|
›› 2013,Vol. 28 ›› Issue (3): 454-467.doi: 10.1007/s11390-013-1347-z
所属专题: Artificial Intelligence and Pattern Recognition
• Special Section on Selected Paper from NPC 2011 • 上一篇 下一篇
Wen-Yong Zhao1 (赵文勇), Shao-Lin Chen1 (陈绍林), Yuan Zheng1 (郑媛), and Si-Long Peng1,2 (彭思龙)
Wen-Yong Zhao1 (赵文勇), Shao-Lin Chen1 (陈绍林), Yuan Zheng1 (郑媛), and Si-Long Peng1,2 (彭思龙)
从单幅图像中的漫反射物体提取光照信息,容易受到两种因素的影响,一是数据的非完备性,二是数据的噪声干扰。基于球面调和基的光照模型进行光照一致性度量无法获得精确鲁棒的估计。我们提出了一种新的信号处理框架来描述光场。我们构造了一种冗余的在球面S2 具有几何对称特性的球面调和框架。球面调和框架定义在关于SO(3) 有限对称子群的对称轴生成的旋转矩阵表示上,其生成函数为球面调和基函数。与正交的球面调和基函数光照模型相比,基于冗余的球面调和框架光照模型不仅能直观上描述复杂的多方向的光照分布,而且在理论上能抑制噪声。随后,我们利用球面调和框架,理论分析了反射光照和入射光照之间的的关系,重建了被Lambert双向反射分布函数(BRDF) 滤波的光照函数。实验显示球面调和框架的系数能更好地鲁棒表征复杂光照环境。
[1] Basri R, Jacobs D W. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233.[2] Ramamoorthi R, Hanrahan P. An efficient representation for irradiance environment maps. In Proc. the 28th Conf. Computer Graphics and Interactive Techniques, August 2001, pp.497-500.[3] Ramamoorthi R, Hanrahan P. On the relationship between radiance and irradiance: Determining the illumination from images of a convex Lambertian object. Journal of the Optical Society of America A, Optics, Image Science and Vision, 2001, 18(10): 2448-2459.[4] Wen Z, Liu Z, Huang T S. Face relighting with radiance environment maps. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2003, Vol.2, pp.158-165.[5] Zhang L, Samaras D. Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 351-363.[6] Qing L, Shan S, Gao W. Face recognition with harmonic delighting. In Proc. Asian Conference on Computer Vision, Jan. 2004, pp.824-829.[7] Johnson M K, Farid H. Exposing digital forgeries in complex lighting environments. IEEE Transactions on Information Forensics and Security, 2007, 2(3): 450-461.[8] Mahajan D, Ramamoorthi R, Curless B. A theory of frequency domain invariants: Spherical harmonic identities for BRDF/lighting transfer and image consistency. IEEE Trans. Pattern Analysis and Machine Intelligence, 2008, 30(2): 197213.[9] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In Proc. the 26th Annual Conference on Computer Graphics and Interactive Techniques, Aug. 1999, pp.187-194.[10] Duffin R J, Schae?er A C. A class of nonharmonic fourier series. Trans. American Mathematical Society, 1952, 72(2): 341-366.[11] Kovacevic J, Chebira A. Life beyond bases: The advent of frames (part I). IEEE Signal Processing Magazine, 2007, 24(4): 86-104.[12] Kovacevic J, Chebira A. Life beyond bases: The advent of frames (part II). IEEE Signal Processing Magazine, 2007, 24(5): 115-125.[13] Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkh?auser, 2002.[14] Eldar Y C, Bolcskei H. Geometrically uniform frames. IEEE Transactions on Information Theory, 2003, 49(4): 993-1006.[15] Daubechies I. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992.[16] Ivanic J, Ruedenberg K. Rotation matrices for real spherical harmonics. Direct determination by recursion. The Journal of Physical Chemistry, 1996, 100(15): 6342-6347.[17] Jackson J D. Classical Electrodynamics (3rd edition). Wiley, 1998.[18] Sternberg S. Group Theory and Physics. Cambridge Univ. Press, 1995.[19] Kosmann-Schwarzbach Y. Groups and Symmetries. Springer, 2010.[20] Meyer B. On the symmetries of spherical harmonics. Canadian J. Mathematics, 1954, 135: 135-157.[21] Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression (PIE) database. In Proc. the 5th IEEE Int. Conf. Automatic Face and Gesture Recognition, May 2002, pp.4651.[22] Brunelli R, Messelodi S. Robust estimation of correlation with applications to computer vision. Pattern Recognition, 1995, 28(6): 833-841. |
No related articles found! |
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |