|
›› 2015,Vol. 30 ›› Issue (5): 1063-1072.doi: 10.1007/s11390-015-1582-6
所属专题: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining
• Special Section on Selected Paper from NPC 2011 • 上一篇 下一篇
Cun-Chao Tu(涂存超), Student Member, CCF, Zhi-Yuan Liu*(刘知远), Senior Member, CCF, Mao-Song Sun(孙茂松), Senior Member, CCF
Cun-Chao Tu(涂存超), Student Member, CCF, Zhi-Yuan Liu*(刘知远), Senior Member, CCF, Mao-Song Sun(孙茂松), Senior Member, CCF
一些微博服务鼓励用户给自己标注不同类型的标签, 来表示他们的属性和兴趣。这些用户标注的标签在个性化推荐以及信息检索领域中扮演着重要的角色。为了更好的理解用户标签的语义信息, 我们提出了标签关联模型, 来根据用户的上下文信息识别标签之间复杂的关联信息。一个标签的对应元素, 是指在上下文中, 与该标签语义相关的独一无二的元素。我们将微博用户的上下文信息划分成不同的类型, 例如发布的微博信息, 用户的资料, 以及邻居用户等等。根据已经标注标签的用户数据, 标签关联模型可以自动的学习出不同类型的信息与用户标签之间的关联关系。根据学习到的关联关系, 我们可以对标签的含义进行直观的解释。同时, 对于没有标注标签的用户, 该模型可以根据用户的上下文信息自动的推荐标签。在真实数据集上的实验证明, 我们的方法可以有效的识别出能够表示标签语义信息的关联关系。
[1] McPherson M, Smith-Lovin L, Cook J M. Birds of a feather:Homophily in social networks. Annual Review of Sociology, 2001, 27:415-444.[2] Liang H, Xu Y, Li Y, Nayak R, Tao X. Connecting users and items with weighted tags for personalized item recommendations. In Proc. the 21st ACM Conference on Hypertext and Hypermedia, June 2010, pp.51-60.[3] Peng J, Zeng D, Zhao H, Wang F. Collaborative filtering in social tagging systems based on joint item-tag recommendations. In Proc. the 19th ACM International Conference on Information and Knowledge Management, Oct. 2010, pp.809-818.[4] Zhen Y, Li W, Yeung D. TagiCoFi:Tag informed collaborative filtering. In Proc. the 3rd ACM Conference on Recommender Systems, Oct. 2009, pp.69-76.[5] Symeonidis P, Nanopoulos A, Manolopoulos Y. Tag recommendations based on tensor dimensionality reduction. In Proc. the 2008 ACM Conference on Recommender Systems, Oct. 2008, pp.43-50.[6] Rendle S, Marinho L B, Nanopoulos A, Schmidt-Thieme L. Learning optimal ranking with tensor factorization for tag recommendation. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 1, 2009, pp.727-736.[7] Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommendation. In Proc. the 3rd ACM International Conference on Web Search and Data Mining, Feb. 2010, pp.81-90.[8] J¨aschke R, Marinho L B, Hotho A, Schmidt-Thieme L, Stumme G. Tag recommendations in social bookmarking systems. AI Communications, 2008, 21(4):231-247.[9] Ohkura T, Kiyota Y, Nakagawa H. Browsing system for weblog articles based on automated folksonomy. In Proc. the 15th International Conference on World Wide Web, May 2006.[10] Mishne G. AutoTag:A collaborative approach to automated tag assignment for weblog posts. In Proc. the 15th International Conference on World Wide Web, May 2006, pp.953-954.[11] Lee S, Chun A. Automatic tag recommendation for the Web 2.0 blogosphere using collaborative tagging and hybrid ANN semantic structures. In Proc. the 6th WSEAS International Conference on Applied Computer Science, Apr. 2007, pp.88-93.[12] Katakis I, Tsoumakas G, Vlahavas I. Multilabel text classification for automated tag suggestion. In Proc. the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, volume 18, Sept. 2008.[13] Fujimura S, Fujimura K, Okuda H. Blogosonomy:Autotagging any text using bloggers' knowledge. In Proc. IEEE/WIC/ACM International Conference on Web Intelligence, Nov. 2007, pp.205-212.[14] Heymann P, Ramage D, Garcia-Molina H. Social tag prediction. In Proc. the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 2008, pp.531-538.[15] Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3:993-1022.[16] Krestel R, Fankhauser P, Nejdl W. Latent Dirichlet allocation for tag recommendation. In Proc. the 3rd ACM Conference on Recommender Systems, Oct. 2009, pp.61-68.[17] Si X, Sun M. Tag-LDA for scalable real-time tag recommendation. Journal of Computational Information Systems, 2009, 6(1):23-31.[18] Liu Z, Tu C, Sun M. Tag dispatch model with social network regularization for microblog user tag suggestion. In Proc. the 24th International Conference on Computational Linguistics, Dec. 2012, pp.755-764.[19] Bundschus M, Yu S, Tresp V, Rettinger A, Dejori M, Kriegel H. Hierarchical Bayesian models for collaborative tagging systems. In Proc. the 9th IEEE International Conference on Data Mining, Dec. 2009, pp.728-733.[20] Iwata T, Yamada T, Ueda N. Modeling social annotation data with content relevance using a topic model. In Proc. the 23rd Annual Conference on Neural Information Processing Systems, Dec. 2009, pp.835-843.[21] Blei D, Jordan M. Modeling annotated data. In Proc. the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 28-August 1, 2003, pp.127-134.[22] Griffiths T, Steyvers M. Finding scientific topics. Proc. the National Academy of Sciences of the United States of America, 2004, 101(Suppl 1):5228-5235.[23] Heinrich G. Parameter estimation for text analysis. Technical Report, vsonix GmbH + University of Leipzig, Germany, May 2005.[24] Andrieu C, de Freitas N, Doucet A, Jordan M. An introduction to MCMC for machine learning. Machine Learning, 2003, 50(1/2):5-43.[25] Manning C D, Raghavan P, Schütze H. Introduction to Information Retrieval, Volume 1. Cambridge University Press, Cambridge, 2008.[26] Mei Q, Cai D, Zhang D, Zhai C. Topic modeling with network regularization. In Proc. the 17th International Conference on World Wide Web, Apr. 2008, pp.101-110.[27] Chang J, Blei D M. Relational topic models for document networks. In Proc. the 12th International Conference on Artificial Intelligence and Statistics, Apr. 2009, pp.81-88.[28] Cohn D, Chang H. Learning to probabilistically identify authoritative documents. In Proc. ICML, June 29-July 2, 2000, pp.167-174. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |