›› 2013,Vol. 28 ›› Issue (1): 165-187.doi: 10.1007/s11390-013-1321-9

所属专题: Software Systems

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

不确定条件下任务关键软件的模糊自适应

Qi-Liang Yang1,2 (杨启亮), Member, CCF, IEEE, Jian Lv1 (吕建), Fellow, CCF, Member, ACM, Xian-Ping Tao1 (陶先平), Member, CCF, IEEE, Xiao-Xing Ma1(马晓星), Member, CCF, IEEE Jian-Chun Xing2 (邢建春), Member, CCF, IEEE, and Wei Song1,3 (宋巍), Member, CCF, ACM, IEEE   

  • 收稿日期:2012-03-20 修回日期:2012-09-29 出版日期:2013-01-05 发布日期:2013-01-05
  • 基金资助:

    Supported by the National Natural Science Foundation of China under Grant Nos. 60736015, 61073031, 60973044, 61003019, and the National Basic Research 973 Program of China under Grant No. 2009CB320702.

Fuzzy Self-Adaptation of Mission-Critical Software Under Uncertainty

Qi-Liang Yang1,2 (杨启亮), Member, CCF, IEEE, Jian Lv1 (吕建), Fellow, CCF, Member, ACM Xian-Ping Tao1 (陶先平), Member, CCF, IEEE, Xiao-Xing Ma1(马晓星), Member, CCF, IEEE Jian-Chun Xing2 (邢建春), Member, CCF, IEEE, and Wei Song1,3 (宋巍), Member, CCF, ACM, IEEE   

  1. 1. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China;
    2. School of National Defense Engineering, PLA University of Science and Technology, Nanjing 210007, China;
    3. School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2012-03-20 Revised:2012-09-29 Online:2013-01-05 Published:2013-01-05
  • Supported by:

    Supported by the National Natural Science Foundation of China under Grant Nos. 60736015, 61073031, 60973044, 61003019, and the National Basic Research 973 Program of China under Grant No. 2009CB320702.

任务关键软件必须提供连续、在线的服务以确保关键任务的成功执行.自适应是确保不确定条件下任务关键软件服务质量和可用性所必需的一种能力.现今,鲜有技术来处理任务关键软件的自适应问题,而且现有绝大多数软件自适应方法也没有考虑自适应环中的不确定性问题.为了解决上述问题,我们提出了一种基于模糊控制的方法,即软件模糊自适应,以应对不确定条件下任务关键软件的自适应这一研究挑战.首先,我们提出了软件模糊自适应的概念框架,该框架分为感知、决策和动作三个阶段;同时建立了软件模糊自适应的形式模型,从而为我们的方法奠定了严格的数学基础.其次,我们开发了一种新颖的软件模糊自适应实现技术及其支撑工具,即SFSA工具包,来自动化软件模糊自适应的实现过程.最后,我们通过开发一个过程控制系统中的自适应任务关键软件来展示我们方法的有效性.验证实验表明,本文提出的基于模糊控制的方法是有效的且具有低的系统开销.

Abstract: Mission-critical software (MCS) must provide continuous, online services to ensure the successful accomplishment of critical missions. Self-adaptation is particularly desirable for assuring the quality of service (QoS) and availability of MCS under uncertainty. Few techniques have insofar addressed the issue of MCS self-adaptation, and most existing approaches to software self-adaptation fail to take into account uncertainty in the self-adaptation loop. To tackle this problem, we propose a fuzzy control based approach, i.e., Software Fuzzy Self-Adaptation (SFSA), with a view to deal with the challenge of MCS self-adaptation under uncertainty. First, we present the SFSA conceptual framework, consisting of sensing, deciding and acting stages, and establish the formal model of SFSA to lay a rigorous and mathematical foundation of our approach. Second, we develop a novel SFSA implementation technology as well as its supporting tool, i.e., the SFSA toolkit, to automate the realization process of SFSA. Finally, we demonstrate the effectiveness of our approach through the development of an adaptive MCS application in process control systems. Validation experiments show that the fuzzy control based approach proposed in this work is effective and with low overheads.

[1] Fowler K, Mission-critical and safety-critical development.IEEE Instrumentation & Measurement, 2004, 7(4): 52-59.
[2] Caslelli V, Harper R E, Heidelberger P et al. Proactive managementof software aging. IBM Journal of Research andDevelopment, 2001, 45(2): 311-332.
[3] Cheng B H C, Lemos R D, Giese H et al. Software engineeringfor self-adaptive systems: a research roadmap. InSoftware Engineering for Self-Adaptive Systems, B H Chenget al. (eds.), Springer-Verlag, 2009, pp.1-26.
[4] Kramer J, Magee J. Self-managed systems: An architecturalchallenge. In Proc. the 2007 International Conference onSoftware Engineering, May 2007, pp.259-268.
[5] Li D Y, Liu C Y, Du Y, Han X. Artificial intelligence withuncertainty. Journal of Software, 2004, 15(11): 1583-1594.(In Chinese)
[6] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(3):338-353.
[7] Zadeh L A. Fuzzy logic. IEEE Computer, 1988, 21(4): 83-93.
[8] Zadeh L A. Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems, 1999, 100(Supplement 1): 9-34.
[9] Cai K Y, Cangussu J W, DeCarlo R A, Mathur A P, Anoverview of software cybernetics. In Proc. the 11th AnnualInternational Workshop on Software Technology and EngineeringPractice, Sept. 2003, pp.77-86.
[10] Kokar M M, Baclawski K, Eracar Y A. Control theory-basedfoundations of self-controlling software. IEEE Intelligent Systems,1999, 14(3): 37-45.
[11] Shen J, Wang Q, Mei H. Self-adaptive software: Cyberneticperspective and an application server supported framework.In Proc. the 28th Annual International Computer Softwareand Applications Conference, Sept. 2004, pp.92-95.
[12] Diao Y, Hellerstein J L, Parekh S et al. A Control theory foundationfor self-managing computing systems. IEEE Journalon Selected Areas in Communications, 2005, 23(12): 2213-2222.
[13] Peng X, Chen B, Yu Y, Zhao W. Self-tuning of software systemsthrough goal-based feedback loop control. In Proc. the18th International Conference on Requirements Engineering,Sept. 27-Oct. 1, 2010, pp.104-107.
[14] Phoha V V, Nadgar A U, Ray A, Phoha S. Supervisory controlof software systems. IEEE Transactions on Computers,2004, 53(9): 1187-1199.
[15] Kephart J O, Chess D M. The vision of autonomic computing.IEEE Computer, 2003, 36(1): 41-50.
[16] Wang L X. A Course in Fuzzy Systems and Control. PrenticeHall, 1996.
[17] Passino K M, Yurkovich S. Fuzzy Control. Addison-WesleyLongman, 1997.
[18] Lakin L I. A fuzzy controller for aircraft control systems. InIndustrial Applications of Fuzzy Control, Sugeno M (eds.),Northholland, Amsterdam, 1985, pp.87-104.
[19] Liu B, Tang W. Modern Control Theory (3rd edition). Beijing:China Machine Press, 2006. (In Chinese)
[20] Yang Q, Xing J, Wang P. Design and implementation of theOPC server oriented to one LonWorks network. ComputerEngineering, 2007, 33(2): 228-230. (In Chinese)
[21] Liu J, Lim K W, Ho W et al. Using the OPC standard forreal-time process monitoring and control. IEEE Software,2005, 22(6): 54-59.
[22] Salehie M, Tahvildari L. Self-adaptive software: Landscapeand research challenges. ACM Transactions on Autonomousand Adaptive Systems, 2009, 4(2): Article No.4.
[23] Cheng S W. Rainbow: Cost-effective software architecturebasedself-adaptation [Ph.D. Thesis]. Carnegie Mellon University,USA, 2008.
[24] IBM. An architectural blueprint for autonomic computing(4th Edition). Technical Report. June 2006.
[25] Oreizy P, Gorlick M M, Taylor R N et al. An architecturebasedapproach to self-adaptive software. IEEE IntelligentSystems, 1999, 14(3): 54-62.
[26] Floch J, Hallsteinsen S, Stav E et al. Using architecture modelsfor runtime adaptability. IEEE Software, 2006, 23(2): 62-70.
[27] Yang Q L, Lv J, Li J L, Ma X X et al. Towards a fuzzycontrol-based approach to design of self-adaptive software. InProc. the 2nd Asia-Pacific Symposium on Internetware, Nov.2010, Article No.15.
[28] Yang Q L, L? J, Xing J C et al. Fuzzy control-based softwareself-adaptation: A case study in mission critical systems. InProc. the 35th Annual IEEE Conference on Computer Softwareand Applications, July 2011, pp.13-18.
[29] Subramanian N. Adaptable software architecture generationusing the NFR approach [Ph.D. Thesis]. University of Texasat Dallas, USA, May 2003.
[30] Garlan D, Cheng S W, Huang A C et al. Rainbow:Architecture-based self-adaptation with reusable infrastructure.IEEE Computer, 2004, 37(10): 46-54.
[31] Manoel E, Nielsen M J, Salahshour A et al. Problem determinationusing self-Managing autonomic technology. IBMredbooks, June 2005.
[32] Wu Y, Wu Y, Peng X et al. Implementing self-adaptive softwarearchitecture by reflective component model and dynamicAOP: A case study. In Proc. the 10th International Conferenceon Quality Software, July 2010, pp.288-293.
[33] Yang Z, Cheng B H C, Stirewalt R E K et al. An aspectorientedapproach to dynamic adaptation. In Proc. the 1stWorkshop of Self-Healing Software, Nov. 2002, pp.85-90.
[34] Janik A, Zielinski K. Adaptability mechanisms for autonomicsystem implementation with AAOP. Software Practice andExperience, 2010, 40(3): 209-223.
[35] Kiczales G, Lamping J, Mendhekar A, Maeda C et al. Aspectorientedprogramming. In Proc. the 11th ECOOP, June 1997,pp.220-242.
[36] Ang K H, Chong G, Li Y. PID control system analysis, design,and technology. IEEE Transactions on Control SystemsTechnology, 2005, 13(4): 559-576.
[37] McNeill F M, Thro E. Fuzzy Logic: A Practical Approach,Morgan Kaufmann Pub, 1994.
[38] Litoiu M, Woodside M, Zheng T. Hierarchical model-basedautonomic control of software systems. In Proc. Workshopon Design and Evolution of Autonomic Applications Software,May 2005, pp.1-7.
[39] Tziallas G, Theodoulidis B. A controller synthesis algorithmfor building self-adaptive software. Information and SoftwareTechnology, 2004, 46(11): 719-727.
[40] Karsai G, Ledeczi A, Sztipanovits J et al. An approach toself-adaptive software based on supervisory control. In Proc.the 2nd International Workshop on Self-Adaptive Software,May 2001, pp.24-38.
[41] Zhang R, Lu C, Abdelazher T F et al. ControlWare: A middlewarearchitecture for feedback control of software performance.In Proc. the 22nd International Conference on DistributedComputing Systems, July 2002, pp.301-310.
[42] Wang Q X. Towards a rule model for self-adaptive software.ACM SIGSOFT Software Engineering Notes, 2005, 30(1): 1-5.
[43] Cheng S W, Garlan D. Handling uncertainty in autonomicSystems. In Proc. 2007 International Workshop on Livingwith Uncertainties, November 2007.
[44] Cheng B H, Sawyer P, Bencomo N. A goal-based modelingapproach to develop requirements of an adaptive system withenvironmental uncertainty. In Proc. the 12th InternationalConference on Model Driven Engineering Languages and Systems,Oct. 2009, pp.468-483.
[45] Gmach D, Krompass S, Scholz A et al. Adaptive quality ofservice management for enterprise services. ACM Transactionson the Web, 2008, 2(1): Article No.8.
[46] Esfahani N, Kouroshfar E, Malek S. Taming uncertainty inself-adaptive software. In Proc. the 19th ACM SIGSOFTInternal Symposium on the Foundations of Software Engineering,Sept. 2011, pp.234-244.
[47] Chan H, Chieu T C. An approach to monitor applicationstates for self-managing (autonomic) system. In Proc. the18th ACM Sigplan Conference on Object-Oriented Programming,Systems, Languages, and Applications. Oct. 2003,pp.312-313.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Andrew I. Adamatzky;. Identification of Nonstationary Cellular Automata[J]. , 1992, 7(4): 379 -382 .
[2] 许建国; 魏文欣;. GUIDS: A Graphical User Interface Development System in UniECAD[J]. , 1994, 9(4): 342 -348 .
[3] 陈意云;. Head Boundedness of Nonterminating Rewritings[J]. , 1995, 10(3): 281 -284 .
[4] 徐殿祥; 郑国梁;. Towards a Declarative Semantics of Inheritance with Exceptions[J]. , 1996, 11(1): 61 -71 .
[5] 鞠九滨; 王勇; 尹玉;. Scheduling PVM Tasks[J]. , 1997, 12(2): 167 -176 .
[6] 管伟光; 解林; 马颂德;. Deformable Registration of Digital Images[J]. , 1998, 13(3): 246 -260 .
[7] David de Frutos-Escrig; Luis Liana-Diaz; Manuel Nunez;. An invitation to Friendly Testing[J]. , 1998, 13(6): 531 -545 .
[8] 李廉; 王继民;. Fast Theorem-Proving and Wu s Method[J]. , 1999, 14(5): 481 -486 .
[9] 彭伟; 卢锡城;. An Approach to Support IP Multicasting in Networks with Mobile Hosts[J]. , 1999, 14(6): 529 -538 .
[10] 张尧学; 王晓春; 顾钧;. An End-to-End QoS Control Model for Enhanced Internet[J]. , 2000, 15(6): 497 -508 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: