|
计算机科学技术学报 ›› 2022,Vol. 37 ›› Issue (3): 666-679.doi: 10.1007/s11390-022-2173-y
所属专题: Artificial Intelligence and Pattern Recognition; Computer Graphics and Multimedia
Yu-Ping Wang1 (王瑀屏), Member, CCF, IEEE, Sen-Wei Xie1 (解森炜), Li-Hui Wang2,3,* (王立辉), Member, IEEE, Hongjin Xu4 (徐鸿金), Satoshi Tabata3, Member, ACM, and Masatoshi Ishikawa3,5
1、研究背景:CT图像是利用X射线对人体某一平面进行扫描得到的图像。在一组相互平行的平面扫描可得到一组CT图像,其表达的三维信息可以帮助人们了解人体内部状态。但要理解一组CT图像,要求医生受到专业的训练,未受专业训练的人(如,患者及其家属)很难理解其所表达的三维信息。三维重建技术能够帮助更好的分析和存储三维信息,但并不能帮助人们理解CT图像,因为我们往往关心的不是从外部看到人体三维模型,而是其包含的人体内部信息。虚拟现实/增强现实(VR/AR)技术提供了具有潜力的解决方案,但现有的头戴式显示器受到显示信号线或无线传输延迟的限制,影响用户体验。
2、目的:我们的研究工作旨在设计一种交互式可视化方案,帮助人们理解CT图像。同时,不受传统VR/AR的头戴显示器的显示信号线限制,同时具有用户端重量轻、无能耗、低延迟等优势。
3、方法:我们的解决方案ARSlice,将空间增强现实(SAR)技术与头戴显示器相结合,分为投影端和用户端两部分。投影端使用动态追踪技术,定位用户头部位置和姿态,根据姿态生成投影图像,并根据位置高速调整焦距,使得投影图像能够清晰地投影到用户端的投影板上;用户端是纯光学设备,负责让用户在三维空间中看到投影板上的图像。用户端通过光学投影获取信息,无需显示信号线或无线传输;也无需关心数据生成问题,因此用户端不产生能耗;另外,通过高效的动态追踪算法,使得系统整体延迟符合人眼要求。
4、结果:我们设计制作了设备原型,用户可以在三维空间中看到CT图像切面,图像内容随着用户头部运动而变化,如同用户眼前有一个平面对人体进行切割显示。设备提供了近似的6自由度,用户端可以在距离投影端0.5-2米范围内移动;用户端可以在上下左右各方向约45°的幅度内转动;用户端的视角范围约75°;整体刷新率在50Hz以上。通过用户体验调研,大多数用户认为ARSlice系统可以帮助理解CT图像。
5、结论(Conclusions):我们设计了一种帮助理解CT图像的交互式系统方案ARSlice。能够在用户端无显示信号线、无能耗的条件下实现低延迟的虚拟现实/增强现实体验,可有效帮助用户理解CT图像。
论文对系统的一些技术指标的改进方案及可能的其他应用场景进行了讨论。后续工作将进一步提供给专业医生使用。
[1] Raskar R, Welch G, Low K, Bandyopadhyay D. Shader lamps: Animating real objects with image-based illumination. In Proc. the 12th Eurographics Workshop on Rendering Techniques, June 2001, pp.89-102. DOI: 10.2312/EGWR/EGWR01/089-101. [2] Benko H, Ofek E, Zheng F, Wilson A D. FoveAR: Combining an optically see-through near-eye display with projector-based spatial augmented reality. In Proc. the 28th Annual ACM Symposium on User Interface Software &] Technology, November 2015, pp.129-135. DOI: 10.1145/2807442.2807493. [3] Lincoln P, Welch G, Nashel A, State A, Ilie A, Fuchs H. Animatronic shader lamps avatars. Virtual Reality, 2011, 15(2/3): 225-238. DOI: 10.1007/s10055-010-0175-5. [4] Lincoln P,Welch G, Nashel A, Ilie A, State A, Fuchs H. Animatronic shader lamps avatars. In Proc. the 8th IEEE International Symposium on Mixed and Augmented Reality, October 2009, pp.27-33. DOI: 10.1109/ISMAR.2009.5336503. [5] Narita G, Watanabe Y, Ishikawa M. Dynamic projection mapping onto deforming non-rigid surface using deformable dot cluster marker. IEEE Trans. Vis. Comput. Graph., 2017, 23(3): 1235-1248. DOI: 10.1109/TVCG.2016.2592910. [6] Wang L, Xu H, Tabata S, Hu Y, Watanabe Y, Ishikawa M. High-speed focal tracking projection based on liquid lens. In Proc. the 2020 ACM SIGGRAPH, August 2020, Article No. 15. DOI: 10.1145/3388534.3408333. [7] Garcı́a-Berná J A, Sanchez-Gomez J M, Hermanns J, Garcı́a-Mateos G, Alemán J L F. Calcification detection of abdominal aorta in CT images and 3D visualization in VR devices. In Proc. the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 2016, pp.4157-4160. DOI: 10.1109/EMBC.2016.7591642. [8] Azuma R. A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 1997, 6(4): 355-385. DOI: 10.1162/pres.1997.6.4.355. [9] Ibrahim A, Huynh B, Downey J, Höllerer T, Chun D, O’Donovan J. ARbis pictus: A study of vocabulary learning with augmented reality. IEEE Trans. Vis. Comput. Graph., 2018, 24(11): 2867-2874. DOI: 10.1109/TVCG.2018.2868568. [10] Buttussi F, Chittaro L. Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Trans. Vis. Comput. Graph., 2018, 24(2): 1063-1076. DOI: 10.1109/TVCG.2017.2653117. [11] Bai Z, Blackwell A F, Coulouris G. Using augmented reality to elicit pretend play for children with autism. IEEE Trans. Vis. Comput. Graph., 2015, 21(5): 598-610. DOI: 10.1109/TVCG.2014.2385092. [12] Menk C, Koch R. Truthful color reproduction in spatial augmented reality applications. IEEE Trans. Vis. Comput. Graph., 2013, 19(2): 236-248. DOI: 10.1109/TVCG.2012.146. [13] Liu X, Vlachou C, Qian F, Wang C, Kim K. Firefly: Untethered multi-user VR for commodity mobile devices. In Proc. the 2020 USENIX Annual Technical Conference, July 2020, pp.943-957. [14] Stauffert J, Niebling F, Latoschik M E. Simultaneous run-time measurement of motion-to-photon latency and latency jitter. In Proc. the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2020, pp.636-644. DOI: 10.1109/VR46266.2020.00086. [15] Ehnes J, Hirota K, Hirose M. Projected augmentation—Augmented reality using rotatable video projectors. In Proc. the 3rd IEEE and ACM International Symposium on Mixed and Augmented Reality, November 2004, pp.26-35. DOI: 10.1109/ISMAR.2004.47. [16] Schwerdtfeger B, Pustka D, Hofhauser A, Klinker G. Using laser projectors for augmented reality. In Proc. the 2008 ACM Symposium on Virtual Reality Software and Technology, October 2008, pp.134-137. DOI: 10.1145/1450579.1450608. [17] Jones B R, Sodhi R, Campbell R H, Garnett G, Bailey B P. Build your world and play in it: Interacting with surface particles on complex objects. In Proc. the 9th IEEE International Symposium on Mixed and Augmented Reality, October 2010, pp.165-174. DOI: 10.1109/ISMAR.2010.5643566. [18] Hua H, Gao C, Brown L D, Ahuja N, Rolland J P. Using a head-mounted projective display in interactive augmented environments. In Proc. the 4th International Symposium on Augmented Reality, October 2001, pp.217-223. DOI: 10.1109/ISAR.2001.970540. [19] Hamasaki T, Itoh Y, Hiroi Y, Iwai D, Sugimoto M. HySAR: Hybrid material rendering by an optical see-through head-mounted display with spatial augmented reality projection. IEEE Trans. Vis. Comput. Graph., 2018, 24(4): 1457-1466. DOI: 10.1109/TVCG.2018.2793659. [20] Hiroi Y, Itoh Y, Hamasaki T, Iwai D, Sugimoto M. HySAR: Hybrid material rendering by an optical see-through head-mounted display with spatial augmented reality projection. In Proc. the 2017 IEEE Virtual Reality, March 2017, pp.211-212. DOI: 10.1109/VR.2017.7892251. [21] Kim K, Billinghurst M, Bruder G, Duh H B, Welch G F. Revisiting trends in augmented reality research: A review of the 2nd decade of ISMAR (2008–2017). IEEE Trans. Vis. Comput. Graph., 2018, 24(11): 2947-2962. DOI: 10.1109/TVCG.2018.2868591. [22] Zhou F, Duh H B, Billinghurst M. Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In Proc. the 7th IEEE and ACM International Symposium on Mixed and Augmented Reality, September 2008, pp.193-202. DOI: 10.1109/ISMAR.2008.4637362. [23] Liu S, Cheng D, Hua H. An optical see-through head mounted display with addressable focal planes. In Proc. the 7th IEEE and ACM International Symposium on Mixed and Augmented Reality, September 2008, pp.33-42. DOI: 10.1109/ISMAR.2008.4637321. [24] Chakravarthula P, Dunn D, Aksit K, Fuchs H. FocusAR: Autofocus augmented reality eyeglasses for both real world and virtual imagery. IEEE Trans. Vis. Comput. Graph., 2018, 24(11): 2906-2916. DOI: 10.1109/TVCG.2018.2868532. [25] Maimone A, Georgiou A, Kollin J S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph., 2017, 36(4): Article No. 85. DOI: 10.1145/3072959.3073624. [26] Jang C, Bang K, Moon S, Kim J, Lee S, Lee B. Retinal 3D: Augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph., 2017, 36(6): Article No. 190. DOI: 10.1145/3130800.3130889. [27] Kikinis R, Shenton M E, Iosifescu D V, McCarley R W, Saiviroonporn P, Hokama H H, Robatino A, Metcalf D, Wible C, Portas C M, Donnino R M, Jolesz F A. A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans. Vis. Comput. Graph., 1996, 2(3): 232-241. DOI: 10.1109/2945.537306. [28] Wu J, Belle A, Hargraves R H, Cockrell C, Tang Y, Najarian K. Bone segmentation and 3D visualization of CT images for traumatic pelvic injuries. Int. J. Imaging Syst. Technol., 2014, 24(1): 29-38. DOI: 10.1002/ima.22076. [29] Hu Z, Zou J, Gui J, Rong J, Li Y, Xi D, Zheng H. Real-time visualization and interaction of three-dimensional human CT images. J. Comput., 2010, 5(9): 1335-1342. DOI: 10.4304/jcp.5.9.1335-1342. [30] Jung Y, Kim J, Feng D D. Dual-modal visibility metrics for interactive PET-CT visualization. In Proc. the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 28-September 1, 2012, pp.2696-2699. DOI: 10.1109/EMBC.2012.6346520. [31] Javan R, Rao A, Jeun B S, Herur-Raman A, Singh N, Heidari P. From CT to 3D printed models, serious gaming, and virtual reality: Framework for educational 3D visualization of complex anatomical spaces from within—The pterygopalatine fossa. J. Digit. Imaging, 2020, 33(3): 776-791. DOI: 10.1007/s10278-019-00315-y. [32] Xing J, Ai H, Lao S. Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses. In Proc. the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2009, pp.1200-1207. DOI: 10.1109/CVPR.2009.5206745. [33] Pirsiavash H, Ramanan D, Fowlkes C C. Globally-optimal greedy algorithms for tracking a variable number of objects. In Proc. the 24th IEEE Conference on Computer Vision and Pattern Recognition, June 2011, pp.1201-1208. DOI: 10.1109/CVPR.2011.5995604. [34] Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations. In Proc. the 7th IEEE International Conference on Computer Vision, September 1999, pp.666-673. DOI: 10.1109/ICCV.1999.791289. [35] Kato H, Billinghurst M. Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In Proc. the 2nd IEEE and ACM International Workshop on Augmented Reality, October 1999, pp.85-94. DOI: 10.1109/IWAR.1999.803809. [36] Gupta S, Jaynes C O. Active pursuit tracking in a projector-camera system with application to augmented reality. In Proc. the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, September 2005, Article No. 111. DOI: 10.1109/CVPR.2005.403. [37] Wilson A, Benko H, Izadi S, Hilliges O. Steerable augmented reality with the beamatron. In Proc. the 25th Annual ACM Symposium on User Interface Software and Technology, October 2012, pp.413-422. DOI: 10.1145/2380116.2380169. |
No related articles found! |
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |