›› 2015,Vol. 30 ›› Issue (5): 1063-1072.doi: 10.1007/s11390-015-1582-6

所属专题: Artificial Intelligence and Pattern Recognition Data Management and Data Mining

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

用于用户标签推荐的标签关联模型

Cun-Chao Tu(涂存超), Student Member, CCF, Zhi-Yuan Liu*(刘知远), Senior Member, CCF, Mao-Song Sun(孙茂松), Senior Member, CCF   

  1. 1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
    2 State Key Laboratory on Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China;
    3 National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China;
    4 Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou 221009, China
  • 收稿日期:2014-11-15 修回日期:2015-05-12 出版日期:2015-09-05 发布日期:2015-09-05
  • 通讯作者: Zhi-Yuan Liu E-mail:liuzy@tsinghua.edu.cn
  • 作者简介:Cun-Chao Tu is a Ph.D. student of the Department of Computer Science and Technology, Tsinghua University, Beijing. He got his B.E. degree in computer science from Tsinghua University in 2013. His research interests are user representation and social computation.
  • 基金资助:

    This work is supported by the National Natural Science Foundation of China under Grant Nos. 61170196 and 61202140§and the Major Project of the National Social Science Foundation of China under Grant No. 13&ZD190.

Tag Correspondence Model for User Tag Suggestion

Cun-Chao Tu(涂存超), Student Member, CCF, Zhi-Yuan Liu*(刘知远), Senior Member, CCF, Mao-Song Sun(孙茂松), Senior Member, CCF   

  1. 1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
    2 State Key Laboratory on Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China;
    3 National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China;
    4 Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou 221009, China
  • Received:2014-11-15 Revised:2015-05-12 Online:2015-09-05 Published:2015-09-05
  • Contact: Zhi-Yuan Liu E-mail:liuzy@tsinghua.edu.cn
  • About author:Cun-Chao Tu is a Ph.D. student of the Department of Computer Science and Technology, Tsinghua University, Beijing. He got his B.E. degree in computer science from Tsinghua University in 2013. His research interests are user representation and social computation.
  • Supported by:

    This work is supported by the National Natural Science Foundation of China under Grant Nos. 61170196 and 61202140§and the Major Project of the National Social Science Foundation of China under Grant No. 13&ZD190.

一些微博服务鼓励用户给自己标注不同类型的标签, 来表示他们的属性和兴趣。这些用户标注的标签在个性化推荐以及信息检索领域中扮演着重要的角色。为了更好的理解用户标签的语义信息, 我们提出了标签关联模型, 来根据用户的上下文信息识别标签之间复杂的关联信息。一个标签的对应元素, 是指在上下文中, 与该标签语义相关的独一无二的元素。我们将微博用户的上下文信息划分成不同的类型, 例如发布的微博信息, 用户的资料, 以及邻居用户等等。根据已经标注标签的用户数据, 标签关联模型可以自动的学习出不同类型的信息与用户标签之间的关联关系。根据学习到的关联关系, 我们可以对标签的含义进行直观的解释。同时, 对于没有标注标签的用户, 该模型可以根据用户的上下文信息自动的推荐标签。在真实数据集上的实验证明, 我们的方法可以有效的识别出能够表示标签语义信息的关联关系。

Abstract: Some microblog services encourage users to annotate themselves with multiple tags, indicating their attributes and interests. User tags play an important role for personalized recommendation and information retrieval. In order to better understand the semantics of user tags, we propose Tag Correspondence Model (TCM) to identify complex correspondences of tags from the rich context of microblog users. The correspondence of a tag is referred to as a unique element in the context which is semantically correlated with this tag. In TCM, we divide the context of a microblog user into various sources (such as short messages, user profile, and neighbors). With a collection of users with annotated tags, TCM can automatically learn the correspondences of user tags from multiple sources. With the learned correspondences, we are able to interpret implicit semantics of tags. Moreover, for the users who have not annotated any tags, TCM can suggest tags according to users' context information. Extensive experiments on a real-world dataset demonstrate that our method can efficiently identify correspondences of tags, which may eventually represent semantic meanings of tags.

[1] McPherson M, Smith-Lovin L, Cook J M. Birds of a feather:Homophily in social networks. Annual Review of Sociology, 2001, 27:415-444.

[2] Liang H, Xu Y, Li Y, Nayak R, Tao X. Connecting users and items with weighted tags for personalized item recommendations. In Proc. the 21st ACM Conference on Hypertext and Hypermedia, June 2010, pp.51-60.

[3] Peng J, Zeng D, Zhao H, Wang F. Collaborative filtering in social tagging systems based on joint item-tag recommendations. In Proc. the 19th ACM International Conference on Information and Knowledge Management, Oct. 2010, pp.809-818.

[4] Zhen Y, Li W, Yeung D. TagiCoFi:Tag informed collaborative filtering. In Proc. the 3rd ACM Conference on Recommender Systems, Oct. 2009, pp.69-76.

[5] Symeonidis P, Nanopoulos A, Manolopoulos Y. Tag recommendations based on tensor dimensionality reduction. In Proc. the 2008 ACM Conference on Recommender Systems, Oct. 2008, pp.43-50.

[6] Rendle S, Marinho L B, Nanopoulos A, Schmidt-Thieme L. Learning optimal ranking with tensor factorization for tag recommendation. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 1, 2009, pp.727-736.

[7] Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommendation. In Proc. the 3rd ACM International Conference on Web Search and Data Mining, Feb. 2010, pp.81-90.

[8] J¨aschke R, Marinho L B, Hotho A, Schmidt-Thieme L, Stumme G. Tag recommendations in social bookmarking systems. AI Communications, 2008, 21(4):231-247.

[9] Ohkura T, Kiyota Y, Nakagawa H. Browsing system for weblog articles based on automated folksonomy. In Proc. the 15th International Conference on World Wide Web, May 2006.

[10] Mishne G. AutoTag:A collaborative approach to automated tag assignment for weblog posts. In Proc. the 15th International Conference on World Wide Web, May 2006, pp.953-954.

[11] Lee S, Chun A. Automatic tag recommendation for the Web 2.0 blogosphere using collaborative tagging and hybrid ANN semantic structures. In Proc. the 6th WSEAS International Conference on Applied Computer Science, Apr. 2007, pp.88-93.

[12] Katakis I, Tsoumakas G, Vlahavas I. Multilabel text classification for automated tag suggestion. In Proc. the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, volume 18, Sept. 2008.

[13] Fujimura S, Fujimura K, Okuda H. Blogosonomy:Autotagging any text using bloggers' knowledge. In Proc. IEEE/WIC/ACM International Conference on Web Intelligence, Nov. 2007, pp.205-212.

[14] Heymann P, Ramage D, Garcia-Molina H. Social tag prediction. In Proc. the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 2008, pp.531-538.

[15] Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3:993-1022.

[16] Krestel R, Fankhauser P, Nejdl W. Latent Dirichlet allocation for tag recommendation. In Proc. the 3rd ACM Conference on Recommender Systems, Oct. 2009, pp.61-68.

[17] Si X, Sun M. Tag-LDA for scalable real-time tag recommendation. Journal of Computational Information Systems, 2009, 6(1):23-31.

[18] Liu Z, Tu C, Sun M. Tag dispatch model with social network regularization for microblog user tag suggestion. In Proc. the 24th International Conference on Computational Linguistics, Dec. 2012, pp.755-764.

[19] Bundschus M, Yu S, Tresp V, Rettinger A, Dejori M, Kriegel H. Hierarchical Bayesian models for collaborative tagging systems. In Proc. the 9th IEEE International Conference on Data Mining, Dec. 2009, pp.728-733.

[20] Iwata T, Yamada T, Ueda N. Modeling social annotation data with content relevance using a topic model. In Proc. the 23rd Annual Conference on Neural Information Processing Systems, Dec. 2009, pp.835-843.

[21] Blei D, Jordan M. Modeling annotated data. In Proc. the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 28-August 1, 2003, pp.127-134.

[22] Griffiths T, Steyvers M. Finding scientific topics. Proc. the National Academy of Sciences of the United States of America, 2004, 101(Suppl 1):5228-5235.

[23] Heinrich G. Parameter estimation for text analysis. Technical Report, vsonix GmbH + University of Leipzig, Germany, May 2005.

[24] Andrieu C, de Freitas N, Doucet A, Jordan M. An introduction to MCMC for machine learning. Machine Learning, 2003, 50(1/2):5-43.

[25] Manning C D, Raghavan P, Schütze H. Introduction to Information Retrieval, Volume 1. Cambridge University Press, Cambridge, 2008.

[26] Mei Q, Cai D, Zhang D, Zhai C. Topic modeling with network regularization. In Proc. the 17th International Conference on World Wide Web, Apr. 2008, pp.101-110.

[27] Chang J, Blei D M. Relational topic models for document networks. In Proc. the 12th International Conference on Artificial Intelligence and Statistics, Apr. 2009, pp.81-88.

[28] Cohn D, Chang H. Learning to probabilistically identify authoritative documents. In Proc. ICML, June 29-July 2, 2000, pp.167-174.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑方; 徐明星; 牟晓隆; 武健; 吴文虎; 方棣棠;. HarkMan—A Vocabulary-Independent Keyword Spotter for Spontaneons Chinese Speech[J]. , 1999, 14(1): 18 -26 .
[2] . 人胶质母细胞瘤细胞中生长因子信号激活由磷酸肌醇-3-激酶(PI3K)和细胞外信号调控激酶(ERK)传导的转录调控网络[J]. , 2005, 20(4): 439 -445 .
[3] . 用户级设备驱动程序:得来的性能[J]. , 2005, 20(5): 654 -664 .
[4] . 动态隐式曲线曲面重构的初始形状指定[J]. , 2006, 21(2): 249 -254 .
[5] . 暂缺[J]. , 2006, 21(5): 674 -681 .
[6] . 前沿的计算机应有科学:纳米电子混合技术[J]. , 2006, 21(6): 871 -886 .
[7] . 文本数据流聚类[J]. , 2008, 23(1): 112 -128 .
[8] . 无线自组网基于小世界模型的Polylogarithmic时间路由算法[J]. , 2008, 23(3): 327 -342 .
[9] Yan Zhu1,2 (朱岩), Member, CCF, Hong-Xin Hu3 (胡宏新), Gail-Joon Ahn3, Senior Member, ACM, IEEE Huai-Xi Wang4 (王怀习), and Shan-Biao Wang4 (王善标). [J]. , 2011, 26(4): 697 -710 .
[10] Antonio M. Mora1, Antonio Fernández-Ares1, Juan J. Merelo1, Pablo García-Sánchez1, and Carlos M. Fernandes1,2. 基于演化算法的RTS游戏者行为中噪声影响的适应度优化[J]. , 2012, 27(5): 1007 -1023 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: