|
›› 2015,Vol. 30 ›› Issue (5): 1073-1081.doi: 10.1007/s11390-015-1583-5
所属专题: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining
• Special Section on Selected Paper from NPC 2011 • 上一篇 下一篇
Ji-Bing Gong(宫继兵), Member, CCF, Li-Li Wang*(王立立), Student Member, CCF Sheng-Tao Sun(孙胜涛), Member, CCF, Si-Wei Peng(彭思维)
Ji-Bing Gong(宫继兵), Member, CCF, Li-Li Wang*(王立立), Student Member, CCFSheng-Tao Sun(孙胜涛), Member, CCF, Si-Wei Peng(彭思维)
随着经济的发展, 人们越来越重视自身的健康状况, 然而, 由于医疗资源严重受限, 大部分病人很难找到一个合适的医生进行诊断。在实际生活中, 医疗健康网络扮演着越来越重要的作用。本文尝试系统地研究如何在社会医疗网络(medical social networks, 简称MSNs)中进行医生推荐。具体来说是提出了一个新的混合多层的医生推荐架构来解决这个问题。作为一个新的热点课题, 医生推荐研究存在以下挑战, 分别是:如何挖掘医患关系, 怎样进行医生推荐以及怎样评估所提的推荐模型的精度。为了解决以上挑战, 我们尝试系统的调研医生推荐问题, 即:在医疗社会网络中设计一个统一的医生推荐架构, 系统地分析并抽取真实医疗社会网络的特征, 最后提出基于随机游走模型的医生推荐模型(RWR-Model), 本文的研究贡献如下:(1)提出了一个基于时间约束的概率因子图模型(简称TPFG)来挖掘"医生-病人"关系;(2)考虑到医生推荐需求, 定义并形成了四个网络特征, 然后抽取这四个特征;(3)提出了一个创新的混合多层架构以解决医生推荐问题。在此架构中提出了使用随机游走模型(RWR-Model)的医生推荐, 并根据信息检索指标评估推荐精度。通过真实实验验证了所提方法的有效性。实验结果表明本文方法能从网络中获得很好的医患关系挖掘精度, 所提出的RWR-Model医生推荐模型的性能也比传统Ranking SVM和个性化医生推荐模型等基线算法都要好。
[1] Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. Addison Wesley, 1999, pp.98-105.[2] Salton G, Wong A, Yang C S. A vector pace model for automatic indexing. Communications of the ACM, 1975, 18(11):613-620.[3] Wang C, Han J W, Jia Y T, Tang J, Zhang D, Yu Y T, Guo J Y. Mining advisor-advisee relationships from research publication networks. In Proc. the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 2010, pp.203-212.[4] Yang Z, Tang J, Zhang J, Li J Z, Gao B. Topic-level random walk through probabilistic model. In Lecture Notes in Computer Science 5446, Li Q, Feng L, Pei J, Wang S X, Zhou X F, Zhu Q M (eds.), Springer Berlin Heidelberg, 2009, pp.162-173.[5] Macdonald C, Ounis I. Voting for candidates:Adapting data fusion techniques for an expert search task. In Proc. the 15th ACM International Conference on Information and Knowledge Management, November 2006, pp.387-396.[6] Gong J B, Tang J, Fong A C M. ACTPred:Activity prediction in mobile social networks. Tsinghua Science and Technology, 2014, 19(3):265-274.[7] Hu L, Song G H, Xie Z Z, Zhao K. Personalized recommendation algorithm based on preference features. Tsinghua Science and Technology, 2014, 19(3):293-299.[8] Shen Y L, Jin R M. Learning personal + social latent factor model for social recommendation. In Proc. the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2012, pp.1303-1311.[9] Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering. In Proc. the 24th International Conference on Machine Learning, June 2007, pp.791-798.[10] Gong J B, Sun S T. Individual doctor recommendation model on medical social network. In Proc. the 7th ADMA, Part II, December 2011, pp.69-81.[11] Yang Z, Tang J, Wang B, Guo J Y, Li J Z, Chen S C. Expert2B ólè:From expert finding to Bólè search. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 1, 2009, pp.1-4.[12] Tang J, Sun J M, Wang C, Yang Z. Social influence analysis in large-scale networks. In Proc. the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 1, 2009, pp.807-816.[13] Kuhn H W. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 1955, 2(1/2):83-97.[14] Karimzadehgan M, Zhai C X, Belford G. Multi-aspect expertise matching for review assignment. In Proc. the 17th ACM Conference on Information and Knowledge Management, October 2008, pp.1113-1122.[15] Mimno D, McCallum A. Expertise modeling for matching papers with reviewers. In Proc. the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2007, pp.500-509.[16] Karimzadehgan M, Zhai C X. Constrained multi-aspect expertise matching for committee review assignment. In Proc. the 18th ACM Conference on Information and Knowledge Management, November 2009, pp.1697-1700.[17] Hartvigsen D, Wei J C, Czuchlewski R. The conference paper-reviewer assignment problem. Decision Sciences, 1999, 30(3):865-876.[18] Tang J, Wu S, Sun J M, Su H. Cross-domain collaboration recommendation. In Proc. the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2012, pp.1285-1293.[19] Küçüktunç O, Saule E, Kaya K, Ç atalyürek Ü V. Diversifying citation recommendations. ACM Transactions on Intelligent Systems and Technology, 2015, 5(4):55:1-55:21[20] Tang J, Jin R, Zhang J. A topic modeling approach and its integration into the random walk framework for academic search. In Proc. the 8th ICDM, December 2008, pp.1055-1060.[21] Feng W, Wang J Y. Incorporating heterogeneous information for personalized tag recommendation in social tagging systems. In Proc. the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2012, pp.1276-1284.[22] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 2001, 47(2):498-519.[23] Tang J, Zhang J, Yao L M, Li J Z, Zhang L, Su Z. Arnet- Miner:Extraction and mining of academic social networks. In Proc. the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2008, pp.990-998.[24] Tang J, Fong A C M, Wang B, Zhang J. A unified probabilistic framework for name disambiguation in digital library. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(6):975-987.[25] Gong J B, Lu S L, Wang R, Cui L. PDhms:Pulse diagnosis via wearable healthcare sensor network. In Proc. the 2011 IEEE International Conference on Communications, June 2011.[26] Joachims T. Training linear SVMs in linear time. In Proc. the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2006, pp.217-226. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |