›› 2013,Vol. 28 ›› Issue (2): 322-328.doi: 10.1007/s11390-013-1333-5

所属专题: Artificial Intelligence and Pattern Recognition

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

人脸识别中的结合图像分量随机贪婪方法和子空间方法的特征优化抽取研究

Mathu Soothana S. Kumar Retna Swami1 and Muneeswaran Karuppiah2   

  • 收稿日期:2012-01-22 修回日期:2013-01-11 出版日期:2013-03-05 发布日期:2013-03-05

Optimal Feature Extraction Using Greedy Approach for Random Image Components and Subspace Approach in Face Recognition

Mathu Soothana S. Kumar Retna Swami1 and Muneeswaran Karuppiah2   

  1. 1 Department of Information Technology, Noorul Islam University, Thuckalay 629180, India;
    2 Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, India
  • Received:2012-01-22 Revised:2013-01-11 Online:2013-03-05 Published:2013-03-05

本文提出了一种新的基于Gabor小波和主成分分析以及多重判别分析的图形特征抽取的统一框架。在此框架下, 贪婪方法被用于从最优随机图像分量中抽取特征。并且, 线性问题求解将特征向量投影到子空间以进行降维。面部特征抽取的主要处理过程在于Gabor过滤、主成分分析和多重判别分析。在FERET,ORL和YALE面部数据集上的实验表明, 结合最优随机图像分量抽取和多重判别分析得到的结果优于不使用子空间和投影的特征抽取方法(如最优随机图像分量抽取和主成分分析)。利用30%的训练数据集, 本文提出的特征抽取方法分别在FERET,ORL和YALE面部数据集上得到了96.25%,99.44%和100%的识别准确率。相比较于已有的文献所提出的其他面部特征抽取方法, 本文所提出方法得到实验结果具有明显的性能提升。

Abstract: An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper. In this framework, features are extracted from the optimal random image components using greedy approach. These feature vectors are then projected to subspaces for dimensionality reduction which is used for solving linear problems. The design of Gabor filters, PCA and MDA are crucial processes used for facial feature extraction. The FERET, ORL and YALE face databases are used to generate the results. Experiments show that optimal random image component selection (ORICS) plus MDA outperforms ORICS and subspace projection approach such as ORICS plus PCA. Our method achieves 96.25%, 99.44% and 100% recognition accuracy on the FERET, ORL and YALE databases for 30% training respectively. This is a considerably improved performance compared with other standard methodologies described in the literature.

[1] Zhao W, Chellappa R, Phillips P J, Rosenfeld A. Face recog-nition: A literature survey. ACM Computing Surveys, 2003,35(4): 399-458.

[2] Gottumukkal R, Asari V. An improved face recognition tech-nique based on modular PCA approach. Pattern RecognitionLetters, 2004, 25(4): 429-436.

[3] Zou J, Ji Q, Nagy G. A comparative study of local matchingapproach for face recognition. IEEE Transactions on ImageProcessing, 2007, 16(10): 2617-2628.

[4] Retna Swami M S S K, Karuppiah M. An improved face recog-nition technique based on modular LPCA approach. Journalof Computer Science, 2011, 7(12): 1900-1907.

[5] Pentland A, Moghaddam B, Starner T. View-based and mod-ular eigenspaces for face recognition. In Proc. IEEE Conf.Computer Vision and Pattern Recognition, June 1994, pp.84-91.

[6] Heisele B, Ho P, Wu J, Poggio T. Face recognition:Component-based versus global approaches. Computer Vi-sion and Image Understanding, 2003, 91(1): 6-21.

[7] Fang Y, Tan T, Wang Y. Fusion of global and local featuresfor face verification. In Proc. the 16th IEEE Int. Conf. Pat-tern Recognition, August 2002, Vol.2, pp.382-385.

[8] Lei Z, Liao S, Pietikäinen M, Li S. Face recognition by explor-ing information jointly in space, scale and orientation. IEEETransactions on Image Processing, 2011, 20(1): 247-256.

[9] Liu C, Wechsler H. Gabor feature based classification usingthe enhanced fisher linear discriminant model for face recog-nition. IEEE Trans. Image Processing, 2002, 11(4): 467-476.

[10] Su Y, Shan S, Chen X, Gao W. Hierarchical ensemble of globaland local classifiers for face recognition. IEEE Transactionson Image Processing, 2009, 18(8): 1885-1896.

[11] Turk M, Pentland A. Eigenfaces for recognition. Journal ofCognitive Neuroscience, 1991, 3(1): 71-86.

[12] Turk M, Pentland A. Face recognition using eigenfaces. InProc. IEEE Conference on Computer Vision and PatternRecognition, June 1991, pp.586-591.

[13] Sirovitch L, Kirby M. Low-dimensional procedure for thecharacterization of human faces. Journal of the Optical Soci-ety of America, 1987, 4(3): 519-524.

[14] Xiang C, Fan X, Lee T. Face recognition using recursive fisherlinear discriminant. IEEE Transactions on Image Processing,2006, 15(8): 2097-2105.

[15] Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. fisher-faces: Recognition using class specific linear projection. IEEETransactions on Pattern Analysis and Machine Intelligence,1997, 19(7): 711-720.

[16] Shen L, Bai L, Fairhurst M. Gabor wavelets and general dis-criminant analysis for face identification and verification. Im-age Vision and Computing, 2007, 25(5): 553-563.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘明业; 洪恩宇;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] 陈世华;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] 高庆狮; 张祥; 杨树范; 陈树清;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] 陈肇雄; 高庆狮;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] 黄河燕;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] 闵应骅; 韩智德;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[7] 唐同诰; 招兆铿;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[8] 闵应骅;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[9] 乔香珍;. An Efficient Parallel Algorithm for FFT[J]. , 1987, 2(3): 174 -190 .
[10] 朱鸿;. Some Mathematical Properties of the Functional Programming Language FP[J]. , 1987, 2(3): 202 -216 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: