|
›› 2015,Vol. 30 ›› Issue (5): 1120-1129.doi: 10.1007/s11390-015-1587-1
所属专题: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining
• Special Section on Selected Paper from NPC 2011 • 上一篇 下一篇
Fei Jiang1,2,3(姜飞), Yi-Qun Liu1,2,3*(刘奕群), Senior Member, CCF, Huan-Bo Luan1,2,3(栾焕博)Jia-Shen Sun4(孙甲申), Xuan Zhu4(朱璇), Min Zhang1,2,3(张敏), Senior Member, CCF, Shao-Ping Ma1,2,3(马少平)
Fei Jiang1,2,3(姜飞), Yi-Qun Liu1,2,3*(刘奕群), Senior Member, CCF, Huan-Bo Luan1,2,3(栾焕博)Jia-Shen Sun4(孙甲申), Xuan Zhu4(朱璇), Min Zhang1,2,3(张敏), Senior Member, CCF, Shao-Ping Ma1,2,3(马少平)
在微博环境下, 表情符被广泛用来表达各种各样的情感。因此, 在微博情感分析领域, 它们被用做最重要的情感信号之一。目前大多数工作使用一些表达明确情感意义的表情符作为带噪音的标签或者类似的情感信号。然而, 在实际的微博环境中, 大量的表情符被广泛采用, 每个表情符都有其独自的情感含义。此外, 相当数量的表情符并没有明确的情感意义。上述现象不应被忽略。针对前人工作的不足, 我们提出了一种表情符空间的方法来获取词语的情感表示。该方法利用无标注数据将词语映射到表情符空间, 从而构造词语的情感表示。在NLP&CC2013的语料上的实验证明, 我们的方法能够有效地使用更为丰富的表情符信号, 从而获得比前人工作以及评测任务最好结果更好的实验结果。
[1] Jansen B J, Zhang M, Sobel K, Chowdury A. Twitter power:Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 2009, 60(11):2169-2188.[2] Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. Journal of Computational Science, 2011, 2(1):1-8.[3] Zhao J, Dong L, Wu J, Xu K. MoodLens:An emoticonbased sentiment analysis system for Chinese tweets. In Proc. the 18th KDD, Aug. 2012, pp.1528-1531.[4] Jiang L, Yu M, Zhou M, Liu X, Zhao T. Target-dependent Twitter sentiment classification. In Proc. the 49th ACL, Jun. 2011, pp.151-160.[5] Liu K L, Li W J, Guo M. Emoticon smoothed language models for Twitter sentiment analysis. In Proc. the 26th AAAI, Jul. 2012.[6] Bermingham A, Smeaton A F. Classifying sentiment in microblogs:Is brevity an advantage? In Proc. the 19th ACM International Conference on Information and Knowledge Management, Oct. 2010, pp.1833-1836.[7] Kouloumpis E, Wilson T, Moore J. Twitter sentiment analysis:The good the bad and the OMG! In Proc. the 5th ICWSM, Jul. 2011.[8] Barbosa L, Feng J. Robust sentiment detection on Twitter from biased and noisy data. In Proc. the 23rd International Conference on Computational Linguistics:Posters, Aug. 2010, pp.36-44.[9] Pak A, Paroubek P. Twitter as a corpus for sentiment analysis and opinion mining. In Proc. LREC, May 2010.[10] Go A, Bhayani R, Huang L. Twitter sentiment classification using distant supervision. Technical Report, Stanford University, 2009.[11] Weichselbraun A, Gindl S, Scharl A. Enriching semantic knowledge bases for opinion mining in big data applications. Knowledge-Based Systems, 2014, 69:78-85.[12] Nielsen F Å. A new ANEW:Evaluation of a word list for sentiment analysis in microblogs. arXiv:1103.2903, 2011. http://arxiv.org/abs/1103.2903v1, Jun. 2015.[13] Esuli A, Sebastiani F. SENTIWORDNET:A publicly available lexical resource for opinion mining. In Proc. the 5th LREC, May 2006, pp.417-422.[14] Hu X, Tang J, Gao H, Liu H. Unsupervised sentiment analysis with emotional signals. In Proc. the 22nd International Conference on World Wide Web, May 2013, pp.607-618.[15] Cui A, Zhang M, Liu Y, Ma S. Emotion tokens:Bridging the gap among multilingual Twitter sentiment analysis. In Proc. the 7th AIRS, Dec. 2011, pp.238-249.[16] Bifet A, Frank E. Sentiment knowledge discovery in Twitter streaming data. In Proc. the 13th DS, Oct. 2010, pp.1-15.[17] Davidov D, Tsur O, Rappoport A. Enhanced sentiment learning using Twitter hashtags and smileys. In Proc. the 23rd International Conference on Computational Linguistics:Posters, Aug. 2010, pp.241-249.[18] Bengio Y, Ducharme R, Vincent P, Jauvin C. A neural probabilistic language model. Journal of Machine Learning Research, 2003, 3:1137-1155.[19] Mnih A, Hinton G E. A scalable hierarchical distributed language model. In Proc. the 22nd Advances in Neural Information Processing Systems, Dec. 2008, pp.1081-1088.[20] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. arXiv:1310.4546, 2013. http://arxiv.org/abs/1310.4546v1, Jun. 2015.[21] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv:1301.3781, 2013. http://arxiv.org/abs/1301.3781v3, Jun. 2015.[22] Zhang H P, Yu H K, Xiong D Y, Liu Q. HHMM-based Chinese lexical analyzer ICTCLAS. In Proc. the 2nd SIGHAN Workshop on Chinese Language Processing, Volume 17, Jul. 2003, pp.184-187.[23] Chang C C, Lin C J. LIBSVM:A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3):27:1-27:27.[24] Zhang W, Liu J, Guo X. Sentiment Lexicon for Students. Encyclopedia of China Publishing House, 2004. (in Chinese) |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |