›› 2013,Vol. 28 ›› Issue (1): 152-158.doi: 10.1007/s11390-013-1319-3

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

恶意敌手模型下的安全点乘协议

Bo Yang1 (杨波), Yong Yu2 (禹勇), and Chung-Huang Yang3 (杨中皇)   

  • 收稿日期:2011-10-11 修回日期:2012-04-05 出版日期:2013-01-05 发布日期:2013-01-05
  • 基金资助:

    This work was supported by the National Natural Science Foundation of China under Grant Nos. 60973134, 61173164, 61003232, and the Natural Science Foundation of Guangdong Province of China under Grant No. 10351806001000000.

A Secure Scalar Product Protocol Against Malicious Adversaries

Bo Yang1 (杨波), Yong Yu2 (禹勇), and Chung-Huang Yang3 (杨中皇)   

  1. 1. School of Computer Science, Shaanxi Normal University, Xi’an 710062, China;
    2. School of Computer Science and Engineering, University of Electronic Science and Technology of China Chengdu 610054, China;
    3. Graduate Institute of Information and Computer Education, National Kaohsiung Normal University, Taiwan, China
  • Received:2011-10-11 Revised:2012-04-05 Online:2013-01-05 Published:2013-01-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China under Grant Nos. 60973134, 61173164, 61003232, and the Natural Science Foundation of Guangdong Province of China under Grant No. 10351806001000000.

安全的点乘协议是一类特定的安全多方计算问题,其目的是参加计算的两个用户,根据各自掌握的秘密向量,联合起来计算向量的点乘,但都不将自己的秘密信息暴露给对方.安全的点乘协议已在保留隐私的数据挖掘、保留隐私的协同统计分析、保留隐私的几何计算中得到广泛应用.本文给出了在恶意敌手模型下的一个有效的安全点乘协议,协议基于两个基本工具,一是离散对数的知识证明,二是可验证的加密.由于避免使用了效率极低的分割-选择法,我们的方案比现有的方案有更高的效率.

Abstract: A secure scalar product protocol is a type of specific secure multi-party computation problem. Using this kind of protocol, two involved parties are able to jointly compute the scalar product of their private vectors, but no party will reveal any information about his/her private vector to another one. The secure scalar product protocol is of great importance in many privacy-preserving applications such as privacy-preserving data mining, privacy-preserving cooperative statistical analysis, and privacy-preserving geometry computation. In this paper, we give an efficient and secure scalar product protocol in the presence of malicious adversaries based on two important tools: the proof of knowledge of a discrete logarithm and the verifiable encryption. The security of the new protocol is proved under the standard simulation-based definitions. Compared with the existing schemes, our scheme offers higher efficiency because of avoiding inefficient cut-and-choose proofs.

[1] Tran D H, Ng W K, Lim H W et al. An efficient cacheable securescalar product protocol for privacy-preserving data mining.In Proc. the 13th Int. Conf. Data Warehousing andKnowledge Discovery, Aug. 29-Sept. 2, 2011, pp.354-366.
[2] Goethals B, Laur S, Lipmaa H, Mielikainen T. On privatescalar product computation for privacy-preserving data mining.In Proc. the 7th Int. Conf. Information Security andCryptology, Dec. 2004, pp.104-120.
[3] Vaidya J, Clifton C. Privacy preserving association rule miningin vertically partitioned data. In Proc. the 8th SIGKDDInt. Conf. Knowledge Discovery and Data Mining, July2002, pp.639-644.
[4] Du W, Atallah M. Privacy-preserving cooperative statisticalanalysis. In Proc. the 17th Annual Computer Security ApplicationsConference, Dec. 2001, pp.102-110.
[5] Atallah M J, Du W. Secure multiparty computational geometry.In Proc. the 7th International Workshop on Algorithmsand Data Structures, Aug. 2011, pp.165-179.
[6] Thomas T. Secure Two-party protocols for point inclusionproblem. Int. J. Network Security, 2009, 9(1): 1-7.
[7] Yang B, Sun A D, Zhang W Z. Secure two-party protocolson planar circles. Journal of Information & ComputationalScience, 2011, 8(1): 29-40.
[8] Yang B, Shao Z Y, Zhang W Z. Secure two-party protocolson planar convex hulls. Journal of Information & ComputationalScience, 2012, 9(4): 915-929.
[9] Du W, Zhan Z. Building decision tree classifier on privatedata. In Proc. IEEE ICDM Workshop on Privacy, Security,and Data Mining, Dec. 2002, Vol.14, pp.1-8.
[10] Amirbekyan A, Estivill-Castro V E C. A new efficient privacypreservingscalar product protocol. In Proc. the 6th AustralasianData Mining Conference, Dec. 2007, pp.209-214.
[11] Hazay C. Efficient two-party computation with simulationbased security [Ph.D. Thesis]. Senate of Bar-Ilan University,Israel, 2009.
[12] Goldreich O. Foundations of Cryptography (Vol.2): Basic Applications.London, UK: Cambridge University Press, 2004.
[13] Schnorr C P. Efficient signature generation by smart cards.Journal of Cryptology, 1991, 4(3): 161-174.
[14] Camenisch J, Shoup V. Practical verifiable encryption anddecryption of discrete logarithms. In Proc. CRYPTO 2003,Aug. 2003, pp.126-144.
[15] Paillier P. Public-key cryptosystems based on composite degreeresidue classes. In Proc. the 17th Theory and Applicationof Cryptographic Techniques, May 1999, pp.223-238.
[16] Jarecki S, Liu X. Efficient oblivious pseudorandom functionwith applications to adaptive OT and secure computation ofset intersection. In Proc. the 6th Theory of CryptographyConference, March 2009, pp.577-594.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈昉; 施伯乐;. A Conservative Multiversion Locking-Graph Scheduler Algorithm[J]. , 1991, 6(2): 161 -166 .
[2] 曾建超; Hidehiko Sanada; 徐光佑;. A Form-Correcting System of Chinese Characters Using a Model of Correcting Procedures of Calligraphists[J]. , 1995, 10(1): 23 -34 .
[3] 周巢尘;. An Overview of Duration Calculus[J]. , 1998, 13(6): 552 .
[4] 聂旭民; 郭青;. Renaming a Set of Non-Horn Clauses[J]. , 2000, 15(5): 409 -415 .
[5] . 一种新的 FCM 算法聚类有效性指标[J]. , 2006, 21(1): 137 -140 .
[6] . AVS 音频编码标准介绍[J]. , 2006, 21(3): 360 -365 .
[7] . 文本数据流聚类[J]. , 2008, 23(1): 112 -128 .
[8] . 并行算法处理核:一种开发并行性和改善可扩展性的新型IPsec算法引擎[J]. , 2008, 23(5 ): 792 -805 .
[9] Arianna DUlizia, Fernando Ferri, Anna Formica, Patrizia Grifoni. 近似地理信息查询[J]. , 2009, 24(6): 1109 -1124 .
[10] Soon-Gyu Jeong, sang-Jo Yoo. 无线个人区域网中支持QoS保证和无缝连接的分布式协调者选举模式[J]. , 2009, 24(6): 1138 -1148 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: