] Zhang J Y, Xiong W, Wang Y, Yu Z P, Tsai M C. A highly efficient optimization algorithm for pixel manipulation in inverse lithography technique. In Proc. ICCAD, Nov. 2008, pp.480-487.

[11] Pang L, Liu Y, Abrams D. Inverse lithography technology (ILT) for advanced semiconductor manufacturing. J. Exp. Mech., 2007, 22: 295-304.

[12] Shen Y,Wong N, Lam E Y. Level-set-based inverse lithography for photomask synthesis. Optics Express, 2009, 17(26): 23690-23701.

[13] Geng Z, Shi Z, Yan X, Luo K. Regularized level-set-based inverse lithography algorithm for IC mask synthesis. Journal of Zhejiang University SCIENCE C, 2013, 14(10): 799-807.

[14] Jia N, Wong A K, Lam E Y. Robust mask design with defocus variation using inverse synthesis. In Proc. SPIE 7140, Dec. 2008, pp.71401W.

[15] Pang L, Xiao G, Tolani V, Hu P, Cecil T, Dam T, Baik K, Gleason B. Considering MEEF in inverse lithography technology (ILT) and source mask optimization (SMO). In Proc. SPIE 7122, Oct. 2008, pp.71221W.

[16] Li J, Jia N, Lam Ed Y. Hotspot-aware robust mask design with inverse lithography. ECS Transactions, 2012, 44(1): 197-202.

[17] Gao J, Xu X, Yu B, Pan D. MOSAIC: Mask optimizing solution with process window aware inverse correction. In Proc. the 51st ACM/EDAC/IEEE Annual Design Automation Conference, Jun. 2014, pp.52:1-52:6.

[18] Ma X, Arce G R. Pixel-based OPC optimization based on conjugate gradients. Optics Express, 2011, 19(3): 2165-2180.

[19] Lv W, Liu S, Xia Q, Wu X, Shen Y, Lam E Y. Levelset-based inverse lithography for mask synthesis using the conjugate gradient and an optimal time step. Journal of Vacuum Science & Technology B, 2013, 31(4): 041605.

[20] Cobb N B, Zakhor A, Miloslavsky E A. Mathematical and CAD framework for proximity correction. In Proc. SPIE 2726, Mar. 1996, pp.208-222.

[21] Hopkins H. On the diffraction theory of optical images. In Proc. R. Soc. Lond. A, May 1953, pp.408-432.

[22] Cobb N B, Zakhor A. Fast sparse aerial-image calculation for OPC. In Proc. SPIE 2621, Oct. 1995, pp.534-545.

[23] Pan W, Ren J, Zheng Y, Shi Z, Yan X. Using NMOS transistors as switches for accuracy and area-efficiency in largescale addressable test array. In Proc. the 12th ISQED, Mar. 2011, pp.1-6.

[24] Zhang B, PanW, Zheng Y, Shi Z, Yan X. A fully automated large-scale addressable test chip design with high reliability. In Proc. the 20th ECCTD, Aug. 2011, pp.61-64.

[25] Fletcher R, Reeves C M. Function minimization by conjugate gradients. The Computer Journal, 1964, 7(2): 149-154.

[26] Polyak B T. The conjugate gradient method in extreme problems. USSR Computational Mathematics and Mathematical Physics, 1969, 9(4): 94-112.

[27] Hager W W, Zhang H. A survey of nonlinear conjugate gradient methods. Pacific Journal of Optimization, 2006, 2(1): 35-58.

[28] Banerjee S, Zhuo L, Nassif S R. ICCAD-2013 CAD contest in mask optimization and benchmark suite. In Proc. ICCAD, Nov. 2013, pp.271-274.

[29] Banerjee S, Agarwal K B, Orshansky M. Methods for joint optimization of mask and design targets for improving lithographic process window. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2013, 12(2): 023014.

[30] Torres J A, Berglund C N. Integrated circuit DFM framework for deep sub-wavelength processes. In Proc. SPIE 5756, May 2005, pp.39-50.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘明业; 洪恩宇;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] 陈世华;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] 高庆狮; 张祥; 杨树范; 陈树清;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] 陈肇雄; 高庆狮;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] 黄河燕;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] 闵应骅; 韩智德;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[7] 唐同诰; 招兆铿;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[8] 闵应骅;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[9] 朱鸿;. Some Mathematical Properties of the Functional Programming Language FP[J]. , 1987, 2(3): 202 -216 .
[10] 李明慧;. CAD System of Microprogrammed Digital Systems[J]. , 1987, 2(3): 226 -235 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: