计算机科学技术学报 ›› 2021,Vol. 36 ›› Issue (3): 508-519.doi: 10.1007/s11390-021-1325-9

所属专题: Computer Graphics and Multimedia

• • 上一篇    下一篇

婴儿的年龄和性别容易被识别吗?

Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, and Shengping Zhang*   

  1. School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China
  • 收稿日期:2021-01-27 修回日期:2021-04-25 出版日期:2021-05-05 发布日期:2021-05-31
  • 通讯作者: Shengping Zhang E-mail:s.zhang@hit.edu.cn
  • 作者简介:Yang Liu obtained her Ph.D. degree in computer science from Harbin Institute of Technology, Weihai, in 2015. She is currently a lecturer in the School of Computer Science and Technology at Harbin Institute of Technology, Weihai. Her current research interests include digital image processing and computer vision.
  • 基金资助:
    This work was supported in part by the National Natural Science Foundation of China under Nos. 61872112 and 61902092. Shengping Zhang was also supported by the Taishan Scholars Program of Shandong Province under Grant No. tsqn201812106.

Is It Easy to Recognize Baby's Age and Gender?

Yang Liu, Ruili He, Xiaoqian Lv, Wei Wang, Xin Sun, and Shengping Zhang*        

  1. School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China
  • Received:2021-01-27 Revised:2021-04-25 Online:2021-05-05 Published:2021-05-31
  • Contact: Shengping Zhang E-mail:s.zhang@hit.edu.cn
  • About author:Yang Liu obtained her Ph.D. degree in computer science from Harbin Institute of Technology, Weihai, in 2015. She is currently a lecturer in the School of Computer Science and Technology at Harbin Institute of Technology, Weihai. Her current research interests include digital image processing and computer vision.
  • Supported by:
    This work was supported in part by the National Natural Science Foundation of China under Nos. 61872112 and 61902092. Shengping Zhang was also supported by the Taishan Scholars Program of Shandong Province under Grant No. tsqn201812106.

1.研究背景:近年来,从面部图像估计性别或年龄的面部分析任务已引起越来越多的关注。但是,大多数现有工作主要关注成人的脸部分析而忽略了婴儿的年龄估计和性别预测。缺乏对婴儿面部分析的研究有两个主要原因。第一个原因是人们没有意识到潜在的应用价值。实际上,分析婴儿的面部属性有很多应用,例如广告营销、智能育儿和科学育儿。0至2岁是婴儿成长的黄金时期,也为婴儿终生的身心健康奠定了坚实的基础。此外,由于国家政策的支持以及人们对婴儿的成长和发育的日益关注,育儿市场不断扩大,电子媒体内的育儿计划也在不断扩展。正确识别婴儿的年龄和性别对于改善科学育儿具有重要意义。第二个原因可能是现有数据集仅包含少量或没有婴儿图像。因为获取具有准确性别和年龄标签的婴儿数据集比较困难。
2.目的:由于智能育儿的市场需求不同扩大,同时学术界缺乏相关研究,所以本研究致力于探寻针对婴儿照片的婴儿的年龄估计和性别预测问题。
3.方法:我们首先为我们的研究收集了一个新的面部图像数据集,名为BabyFace,其中包含来自5872个2岁以下婴儿的15528张图像。除性别外,每个面部图像都标有0到24个月之间的年龄标签。此外,我们提出了新的年龄估计和性别识别方法。我们特别引入了注意力机制模块来解决BabyFace数据集上的年龄估计问题。受年龄估算方法的启发,在性别预测网络中我们使用了双流结构。
4.结果:我们使用BabyFace数据集对现有的相关方法进行实验对比,我们的年龄估算模型具有优秀的性能表现,估算误差不到2个月。所提出的性别预测算法在所有比较方法中都获得了最佳的准确性。相比于年龄估计,性别预测对于婴儿来说更加困难,因为婴儿的面部看不到胡须、毛孔等性别特征。
5.结论:该工作是第一个从婴儿的面部图像研究年龄和性别估计的方法,它是对现有成人性别和年龄估计方法的补充,可以为探索婴儿面部分析提供一些启发。

关键词: 年龄估计, 级别识别, 婴儿面部图像, 卷积神经网络, 注意力机制

Abstract: Face analysis tasks, e.g., estimating gender or age from a face image, have been attracting increasing interest in recent years. However, most existing studies focus mainly on analyzing an adult's face and ignore an interesting question:is it easy to estimate gender and age from a baby's face? In this paper, we explore this interesting problem. We first collect a new face image dataset for our research, named BabyFace, which contains 15 528 images from 5 872 babies younger than two years old. Besides gender, each face image is annotated with age in months from 0 to 24. In addition, we propose new age estimation and gender recognition methods. In particular, based on SSR-Net backbone, we introduce the attention mechanism module to solve the age estimation problem on the BabyFace dataset, named SSR-SE. In the part of gender recognition, inspired by the age estimation method, we also use a two-stream structure, named Two-Steam SE-block with Augment (TSSEAug). We extensively evaluate the performance of the proposed methods against the state-of-the-art methods on BabyFace. Our age estimation model achieves very appealing performance with an estimation error of less than two months. The proposed gender recognition method obtains the best accuracy among all compared methods. To the best of our knowledge, we are the first to study age estimation and gender recognition from a baby's face image, which is complementary to existing adult gender and age estimation methods and can shed some light on exploring baby face analysis.

Key words: age estimation, gender recognition, baby face, convolutional neural network (CNN), attention mechanism

[1] Levi G, Hassner T. Age and gender classification using convolutional neural networks. In Proc. the 2015 IEEE International Conference on Computer Vision and Pattern Recognition Workshops, June 2015, pp.34-42. DOI:10.1109/CVPRW.2015.7301352.
[2] Das A, Dantcheva A, Bremond F. Mitigating bias in gender, age and ethnicity classification:A multi-task convolution neural network approach. In Proc. the 2018 European Conference on Computer Vision, Sept. 2018, pp.573-583. DOI:10.1007/978-3-030-11009-3_35.
[3] Hosseini S, Lee S H, Kwon H J, Koo H I, Cho N I. Age and gender classification using wide convolutional neural network and Gabor filter. In Proc. the 2018 International Workshop on Advanced Image Technology, Jan. 2018. DOI:10.1109/IWAIT.2018.8369721.
[4] Agbo-Ajala O, Viriri S. Age group and gender classification of unconstrained faces. In Proc. the 14th International Symposium on Visual Computing, Oct. 2019, pp.418-429. DOI:10.1007/978-3-030-33720-9_32.
[5] Eidinger E, Enbar R, Hassner T. Age and gender estimation of unfiltered faces. IEEE Transactions on Information Forensics and Security, 2014, 9(12):2170-2179. DOI:10.1109/TIFS.2014.2359646.
[6] Huang G B, Mattar M, Berg T, Learned-Miller E. Labeled faces in the wild:A database for studying face recognition in unconstrained environments. In Proc. Workshop on Faces in ‘Real-Life’ Images:Detection, Alignment, and Recognition, Oct. 2008.
[7] Panis G, Lanitis A, Tsapatsoulis N, Cootes T F. Overview of research on facial ageing using the FG-NET ageing database. IET Biometrics, 2016, 5(2):37-46. DOI:10.1049/iet-bmt.2014.0053.
[8] Ricanek K, Tesafaye T. MORPH:A longitudinal image database of normal adult age-progression. In Proc. the 7th International Conference on Automatic Face and Gesture Recognition, Apr. 2006, pp.341-345. DOI:10.1109/FGR.2006.78.
[9] Rothe R, Timofte R, Gool L. DEX:Deep expectation of apparent age from a single image. In Proc. the 2015 IEEE International Conference on Computer Vision Workshops, Dec. 2015, pp.10-15. DOI:10.1109/ICCVW.2015.41.
[10] Cao Q, Li S, Xie W, Parkhi O M, Zisserman A. VGGFace2:A dataset for recognising faces across pose and age. In Proc. the 13th IEEE International Conference on Automatic Face & Gesture Recognition, May 2018. DOI:10.1109/FG.2018.00020.
[11] Phillips D, McCartney K, Scarr S. Child-care quality and children's social development. Developmental Psychology, 1987, 23(4):537-543. DOI:10.1037/0012-1649.23.4.537.
[12] Letourneau N. Scientific Parenting:What Science Reveals About Parental Influence. Dundurn, 2013.
[13] Simpson A R. The role of the mass media in parenting education. Technical Report, Center for Health Communication, Harvard School of Public Health, 1997. https://cdn1.sph.harvard.edu/wp-content/uploads/sites/-78/2012/09/The-Role-of-The-Mass-Media.pdf, Jan. 2021.
[14] Yang T Y, Huang Y H, Lin Y Y, Hsiu P C, Chuang Y Y. Ssr-net:A compact soft stagewise regression network for age estimation. In Proc. the 27th International Joint Conference on Artificial Intelligence, July 2018, pp.1078-1084. DOI:10.24963/ijcai.2018/150.
[15] Zhong Z, Zheng L, Kang G, Li S, Yang Y. Random erasing data augmentation. In Proc. the 34th AAAI Conference on Artificial Intelligence, Feb. 2020, pp.13001-13008. DOI:10.1609/aaai.v34i07.7000.
[16] Zhang H, Cissé M, Dauphin Y N, Lopez-Paz D. mixup:Beyond empirical risk minimization. In Proc. the 6th International Conference on Learning Representations, April 30-May 3, 2018.
[17] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet:A large-scale hierarchical image database. In Proc. the 2009 IEEE Conference on Computer Vision I & Pattern Recognition, Jun. 2009. DOI:10.1109/CVPR.2009.5206848.
[18] Chen B C, Chen C S, Hsu W H. Cross-age reference coding for age-invariant face recognition and retrieval. In Proc. the 13th European Conference on Computer Vision, Sept. 2014, pp.768-783. DOI:10.1007/978-3-319-10599-4_49.
[19] Yi D, Lei Z, Li S Z. Age estimation by multi-scale convolutional network. In Proc. the 12th Asian Conference on Computer Vision, Nov. 2014, pp.144-158. DOI:10.1007/978-3-319-16811-110.
[20] Rothe R, Timofte R, Van Gool L. Deep expectation of real and apparent age from a single image without facial landmarks. International Journal of Computer Vision, 2018, 126(2/3/4):144-157. DOI:10.1007/s11263-016-0940-3.
[21] Wang X, Guo R, Kambhamettu C. Deeply-learned feature for age estimation. In Proc. the 2015 IEEE Winter Conference on Applications of Computer Vision, Jan. 2015, pp.534-541. DOI:10.1109/WACV.2015.77.
[22] Zhu H, Zhang Y, Li G, Zhang J, Shan H. Ordinal distribution regression for gait-based age estimation. Science China Information Sciences, 2020, 63(2):Article No. 120102. DOI:10.1007/s11432-019-2733-4.
[23] Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.4920-4928. DOI:10.1109/CVPR.2016.532.
[24] Lapuschkin S, Binder A, Muller K R, Samek W. Understanding and comparing deep neural networks for age and gender classification. In Proc. the 2017 IEEE International Conference on Computer Vision Workshops, Oct. 2017, pp.1629-1638. DOI:10.1109/ICCVW.2017.191.
[25] Verma A, Vig L. Using convolutional neural networks to discover cogntively validated features for gender classification. In Proc. the 2014 International Conference on Soft Computing and Machine Intelligence, Sept. 2014, pp.33-37. DOI:10.1109/ISCMI.2014.17.
[26] Mansanet J, Albiol A, Paredes R. Local deep neural networks for gender recognition. Pattern Recognition Letters, 2016, 70:80-86. DOI:10.1016/j.patrec.2015.11.015.
[27] Abbas H, Hicks Y, Marshall D, Zhurov A I, Richmond S. A 3D morphometric perspective for facial gender analysis and classification using geodesic path curvature features. Computational Visual Media, 2018, 4(1):17-32. DOI:10.1007/s41095-017-0097-1.
[28] King D E. Dlib-ml:A machine learning toolkit. Journal of Machine Learning Research, 2009, 10:1755-1758.
[29] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment:From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4):600-612. DOI:10.1109/TIP.2003.819861.
[30] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.7132-7141. DOI:10.1109/CVPR.2018.00745.
[31] Kingma D P, Ba J. Adam:A method for stochastic optimization. arXiv:1412.6980, 2014. http://arxiv.org/abs/1412.6980, Jan. 2021.
[32] Ranjan R, Patel V, Chellappa R. HyperFace:A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(1):121-135. DOI:10.1109/TPAMI.2017.2781233.
[33] Dehghan A, Ortiz E G, Shu G, Masood S Z. Dager:Deep age, gender and emotion recognition using convolutional neural network. arXiv:1702.04280, 2017. http://arxiv.org/abs/1702.0428, Jan. 2021.
[34] Liu Z, Luo P, Wang X, Tang X. Deep learning face attributes in the wild. In Proc. the 2015 IEEE International Conference on Computer Vision, Dec. 2015, pp.3730-3738. DOI:10.1109/ICCV.2015.425.
[1] 魏华鹏, 邓盈盈, 唐帆, 潘兴甲, 董未名. 基于卷积神经网络和Transformer的视觉风格迁移的比较研究[J]. 计算机科学技术学报, 2022, 37(3): 601-614.
[2] 张鑫, 陆思源, 王水花, 余翔, 王甦菁, 姚仑, 潘毅, 张煜东. 通过新型深度学习架构诊断COVID-19肺炎[J]. 计算机科学技术学报, 2022, 37(2): 330-343.
[3] Jia-Ke Ge, Yan-Feng Chai, Yun-Peng Chai. WATuning:一种基于注意力机制的深度强化学习的工作负载感知调优系统[J]. 计算机科学技术学报, 2021, 36(4): 741-761.
[4] Shao-Jie Qiao, Guo-Ping Yang, Nan Han, Hao Chen, Fa-Liang Huang, Kun Yue, Yu-Gen Yi, Chang-An Yuan. 基数估计器:利用垂直扫描卷积神经网络处理SQL[J]. 计算机科学技术学报, 2021, 36(4): 762-777.
[5] Chen-Chen Sun, De-Rong Shen. 面向深度实体匹配的混合层次网络[J]. 计算机科学技术学报, 2021, 36(4): 822-838.
[6] Sheng-Luan Hou, Xi-Kun Huang, Chao-Qun Fei, Shu-Han Zhang, Yang-Yang Li, Qi-Lin Sun, Chuan-Qing Wang. 基于深度学习的文本摘要研究综述[J]. 计算机科学技术学报, 2021, 36(3): 633-663.
[7] Zhang-Jin Huang, Xiang-Xiang He, Fang-Jun Wang, Qing Shen. 基于卷积神经网络的实时多阶段斑马鱼头部姿态估计框架[J]. 计算机科学技术学报, 2021, 36(2): 434-444.
[8] Yi-Ting Wang, Jie Shen, Zhi-Xu Li, Qiang Yang, An Liu, Peng-Peng Zhao, Jia-Jie Xu, Lei Zhao, Xun-Jie Yang. 基于搜索引擎丰富上下文信息的实体链接方法[J]. 计算机科学技术学报, 2020, 35(4): 724-738.
[9] Ying Li, Jia-Jie Xu, Peng-Peng Zhao, Jun-Hua Fang, Wei Chen, Lei Zhao. ATLRec:用于跨领域推荐的注意力对抗迁移学习网络[J]. 计算机科学技术学报, 2020, 35(4): 794-808.
[10] Huan-Jing Yue, Sheng Shen, Jing-Yu Yang, Hao-Feng Hu, Yan-Fang Chen. 基于渐进式通道注意力网络的参考图引导超分辨率研究[J]. 计算机科学技术学报, 2020, 35(3): 551-563.
[11] 梁盾, 郭元晨, 张少魁, 穆太江, 黄晓蕾. 车道检测-新结果和调查研究[J]. 计算机科学技术学报, 2020, 35(3): 493-505.
[12] Jin-Gong Jia, Yuan-Feng Zhou, Xing-Wei Hao, Feng Li, Christian Desrosiers, Cai-Ming Zhang. 双流时间卷积神经网络用于基于骨架的人体动作识别[J]. 计算机科学技术学报, 2020, 35(3): 538-550.
[13] Rui-Song Zhang, Wei-Ze Quan, Lu-Bin Fan, Li-Ming Hu, Dong-Ming Yan. 基于通道和像素相关性的计算机生成图像与自然图像鉴别[J]. 计算机科学技术学报, 2020, 35(3): 592-602.
[14] Chun-Yang Ruan, Ye Wang, Jiangang Ma, Yanchun Zhang, Xin-Tian Chen. 基于元路径注意力机制的异构网络对抗式嵌入[J]. 计算机科学技术学报, 2019, 34(6): 1217-1229.
[15] Robail Yasrab. SRNET:用于解析奇点的基于浅跳跃连接的卷积神经网络[J]. 计算机科学技术学报, 2019, 34(4): 924-938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周笛;. A Recovery Technique for Distributed Communicating Process Systems[J]. , 1986, 1(2): 34 -43 .
[2] 陈世华;. On the Structure of Finite Automata of Which M Is an(Weak)Inverse with Delay τ[J]. , 1986, 1(2): 54 -59 .
[3] C.Y.Chung; 华宣仁;. A Chinese Information Processing System[J]. , 1986, 1(2): 15 -24 .
[4] 金兰; 杨元元;. A Modified Version of Chordal Ring[J]. , 1986, 1(3): 15 -32 .
[5] 王建潮; 魏道政;. An Effective Test Generation Algorithm for Combinational Circuits[J]. , 1986, 1(4): 1 -16 .
[6] 陈肇雄; 高庆狮;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[7] 黄河燕;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[8] 郑国梁; 李辉;. The Design and Implementation of the Syntax-Directed Editor Generator(SEG)[J]. , 1986, 1(4): 39 -48 .
[9] 黄学东; 蔡莲红; 方棣棠; 迟边进; 周立; 蒋力;. A Computer System for Chinese Character Speech Input[J]. , 1986, 1(4): 75 -83 .
[10] 许小曙;. Simplification of Multivalued Sequential SULM Network by Using Cascade Decomposition[J]. , 1986, 1(4): 84 -95 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: