›› 2014,Vol. 29 ›› Issue (4): 664-678.doi: 10.1007/s11390-014-1458-1

所属专题: 不能删除 Computer Architecture and Systems

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

硅物理不可克隆函数综述及基于环形振荡器的物理不可克隆函数研究进展

Ji-Liang Zhang1,2 (张吉良), Student Member, CCF, ACM, IEEE, Gang Qu1,* (屈钢), Senior Member, IEEE, Yong-Qiang Lv3,4 (吕勇强), and Qiang Zhou3,4 (周强), Senior Member, CCF, IEEE   

  1. 1. Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, U.S.A.;
    2. College of Information Science and Engineering, Hunan University, Changsha 410082, China;
    3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
    4. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
  • 出版日期:2014-07-05 发布日期:2014-07-05
  • 作者简介:Ji-Liang Zhang received the B.E. degree from Shandong University of Science and Technology, Qingdao, in 2009. In 2013?2014, he works as a research scholar at the Maryland Embedded Systems and Hardware Security Lab, Department of Electrical and Computer Engineering, University of Maryland, College Park. He is currently working toward his Ph.D. degree in the College of Information Science and Engineering, Hunan University. His research interests include hardware security and trust such as security for FPGAs, PUF & PUF-related applications, IC obfuscation, IP protection, and trusted computing.
  • 基金资助:

    This paper is supported in part by the National Natural Science Foundation of China under Grant No. 61228204, the scholarship from China Scholarship Council under Grant No. 201306130042, and the Ph.D. Candidates' Innovative Research Project of Hunan Province of China under Grant No. CX2012B142.

A Survey on Silicon PUFs and Recent Advances in Ring Oscillator PUFs

Ji-Liang Zhang1,2 (张吉良), Student Member, CCF, ACM, IEEE, Gang Qu1,* (屈钢), Senior Member, IEEE, Yong-Qiang Lv3,4 (吕勇强), and Qiang Zhou3,4 (周强), Senior Member, CCF, IEEE   

  1. 1. Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, U.S.A.;
    2. College of Information Science and Engineering, Hunan University, Changsha 410082, China;
    3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
    4. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
  • Online:2014-07-05 Published:2014-07-05
  • About author:Ji-Liang Zhang received the B.E. degree from Shandong University of Science and Technology, Qingdao, in 2009. In 2013?2014, he works as a research scholar at the Maryland Embedded Systems and Hardware Security Lab, Department of Electrical and Computer Engineering, University of Maryland, College Park. He is currently working toward his Ph.D. degree in the College of Information Science and Engineering, Hunan University. His research interests include hardware security and trust such as security for FPGAs, PUF & PUF-related applications, IC obfuscation, IP protection, and trusted computing.
  • Supported by:

    This paper is supported in part by the National Natural Science Foundation of China under Grant No. 61228204, the scholarship from China Scholarship Council under Grant No. 201306130042, and the Ph.D. Candidates' Innovative Research Project of Hunan Province of China under Grant No. CX2012B142.

硅物理不可克隆函数是一种受欢迎的硬件安全原语,它利用集成电路制造过程中的固有变化来产生芯片唯一的信息以用于各种安全相关的应用。例如物理不可克隆函数的信息能用于唯一标识芯片,产生秘钥,作为随机数发生器的种子或者给定激励产生对应的响应。由于集成电路制造变化的不可复制和不可预测性,硅物理不可克隆函数已经作为一种迷人的硬件安全原语在过去几年得到广泛的关注。本文首先给出当前硅物理不可克隆函数的研究现状,然后分析针对物理不可克隆函数的攻击及相应的对策,接着讨论基于物理不可克隆函数的应用,然后重点讲述基于环形振荡器的物理不可克隆函数研究进展,最后给出物理不可克隆函数的研究机遇和挑战。

Abstract: Silicon Physical Unclonable Function (PUF) is a popular hardware security primitive that exploits the intrinsic variation of IC manufacturing process to generate chip-unique information for various security related applications. For example, the PUF information can be used as a chip identifier, a secret key, the seed for a random number generator, or the response to a given challenge. Due to the unpredictability and irreplicability of IC manufacturing variation, silicon PUF has emerged as a promising hardware security primitive and gained a lot of attention over the past few years. In this article, we first give a survey on the current state-of-the-art of silicon PUFs, then analyze known attacks to PUFs and the countermeasures, after that we discuss PUF-based applications, highlight some recent research advances in ring oscillator PUFs, and conclude with some challenges and opportunities in PUF research and applications.

[1] Pappu R, Recht B, Taylor J, Gershenfeld N. Physical one-way functions. Science, 2002, 297(5589): 2026-2030.

[2] Gassend B, Clarke D, van Dijk M, Devadas S. Silicon physical random functions. In Proc. the 9th ACM Conference on Computer and Communications Security, Nov. 2002, pp.148160.

[3] Gassend B, Clarke D, van Dijk M, Devadas S. Controlled physical random functions. In Proc. the 18th Annual Computer Security Applications Conference, Dec. 2002, pp.149160.

[4] Nithyanand R, Solis J. A theoretical analysis: Physical unclonable functions and the software protection problem. In Proc. IEEE Symposium on Security and Privacy Workshops, May 2012, pp.1-11.

[5] Vrijaldenhoven S. Acoustical physical uncloneable functions[Master Thesis]. T.U. Eindhoven, 2004.

[6] Buchanan J D R, Russell P, Cowburn R P et al. Forgery: ‘Fingerprinting’ documents and packaging. Nature, 2005, 436(7050): 475.

[7] Bulens P, Standaert F, Quisquater J. How to strongly link data and its medium: The paper case. IET Inf. Secur., 2010, 4(3): 125-136.

[8] Hammouri G, Dana A, Sunar B. CDs have fingerprints too. In Proc. the 11th International Workshop on Cryptographic Hardware and Embedded Systems, Sept. 2009, pp.348-362.

[9] Indeck R, Muller M. Method and apparatus for fingerprinting magnetic media. US Pat. 5365586, 1994.

[10] DeJean G, Kirovski D. RF-DNA: Radio-frequency certificates of authenticity. In Proc. the 9th International Workshop on Hardware and Embedded Systems, Sept. 2007, pp.346-363.

[11] Jiang D, Chong C N. Anti-counterfeiting using phosphor PUF. In Proc. the 2nd International Conference on Anticounterfeiting, Security and Identification, Aug. 2008, pp.5962.

[12] Chong C N, Jiang D, Zhang J, Guo L. Anti-counterfeiting with a random pattern. In Proc. the 2nd International Conference on Emerging Security Information, Systems and Technologies, Aug. 2008, pp.146-153.

[13] Tuyls P, Skoric B, Stallinga S, Akkermans T, Ophey W. An information theoretic model for physical uncloneable functions. In Proc. International Symposium on Information Theory, Jun. 2004, p.139.

[14] Tuyls P, Škovi? B, Stallinga S, Akkermans A H M, Ophey W. Information-theoretic security analysis of physical uncloneable functions. In Proc. the 9th International Conference on Financial Cryptography and Data Security, Feb. 28-Mar. 3, 2005, pp.141-155.

[15] Ignatenko T, Schrijen G, Skoric B, Tuyls P, Willems F. Estimating the secrecy-rate of physical unclonable functions with the context-tree weighting method. In Proc. IEEE International Symposium on Information Theory, July 2006, pp.499503.

[16] Lofstrom K, Daasch W R, Taylor D. IC identification circuit using device mismatch. In Proc. IEEE International SolidState Circuits Conference, Feb. 2000, pp.372-373.

[17] Tuyls P, Schrijen G, Škori? B et al. Read-proof hardware from protective coatings. In Proc. the 8th International Workshop on Cryptographic Hardware and Embedded Systems, Oct. 2006, pp.369-383.

[18] Puntin D, Stanzione S, Iannaccone G. CMOS unclonable system for secure authentication based on device variability. In Proc. the 34th European Solid-State Circuits Conference, Sep. 2008, pp.130-133.

[19] Guajardo J, Škori? B, Tuyls P, Kumar S S, Bel T, Blom A H M, Schrijen G. Anti-counterfeiting, key distribution, and key storage in an ambient world via physical unclonable functions. Information Systems Frontiers, 2009, 11(1): 19-41.

[20] Helinski R, Acharyya D, Plusquellic J. A physical unclonable function defined using power distribution system equivalent resistance variations. In Proc. the 46th ACM/IEEE Design Automation Conference, July 2009, pp.676-681.

[21] Škori? B, Maubach S, Kevenaar T, Tuyls P. Informationtheoretic analysis of capacitive physical unclonable functions. J. Appl. Phys., 2006, 100(2): Article No. 024902.

[22] Holcomb D E, Burleson W P, Fu K. Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Transactions on Computers, 2009, 58(9): 1198-1210.

[23] Guajardo J, Kumar S S, Schrijen G, Tuyls P. FPGA intrinsic PUFs and their use for IP protection. In Proc. the 9th International Workshop on Cryptographic Hardware and Embedded Systems, Sept. 2007, pp.63-80.

[24] Kumar S S, Guajardo J, Maes R, Schrijen G, Tuyls P. Extended abstract: The butterfly PUF protecting IP on every FPGA. In Proc. IEEE International Workshop on HardwareOriented Security and Trust, Jun. 2008, pp.67-70.

[25] Krishna A, Narasimhan S, Wang X et al. MECCA: A robust low-overhead PUF using embedded memory array. In Proc. the 13th International Workshop on Cryptographic Hardware and Embedded Systems, Sept. 28-Oct. 1, 2011, pp.407-420.

[26] Zheng Y, Krishna A, Bhunia S. ScanPUF: Robust ultralowoverhead PUF using scan chain. In Proc. the 18th Asia and South Pacific Design Automation Conference, Jan. 2013, pp.626-631.

[27] Maes R, Tuyls P, Verbauwhede I. Intrinsic PUFs from flipflops on reconfigurable devices. In Proc. the 3rd Benelux Workshop on Information and System (WISSec), Nov. 2008, pp.1-17.

[28] Katzenbeisser S, Koçabas Ü, Ro?i? V et al. PUFs: Myth, fact or busted? A security evaluation of physically unclonable functions (PUFs) cast in silicon. In Proc. the 14th International Workshop on Cryptographic Hardware and Embedded Systems, Sept. 2012, pp.283-301.

[29] Helfmeier C, Boit C, Nedospasov D, Seifert J. Cloning physically unclonable functions. In Proc. IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Jun. 2013, pp.1-6.

[30] Lee J W, Lim D, Gassend B, Suh G E, van Dijk M, Devadas S. A technique to build a secret key in integrated circuits for identification and authentication applications. In Proc. Symposium on VLSI Circuits. Digest of Technical Papers, Jun. 2004, pp.176-179.

[31] Lim D, Lee J, Gassend B, Suh G E, van Dijk M, Devadas S. Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. Syst., 2005, 13(10): 1200-1205.

[32] Lin L, Srivathsa S, Krishnappa D K, Shabadi P, Burleson W. Design and validation of arbiter-based PUFs for sub-45-nm low-power security applications. IEEE Trans. Inf. Forensics Secur., 2012, 7(4): 1394-1403.

[33] Suh G E, Devadas S. Physical unclonable functions for device authentication and secret key generation. In Proc. the 44th ACM/IEEE Design Automation Conference, Jun. 2007, pp.9-14.

[34] Maiti A, Kim I, Schaumont P. A robust physical unclonable function with enhanced challenge-response set. IEEE Trans. Inf. Forensics Secur., 2012, 7(1): 333-345.

[35] Yin C, Qu G. Improving PUF security with regression-based distiller. In Proc. the 50th Annual Design Automation Conference, May 29-Jun. 7, 2013, pp.1-6.

[36] Shimizu K, Suzuki D, Kasuya T. Glitch PUF: Extracting information from usually unwanted glitches. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2012, E95A(1): 223-233.

[37] Anderson J H. A PUF design for secure FPGA-based embedded systems. In Proc. the 15th Asia and South Pacific Design Automation Conference, Jan. 2010, pp.1-6.

[38] Aarestad J, Ortiz P, Acharyya D, Plusquellic J. HELP: A hardware-embedded delay PUF. IEEE Des. Test, 2013, 30(2): 17-25.

[39] Nithyanand R, Sion R, Solis J. POSTER: Making the case for intrinsic personal physical unclonable functions (IP-PUFs). In Proc. the 18th ACM Conference on Computer and Communications Security, Oct. 2011, pp.825-828.

[40] Rührmair U, Sehnke F, Sölter J, Dror G, Devadas S, Schmidhuber J. Modeling attacks on physical unclonable functions. In Proc. the 17th ACM Conference on Computer and Communications Security, Oct. 2010, pp.237-249.

[41] Delvaux J, Verbauwhede I. Side channel modeling attacks on 65nm arbiter PUFs exploiting CMOS device noise. In Proc. IEEE Int. Symposium on Hardware-Oriented Security and Trust, Jun. 2013, pp.137-142.

[42] Rührmair U, Sölter J, Sehnke F, Xu X, Mahmoud A, Stoyanova V, Dror G, Schmidhuber J, Burleson W, Devadas S. PUF modeling attacks on simulated and silicon data. IEEE Trans. Inf. Forensics Secur., 2013, 8(11): 1876-1891.

[43] Saha I, Jeldi R R, Chakraborty R S. Model building attacks on physically unclonable functions using genetic programming. In Proc. IEEE International Symposium on HardwareOriented Security and Trust, Jun. 2013, pp.41-44.

[44] Gassend B, Lim D, Clarke D, van Dijk M, Devadas S. Identification and authentication of integrated circuits. Concurr. Comput. Pract. Exp., 2004, 16(11): 1077-1098.

[45] Majzoobi M, Koushanfar F, Potkonjak M. Testing techniques for hardware security. In Proc. IEEE International Test Conference, Oct. 2008.

[46] Majzoobi M, Koushanfar F, Potkonjak M. Lightweight secure PUFs. In Proc. IEEE/ACM International Conference on Computer-Aided Design, Nov. 2008, pp.670-673.

[47] Morozov S, Maiti A, Schaumont P. An analysis of delay based PUF implementations on FPGA. In Proc. the 6th International Symposium on Applied Reconfigurable Computing, Mar. 2010, pp.382-387.

[48] Majzoobi M, Koushanfar F. Devadas S. FPGA PUF using programmable delay lines. In Proc. IEEE International Workshop on Information Forensics and Security, Dec. 2010.

[49] Ozturk E, Hammouri G, Sunar B. Physical unclonable function with tristate buffers. In Proc. IEEE International Symposium on Circuits and Systems, May 2008, pp.3194-3197.

[50] Zhang J, Wu Q, Lyu Y, Zhou Q, Cai Y, Lin Y, Qu G. Design and implementation of a delay-based PUF for FPGA IP protection. In Proc. IEEE International Conference on Computer-Aided Design and Computer Graphics, Nov. 2013, pp.107-114.

[51] Dodis Y, Ostrovsky R, Reyzin L, Smith A. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput., 2008, 38(1): 97-139.

[52] Karakoyunlu D, Sunar B. Differential template attacks on PUF enabled cryptographic devices. In Proc. IEEE International Workshop on Information Forensics and Security, Dec. 2010.

[53] Dai J, Wang L. A study of side-channel effects in reliabilityenhancing techniques. In Proc. the 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Oct. 2009, pp.236-244.

[54] Merli D, Schuster D, Stumpf F, Sigl G. Side-channel analysis of PUFs and fuzzy extractors. In Proc. the 4th International Conference on Trust and Trustworthy Computing, Jun. 2011, pp.33-47.

[55] Schuster D. Side-channel analysis of physical unclonable functions (PUFs) [Master Thesis]. Technische Universität Wien, 2010.

[56] Merli D, Schuster D, Stumpf F, Sigl G. Semi-invasive EM attack on FPGA RO PUFs and countermeasures. In Proc. Workshop on Embedded Systems Security, Oct. 2011, Article No. 2.

[57] Mahmoud A, Rührmair U, Majzoobi M, Koushanfar F. Combined modeling and side channel attacks on strong PUFs. IACR Cryptology ePrint Archive, Article No. 632, 2013.

[58] Merli D, Heyszl J, Heinz B, Schuster D, Stumpf F, Sigl G. Localized electromagnetic analysis of RO PUFs. In Proc. IEEE International Symposium on Hardware-Oriented Security and Trust, Jun. 2013, pp.19-24.

[59] Merli D, Stumpf F, Sigl G. Protecting PUF error correction by codeword masking. IACR Cryptology ePrint Archive, Article No. 334, 2013.

[60] Gassend B, Van Dijk M, Clarke D, Torlak E, Devadas S, Tuyls P. Controlled physical random functions and applications. ACM Trans. Inf. Syst. Secur., 2008, 10(4): Article No. 3.

[61] Guajardo J, Kumar S S, Schrijen G, Tuyls P. Brand and IP protection with physical unclonable functions. In Proc. IEEE International Symposium on Circuits and Systems, May 2008, pp.3186-3189.

[62] Zhang J, Lin Y, Lyu Y, Qu G, Cheung R C C, Che W, Zhou Q, Bian J. FPGA IP protection by binding finite state machine to physical unclonable function. In Proc. the 23rd International Conference on Field Programmable Logic and Applications, Sept. 2013.

[63] Zhang J, Lin Y, Lyu Y, Cheung R C C, Che W, Zhou Q, Bian J. Binding hardware IPs to specific FPGA device via intertwining the PUF response with the FSM of sequential circuits. In Proc. the 21st IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, Apr. 2013, p.227.

[64] Guajardo J, Kumar S S, Schrijen G, Tuyls P. Physical unclonable functions and public-key crypto for FPGA IP protection. In Proc. International Conference on Field Programmable Logic and Applications, Aug. 2007, pp.189-195.

[65] Maes R, Van Herrewege A, Verbauwhede I. PUFKY: A fully functional PUF-based cryptographic key generator. In Proc. the 14th International Workshop Cryptographic Hardware and Embedded Systems, Sept. 2012, pp.302-319.

[66] Majzoobi M, Rostami M, Koushanfar F, Wallach D S, Devadas S. Slender PUF protocol: A lightweight, robust, and secure authentication by substring matching. In Proc. IEEE Symposium on Security and Privacy Workshops, May 2012, pp.33-44.

[67] Hammouri G, Öztürk E, Birand B, Sunar B. Unclonable lightweight authentication scheme. In Proc. the 10th International Conference on Information and Communications Security, Oct. 2008, pp.33-48.

[68] Majzoobi M, Koushanfar F. Time-bounded authentication of FPGAs. IEEE Trans. Inf. Forensics Secur., 2011, 6(3): 1123-1135.

[69] Öztürk E, Hammouri G, Sunar B. Towards robust low cost authentication for pervasive devices. In Proc. the 6th IEEE International Conference on Pervasive Computing and Communications, Mar. 2008, pp.170-178.

[70] Alkabani Y, Koushanfar F. Active control and digital rights management of integrated circuit IP cores. In Proc. International Conference on Compilers, Architectures and Synthesis for Embedded Systems, Oct. 2008, pp.227-234.

[71] Koushanfar F. Provably secure active IC metering techniques for piracy avoidance and digital rights management. IEEE Trans. Inf. Forensics Secur., 2012, 7(1): 51-63.

[72] Suh G E, O'Donnell C W, Devadas S. Aegis: A single-chip secure processor. IEEE Des. Test Comput., 2007, 24(6): 570580.

[73] Asim M, Guajardo J, Kumar S S, Tuyls P. Physical unclonable functions and their applications to vehicle system security. In Proc. the 69th IEEE Vehicular Technology Conference, Apr. 2009.

[74] Paral Z S, Devadas S. Reliable and effcient PUF-based key generation using pattern matching. In Proc. IEEE International Symposium on Hardware-Oriented Security and Trust, Jun. 2011, pp.128-133.

[75] Yu M, Devadas S. Secure and robust error correction for physical unclonable functions. IEEE Des. Test Comput., 2010, 27(1): 48-65.

[76] Anderson R, Kuhn M. Low cost attacks on tamper resistant devices. In Proc. the 5th International Workshop on Security Protocols, Apr. 1998, pp.125-136.

[77] Kocher P, Jaffe J, Jun B. Differential power analysis. In Proc. the 19th Advances in Cryptology, Aug. 1999, pp.388-397.

[78] Zhang J, Wu Q, Chen J. Research on design method of dynamic partial reconfigurable system. J. Softw. Eng., 2012, 6(2): 21-30.

[79] Gora M A, Maiti A, Schaumont P. A flexible design flow for software IP binding in FPGA. IEEE Trans. Industrial Informatics, 2010, 6(4): 719-728.

[80] Zhang J, Lin Y, Wu Q, Che W. Watermarking FPGA bitfile for intellectual property protection. Radioengineering, 2012, 21(2): 764-771.

[81] Zhang J, Lin Y, Che W, Wu Q, Lu Y, Zhao K. E±cient verification of IP watermarks in FPGA designs through lookup table content extracting. IEICE Electron. Express, 2012, 9(22): 1735-1741.

[82] Zhang J, Lin Y, Lyu Y,Wang X. A chaotic-based publicly verifiable FPGA IP watermark detection scheme. Sci. CHINA Inf. Sci., 2013, 43(9): 1096-1110.

[83] Maes R, Schellekens D, Verbauwhede I. A pay-per-use licensing scheme for hardware IP cores in recent SRAM-based FPGAs. IEEE Trans. Inf. Forensics Secur., 2012, 7(1): 98-108.

[84] Guneysu T, Moller B, Paar C. Dynamic intellectual property protection for reconfigurable devices. In Proc. International Conference on Field-Programmable Technology, Dec. 2007, pp.169-176.

[85] Kepa K, Morgan F, Kosciuszkiewicz K. IP protection in partially reconfigurable FPGAs. In Proc. International Conference on Field Programmable Logic and Applications, Aug. 2009, pp.403-409.

[86] Zhang J, Lin Y, Lyu Y, Qu G. A PUF-FSM binding scheme for FPGA IP protection and pay-per-device licensing. IEEE Trans. Inf. Forensics Secur., 2014. (to be appeared)

[87] Maes R, Tuyls P, Verbauwhede I. A soft decision helper data algorithm for SRAM PUFs. In Proc. IEEE International Symposium on Information Theory, Jun. 28-Jul. 3, 2009, pp.2101-2105.

[88] Vivekraja V, Nazhandali L. Circuit-level techniques for reliable physically uncloneable functions. In Proc. IEEE International Workshop on Hardware-Oriented Security and Trust, Jul. 2009, pp.30-35.

[89] Yin C E, Qu G. Kendall syndrome coding (KSC) for group-based ring-oscillator physical unclonable functions. Technical Report, ISR Technical Report 2011-13, 2011, http://drum.lib.umd.edu/handle/1903/12158, May 2014.

[90] Yin C E, Qu G. Temperature-aware cooperative ring oscillator PUF. In Proc. IEEE International Workshop on HardwareOriented Security and Trust, Jul. 2009, pp.36-42.

[91] Maiti A, Schaumont P. Improved ring oscillator PUF: An FPGA-friendly secure primitive. Journal of Cryptology, 2011, 24(2): 375-397.

[92] Maiti A, Schaumont P. Improving the quality of a physical unclonable function using configurable ring oscillators. In Proc. the 19th International Conference on Field-Programmable Logic and Applications, Aug. 31-Sept. 2, 2009, pp.703-707.

[93] Škori? B, Tuyls P, Ophey W. Robust key extraction from physical uncloneable functions. In Proc. the 3rd International Conference on Applied Cryptography and Network Security, Jun. 2005, pp.407-422.

[94] Yin C E, Qu G. LISA: Maximizing RO PUF's secret extraction. In Proc. IEEE International Symposium on HardwareOriented Security and Trust, Jun. 2010, pp.100-105.

[95] Yin C E, Qu G, Zhou Q. Design and implementation of a group-based RO PUF. In Proc. Design, Automation & Test in Europe Conference & Exhibition, Mar. 2013, pp.416-421.

[96] Gao M, Lai K, Qu G. A highly flexible ring oscillator PUF. In Proc. the 51st ACM/IEEE Design, Automation Conference, Jun. 2014.

[97] Gupta S, Vaish T, Chattopadhyay S. Flip-flop chaining architecture for power-effcient scan during test application. In Proc. the 14th Asian Test Symposium, Dec. 2005, pp.410413.

[98] Cui A, Chang C H. An improved publicly detectable watermarking scheme based on scan chain ordering. In Proc. IEEE Int. Symp. Circuits Syst., May 2009, pp.29-32.

[99] Chang C, Cui A. Synthesis-for-testability watermarking for field authentication of VLSI intellectual property. IEEE Trans. Circuits Syst. I Regul. Pap., 2010, 57(7): 1618-1630.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘明业; 洪恩宇;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] 陈世华;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] 高庆狮; 张祥; 杨树范; 陈树清;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] 陈肇雄; 高庆狮;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] 黄河燕;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] 闵应骅; 韩智德;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[7] 唐同诰; 招兆铿;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[8] 闵应骅;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
[9] 朱鸿;. Some Mathematical Properties of the Functional Programming Language FP[J]. , 1987, 2(3): 202 -216 .
[10] 李明慧;. CAD System of Microprogrammed Digital Systems[J]. , 1987, 2(3): 226 -235 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: