›› 2017,Vol. 32 ›› Issue (6): 1222-1230.doi: 10.1007/s11390-017-1796-x

所属专题: Artificial Intelligence and Pattern Recognition

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

基于特征选择的有监督视网膜血管动静脉分类

Bei-Ji Zou1,2, Member, CCF, Yao Chen1,2, Cheng-Zhang Zhu2,3,*, Member, CCF, Zai-Liang Chen1,2, Member, CCF, Zi-Qian Zhang1,2   

  1. 1 School of Information Science and Engineering, Central South University, Changsha 410083, China;
    2 "Mobile Health" Ministry of Education-China Mobile Joint Laboratory, Central South University Changsha 410083, China;
    3 College of Literature and Journalism, Central South University, Changsha 410083, China
  • 收稿日期:2017-06-20 修回日期:2017-09-25 出版日期:2017-11-05 发布日期:2017-11-05
  • 通讯作者: Cheng-Zhang Zhu E-mail:anandawork@126.com
  • 作者简介:Bei-Ji Zou received his B.S.degree in computer software from Zhejiang University,Hangzhou,in 1982,his M.S.and Ph.D.degrees in computer science and technology from Tsinghua University,Beijing,in 1984,and Hunan University,Changsha,in 2001,respectively.He joined the School of Computer and Communication at Hunan University,Changsha,in 1984,where he became an associate professor in 1997,and a professor in 2001.
  • 基金资助:

    This work was supported by the National Natural Science Foundation of China under Grant Nos. 61573380, 61702559, 61562029.

Supervised Vessels Classification Based on Feature Selection

Bei-Ji Zou1,2, Member, CCF, Yao Chen1,2, Cheng-Zhang Zhu2,3,*, Member, CCF, Zai-Liang Chen1,2, Member, CCF, Zi-Qian Zhang1,2   

  1. 1 School of Information Science and Engineering, Central South University, Changsha 410083, China;
    2 "Mobile Health" Ministry of Education-China Mobile Joint Laboratory, Central South University Changsha 410083, China;
    3 College of Literature and Journalism, Central South University, Changsha 410083, China
  • Received:2017-06-20 Revised:2017-09-25 Online:2017-11-05 Published:2017-11-05
  • Contact: Cheng-Zhang Zhu E-mail:anandawork@126.com
  • About author:Bei-Ji Zou received his B.S.degree in computer software from Zhejiang University,Hangzhou,in 1982,his M.S.and Ph.D.degrees in computer science and technology from Tsinghua University,Beijing,in 1984,and Hunan University,Changsha,in 2001,respectively.He joined the School of Computer and Communication at Hunan University,Changsha,in 1984,where he became an associate professor in 1997,and a professor in 2001.
  • Supported by:

    This work was supported by the National Natural Science Foundation of China under Grant Nos. 61573380, 61702559, 61562029.

视网膜血管的动静脉分类对于高血压性视网膜病变和中风等心血管疾病的自动检测是很重要的。在本文中,我们提出了一种全自动的脉静脉分类(AVC)方法,重点在于对血管中心线像素的特征提取和选择。首先,在血管分割和视盘(OD)定位的后提取血管中心线。然后,在OD附近提取感兴趣区域(ROI),并且提取ROI区域内中心线像素的局部特征,灰度共生矩阵(GLCM)特征和自适应局部二进制模式(A-LBP)特征。然后,通过使用最大相关性和最小冗余(mRMR)算法进行特征选择。最后,使用特征加权k最近邻(FW-KNN)算法对动静脉血管进行分类。DRIVE数据库和INSPIRE-AVR数据库的实验结果分别达到了88.65%和88.51%的高精度。

Abstract: Arterial-venous classification of retinal blood vessels is important for the automatic detection of cardiovascular diseases such as hypertensive retinopathy and stroke. In this paper, we propose an arterial-venous classification (AVC) method, which focuses on feature extraction and selection from vessel centerline pixels. The vessel centerline is extracted after the preprocessing of vessel segmentation and optic disc (OD) localization. Then, a region of interest (ROI) is extracted around OD, and the most efficient features of each centerline pixel in ROI are selected from the local features, grey-level co-occurrence matrix (GLCM) features, and an adaptive local binary patten (A-LBP) feature by using a max-relevance and min-redundancy (mRMR) scheme. Finally, a feature-weighted K-nearest neighbor (FW-KNN) algorithm is used to classify the arterial-venous vessels. The experimental results on the DRIVE database and INSPIRE-AVR database achieve the high accuracy of 88.65% and 88.51% in ROI, respectively.

[1] Niemeijer M, van Ginneken B, Abràmoff M D. Automatic classification of retinal vessels into arteries and veins. In Proc. SPIE7260, Medical Imaging 2009:Computer-Aided Diagnosis, October 2009, p.72601F.

[2] Grisan E, Ruggeri A. A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In Proc. the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept. 2003, pp.890-893.

[3] Hubbard L D, Brothers R J, King W N, Clegg L X, Klein R, Cooper L S et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology, 1999, 106(12):2269-2280.

[4] Wong T Y, Knudtson M D, Klein R, Klein B E K, Meuer S M, Hubbard L D. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study:Methodology, correlation between eyes, and effect of refractive errors. Ophthalmology, 2004, 111(6):1183-1190.

[5] Aguilar W, Martinez-Perez M E, Frauel Y, Escolano F, Lozano M A, Espinosa-Romero A. Graph-based methods for retinal mosaicing and vascular characterization. In Proc. the 6th IAPR-TC-15 International Workshop on GraphBased Representations in Pattern Recognition, June 2007, pp.25-36.

[6] Rothaus K, Jiang X, Rhiem P. Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Image and Vision Computing, 2009, 27(7):864-875.

[7] Niemeijer M, Xu X, Dumitrescu A V, Gupta P, van Ginneken B et al. Automated measurement of the arteriolarto-venular width ratio in digital color fundus photographs. IEEE Transactions on Medical Imaging, 2011, 30(11):1941-1950.

[8] Dashtbozorg B, Mendonca A M, Campilho A. An automatic graph-based approach for artery/vein classification in retinal images. IEEE Transactions on Image Processing, 2014, 23(3):1073-1083.

[9] Estrada R, Allingham M J, Mettu P S, Cousins S W, Tomasi C, Farsiu S. Retinal artery-vein classification via topology estimation. IEEE Transactions on Medical Imaging, 2015, 34(12):2518-2534.

[10] Relan D, Ballerini L, Trucco E, MacGillivray T. Retinal vessel classification based on maximization of squared-loss mutual information. In Proc. Machine Intelligence and Signal Processing, October 2016, pp.77-84.

[11] Staal J, Abramoff M D, Niemeijer M, Viergever M A, Ginneken B V. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 2004, 23(4):501-509.

[12] Vijayakumar V, Koozekanani D D, White R, Kohler J, Roychowdhury S, Parhi K K. Artery/vein classification of retinal blood vessels using feature selection. In Proc. the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 2016, pp.1320-1323.

[13] Zhu C, Zou B, Zhao R et al. Retinal vessel segmentation in colour fundus images using extreme learning machine. Computerized Medical Imaging and Graphics, 2017, 55:68-77.

[14] Abdullah M, Fraz M M, Barman S A. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm. https://peerj.com/articles/2003/, Sept. 2017.

[15] Telea A, van Wijk J J. An augmented fast marching method for computing skeletons and centerlines. In Proc. the Symposium on Data Visualisation, May 2002, pp.251-260.

[16] Foracchia M, Grisan E, Ruggeri A. Luminosity and contrast normalization in retinal images. Medical Image Analysis, 2005, 9(3):179-190.

[17] Soares J V B, Leandro J J G, Cesar R M, Jelinek H F, Cree M J. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 2006, 25(9):1214-1222.

[18] Hanchuan P, Fuhui L, Ding C. Feature selection based on mutual information:Criteria of max-dependency, maxrelevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1226-1238.

[19] Chhabra S, Bhushan B. Supervised pixel classification into arteries and veins of retinal images. In Proc. Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity (CIPECH), November 2014, pp.59-62.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 龚振和;. On Conceptual Model Specification and Verification[J]. , 1987, 2(1): 35 -50 .
[2] 金国华; 杨学军; 陈福接;. Loop Staggering,Loop Compacting:Restructuring Techniques for Thrashing Problem[J]. , 1993, 8(1): 49 -57 .
[3] 徐美瑞; 刘小林;. A VLSI Algorithm for Calculating the Tree to Tree Distance[J]. , 1993, 8(1): 68 -76 .
[4] 王志坚;. Validating Inductive Hypotheses by Mode Inference[J]. , 1993, 8(2): 37 -41 .
[5] 顾君忠;. An Object-Oriented Transaction Model[J]. , 1993, 8(4): 3 -20 .
[6] 徐美和; 唐泽圣;. A Boundary Element Method for Simulation of Deformable Objects[J]. , 1996, 11(5): 497 -506 .
[7] 马宗民; ZHANG W.J; MA W.Y;. Extending the Relational Model to Deal with Probabilistic Data[J]. , 2000, 15(3): 230 -240 .
[8] . 多级混合极性的 REED-MULLER 函数的新颖综合和优化[J]. , 2005, 20(6): 895 -900 .
[9] . 减小互连线串扰的屏蔽线面积优化[J]. , 2005, 20(6): 901 -906 .
[10] . 无线自主网中的链路分配最优化算法[J]. , 2006, 21(1): 89 -94 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: