›› 2013,Vol. 28 ›› Issue (3): 445-453.doi: 10.1007/s11390-013-1346-0

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

用于迭代接收机的简化MMSE MIMO检测算法

Juan Han1,2 (韩娟), Chao Tang3,4 (唐超), Qiu-Ju Wang1,2 (王秋菊), Zi-Yuan Zhu1,2 (朱子元) and Shan Tang1,2 (唐杉)   

  1. 1. Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China;
    2. Beijing Sylincom Technologies Co., Ltd., Beijing 100190, China;
    3. School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
    4. Beijing Science and Technology Information Center, Beijing 100035, China
  • 收稿日期:2012-10-05 修回日期:2013-03-01 出版日期:2013-05-05 发布日期:2013-05-05
  • 作者简介:Juan Han is an associate professor at Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, Beijing. She received the B.S. degree in telecommunications engineering and the Ph.D. degree in circuits and systems from Beijing University of Posts and Telecommunications, in 2004 and 2009, respectively. Her research interests include baseband signal processing, prototype verification of baseband chipset, validation of new technologies in broadband wireless communications, and system integrations.
  • 基金资助:

    This work was supported by the Major Project of the Beijing Natural Science Foundation under Grant No. 4110001 and the National Science and Technology Major Project of China under Grant No. 2012ZX03001021-003.

Simplified MMSE Detectors for Turbo Receiver in BICM MIMO Systems

Juan Han1,2 (韩娟), Chao Tang3,4 (唐超), Qiu-Ju Wang1,2 (王秋菊), Zi-Yuan Zhu1,2 (朱子元), and Shan Tang1,2 (唐杉)   

  1. 1. Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China;
    2. Beijing Sylincom Technologies Co., Ltd., Beijing 100190, China;
    3. School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China;
    4. Beijing Science and Technology Information Center, Beijing 100035, China
  • Received:2012-10-05 Revised:2013-03-01 Online:2013-05-05 Published:2013-05-05
  • Contact: 10.1007/s11390-013-1346-0
  • Supported by:

    This work was supported by the Major Project of the Beijing Natural Science Foundation under Grant No. 4110001 and the National Science and Technology Major Project of China under Grant No. 2012ZX03001021-003.

本文针对比特交织编码调制系统中的迭代接收机,提出了两种采用简化的最小均方误差滤波结合并行软干扰删除的方法。所述的方法用于迭代接收机的非首次迭代处理中,可以抑制残余干扰及噪声。通过将并行软干扰删除后的残余干扰及噪声建模为不相关的高斯随机变量,可以避免传统最小均方误差滤波中的矩阵求逆运算,从而在性能略有损失的前提下,大大降低运算复杂度。此外,通过采用最优的排序并行软干扰删除,简化最小均方误差方法与传统最小均方误差方法的性能差距进一步减小。蒙特卡洛仿真结果验证了,所提出的方法在各种多天线配置下,可以获得与传统最小均方误差方法几乎相同的性能,但计算复杂度大幅度降低。

Abstract: In this article, two methods adopting simplified minimum mean square error (MMSE) filter with soft parallel interference cancellation (SPIC) are discussed for turbo receivers in bit interleaved coded modulation (BICM) multiple-input multiple-output (MIMO) systems. The proposed methods are utilized in the non-first iterative process of turbo receiver to suppress residual interference and noise. By modeling the components of residual interference after SPIC plus the noise as uncorrelated Gaussian random variables, the matrix inverse for weighting vector of conventional MMSE becomes unnecessary. Thus the complexity can be greatly reduced with only slight performance deterioration. By introducing optimal ordering to SPIC, performance gap between simplified MMSE and conventional MMSE further narrows. Monte Carlo simulation results confirm that the proposed algorithms can achieve almost the same performance as the conventional MMSE SPIC in various MIMO configurations, but with much lower computational complexity.

[1] Tian L, Li J, Huang Y, Shi J, Zhou J. Seamless dual-link handover scheme in broadband wireless communication systems for high-speed rail. IEEE Journal on Selected Areas in Communications, 2012, 30(4): 708-718.

[2] Qian M, Hardjawana W, Li Y, Vucetic B, Shi J, Yang X. Intercell interference coordination through adaptive soft frequency reuse in LTE networks. In Proc. IEEE Wireless Communications and Networking Conference, April 2012, pp.1618-1623.

[3] Zhou Y, Ng T S N, Wang J, Higuchi K, Sawahashi M. OFCDM: A promising broadband wireless access technique. IEEE Communications Magazine, 2008, 46(3): 38-49.

[4] Zhou Y, Wang J, Sawahashi M. Downlink transmission of broadband OFCDM systems——Part I: Hybrid detection. IEEE Trans. Communications, 2005, 53(4): 718-729.

[5] Caire G, Taricco G, Biglieri E. Bit-interleaved coded modulation. IEEE Trans. Information Theory, 1998, 44(3): 927-946.

[6] Zehavi E. 8-PSK trellis codes for a Rayleigh channel. IEEE Trans. Communications, 1992, 40(5): 873-884.

[7] Li X, Ritcey J A. Bit-interleaved coded modulation with iterative decoding. In Proc. IEEE Int. Conference on Communicaitons, June 1999, Vol.2, pp.858-863.

[8] Haykin S, Sellathurai M, de Jong Y et al. Turbo-MIMO for wireless communications. IEEE Communications Magazine, 2004, 42(10): 48-53.

[9] Lin W, He C. A low complexity iterative receiver for coded MIMO-OFDM systems. In Proc. IEEE Int. Conference on Acoustics, Speech, and Signal Processing, April 2007, Vol.3, pp.441-444.

[10] Lee H, Lee B, Lee I. Iterative detection and decoding with an improved V-BLAST for MIMO-OFDM systems. IEEE Journal on Selected Areas in Communications, 2006, 24(3): 504-513.

[11] Namboodiri V, Liu H, Spasojeviμc P. Low complexity turbo equalization for mobile MIMO OFDM systems. In Proc.IEEE Int. Conference on Communications and Signal Processing, Feb. 2011, pp.255-260.

[12] Berrou C, Glavieux A. Near optimum error-correcting coding and decoding: Turbo codes. IEEE Trans. Communications, 1996, 44(10): 1261-1271.

[13] Viterbo E, Boutros J. A universal lattice code decoder for fading channels. IEEE Trans. Information Theory, 1999, 45(5): 1639-1642.

[14] Damen M O, Chkeif A, Belfiore J C. Lattice codes decoder for space-time codes. IEEE Communications Lett., 2000, 4(5): 161-163.

[15] Hochwald B M, Ten B S. Achieving near-capacity on a multiple-antenna channel. IEEE Trans. Communications, 2003, 51(3): 389-399.

[16] de Jong Y, Willink T J. Iterative tree search detection for MIMO wireless systems. In Proc. the 56th Vehicular Technology Conference, September 2002, pp.1041-1045.

[17] Lu B, Wang X, Narayanan K R. LDPC-based space-time coded OFDM systems over correlated fading channels: Performance analysis and receiver design. IEEE Trans. Communications, 2002, 50(1): 74-88.

[18] Dong B, Wang X, Doucet A. A new class of soft MIMO demodulation algorithms. IEEE Trans. Signal Processing, 2003, 51(11): 2752-2763.

[19] Gong G, Xia P. Iterative channel estimation and turbo equalization using ICI cancellation for MIMO-OFDM systems. In Proc. the 7th Int. Conference on Wireless Communications, Networking and Mobile Computing, September 2011, pp.1-4.

[20] Purkovic A, Yan M. Turbo equalization in an LTE uplink MIMO receiver. In Proc. Military Communications Conference, November 2011, pp.489-494.

[21] Wolniansky P W, Foschini G J, Golden G D, Valenzuela R A. V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In Proc. URSI Int. Symposium on Signals, Systems, and Electronics, Sept. 29Oct. 2, 1998, pp.295-300.

[22] Wang X, Poor H V. Iterative (turbo) soft interference cancellation and decoding for coded CDMA. IEEE Trans. Communications, 1999, 47(7): 1046-1061.

[23] Li Y, Xia X. Iterative demodulation/decoding methods based on Gaussian approximation for lattice based space-time coded systems. IEEE Trans. Wireless Communications, 2006, 5(8): 1976-1983.

[24] Shen F. Signal Statistical Analysis and Processing. Hefei, China: University of Science and Technology of China Press, 2001, pp.358-365. (In Chinese)

[25] Tüchler M, Koetter R, Singer A C. Turbo equalization: Principles and new results. IEEE Trans. Communications, 2002, 50(5): 754-767.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 戴汝为; 王珏; 陈欣;. A Syntactic-Semantic Approach for Pattern Recognition and Knowledge Representation[J]. , 1988, 3(3): 161 -172 .
[2] 闵应骅; Yashwant K. Malaiya; 金博平;. Aliasing Errors in Parallel Signature Analyzers[J]. , 1990, 5(1): 24 -40 .
[3] 蔡士杰; 张福炎;. A Fast Algorithm for Polygon Operations[J]. , 1991, 6(1): 91 -96 .
[4] 郑宇华; 谢立; 孙钟秀;. Full Or-Parallemism and Restricted And-Parallelism in BTM[J]. , 1994, 9(4): 373 -381 .
[5] $Hock C. Chan;. Translational Semantics for a Conceptual Level Query Language[J]. , 1995, 10(2): 175 -187 .
[6] 余盛可;. Reasoning in H-Net: A Unified Approach to Intelligent Hypermedia Systems[J]. , 1996, 11(1): 83 -89 .
[7] 彭澄廉;. Combining Gprof and Event-Driven Monitoring for Analyzing Distributed Programs:A Rough View of NCSA Mosaic[J]. , 1996, 11(4): 427 -432 .
[8] 李斌; 梁训东; 刘慎权;. A Surface Rendering Approach in 3D Rectilinear Datafield[J]. , 1998, 13(3): 220 -227 .
[9] 王兵山; 李舟军; 陈火旺;. Universal Abstract Consistency Class and Universal Refutation[J]. , 1999, 14(2): 165 -172 .
[10] 史忠植; 田启家; 李云峰;. RAO Logic for Multiagent Framework[J]. , 1999, 14(4): 393 -400 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: