|
›› 2013,Vol. 28 ›› Issue (6): 1085-1096.doi: 10.1007/s11390-013-1399-0
• Special Section on Selected Paper from NPC 2011 • 上一篇 下一篇
Jian-Hua Gao1, 2 (高建华)
Jian-Hua Gao1, 2 (高建华)
Resolution Modulo通过添加重写规则将一阶Resolution扩展。在搜索证明的过程中,这些重写规则用来重写子句。在Resolution Modulo的第一个版本中,子句被重写成一般形式的命题。这些命题需要动态地转换成子句。如果重写系统是子句范式的,也就是,把子句重写成子句,那么就可以避免这些令人不愉快的动态转换。本文的工作是将任意一个重写系统转换成一个子句范式的重写系统,且保持了任意相继式无切证明的存在性。
[1] Dowek G, Hardin T, Kirchner C. Theorem proving modulo. Journal of Automated Reasoning, 2003, 31(1): 33-72.[2] Robinson J. A machine-oriented logic based on the resolution principle. Journal of the ACM, 1965, 12(1): 23-41.[3] Robinson J, Voronkov A. Handbook of Automated Reasioning. The MIT Press, 2001.[4] Dowek G. Proofs and Algorithms: An Introduction to Logic and Computability. Springer, 2011.[5] Dowek G. Polarized resolution modulo. In IFIP Advances in Information and Communication Technology 323, Calude C, Sassone V (eds.), Springer-Verlag, 2010, pp.182-196.[6] Burel G. Experimenting with deduction modulo. In Proc. the 23th International Conference on Automated Deduction, August 2011, pp.162-176.[7] Hermant O. Resolution is cut-free. Journal of Automated Reasoning, 2010, 44(3): 245-276.[8] Burel G, Kirchner C. Regaining cut admissibility in deduction modulo using abstract completion. Information and Computation, 2010, 208(2): 140-164. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |