|
›› 2013,Vol. 28 ›› Issue (2): 267-277.doi: 10.1007/s11390-013-1328-2
所属专题: Computer Graphics and Multimedia
• Special Section on Selected Paper from NPC 2011 • 上一篇 下一篇
Gill Barequet1, Matthew Dickerson2, David Eppstein3, Fellow, ACM, David Hodorkovsky4 and Kira Vyatkina5, Member, ACM
Gill Barequet1, Matthew Dickerson2, David Eppstein3, Fellow, ACM, David Hodorkovsky4 and Kira Vyatkina5, Member, ACM
我们对一种新的Voronoi类型进行了回顾, 在这种Voronoi类型中距离的定义为从一点到一对点。我们基于几何元素, 比如圆和三角形, 考虑了一些更多的这种类型的距离函数并分析了最近和最远两点集diagrams图的结构和复杂度。此外, 我们还关注了两点集Voronoi图可以被替换的理解为线段的一点集Voronoi图。因此, 我们的结果比之前的更丰富。
[1] Aurenhammer F. Voronoi diagram - A survey of a fundamen-tal geometric data structure. ACM Computing Surveys, 1991,23(3): 345-405.[2] Okabe A, Boots A, Sugihara B, Chui S N. Spatial Tessela-tions: Concepts and Applications of Voronoi Diagrams (2ndedition). John Wiley and Sons, Inc., 2000.[3] GavrilovaML E. Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. SpringerPublishing Company, 2008.[4] Barequet G, Dickerson M, Drysdale III R L S. 2-point siteVoronoi diagrams. In Proc. the 6th International Workshopon Algorithms and Data Structures, Aug. 1999, pp.219-230.[5] Roth K F. On a problem of Heilbronn. Proc. London Math-ematical Society, 1951, 26: 198-204.[6] Vyatkina K, Barequet G. On 2-site Voronoi diagrams underarithmetic combinations of point-to-point distances. In Proc.the 7th Int. Symp. Voronoi Diagrams in Science and Engi-neering, June 2010, pp.33-41.[7] Dickerson M T, Eppstein D. Animating a continuous familyof two-site Voronoi diagrams (and a proof of a bound on thenumber of regions). In Proc. the 25th Annual Symposium onComputational Geometry, June 2009, pp.92-93.[8] Hanniel I, Barequet G. On the triangle-perimeter two-siteVoronoi diagram. In Proc. the 6th Int. Symp. VoronoiDiagrams, June 2009, pp.129-136.[9] Hodorkovsky D. 2-point site Voronoi diagrams [M.Sc. Thesis].Technion-Israel Inst. of Technology, Haifa, Israel, 2005.[10] Asano T, Tamaki H, Katoh N, Tokuyama T. Angular Voronoidiagram with applications. In Proc. the 3rd Int. Symp.Voronoi Diagrams in Science and Engineering, July 2006,pp.18-24.[11] Asano T, Katoh N, Tamaki H, Tokuyama T. Voronoi dia-grams with respect to criteria on vision information. In Proc.the 4th Int. Symp. Voronoi Diagrams in Science and Engi-neering, July 2007, pp.25-32.[12] Sharir M, Agarwal P K. Davenport-Schinzel Sequences andTheir Geometric Application. Cambridge University Press,1995.[13] de Berg M, Cheong O, van Kreveld M, Overmars M. Com-putational Geometry, Algorithms, and Applications (3rd edi-tion). Springer-Verlag, Berlin TELOS, 2008.[14] Ajtai M, Chvátal V, Newborn M, Szemerédi E. Crossing-freesubgraphs. Theory and Practice of Combinatorics; North-Holland Mathematics Studies, 1982, 60: 9-12.[15] Leighton F. Complexity Issues in VLSI. Cambridge, MA: MITPress, 1983. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |