›› 2018,Vol. 33 ›› Issue (1): 190-206.doi: 10.1007/s11390-017-1766-3

所属专题: Artificial Intelligence and Pattern Recognition Data Management and Data Mining

• Special Section on Selected Paper from NPC 2011 • 上一篇    下一篇

本地达人会去何处?一种基于用户位置-话题相似度的Top-N地点推荐方法

Rong Wang, Tian-Lei Hu*, Gang Chen, Member, CCF, ACM, IEEE   

  1. Database Laboratory, College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
  • 收稿日期:2016-09-19 修回日期:2017-06-09 出版日期:2018-01-05 发布日期:2018-01-05
  • 通讯作者: Tian-Lei Hu E-mail:htl@zju.edu.cn
  • 作者简介:Rong Wang is a Ph.D. candidate in the Database Laboratory of College of Computer Science and Technology, Zhejiang University, Hangzhou. His research interests include data mining and information retrieval.
  • 基金资助:

    This work is supported by the National Natural Science Foundation of China under Grant No. M1552002 and the National High Technology Research and Development Program of China under Grant No. 2014AA015205.

Where Do Local Experts Go? Evaluating User Geo-Topical Similarity for Top-N Place Recommendation

Rong Wang, Tian-Lei Hu*, Gang Chen, Member, CCF, ACM, IEEE   

  1. Database Laboratory, College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
  • Received:2016-09-19 Revised:2017-06-09 Online:2018-01-05 Published:2018-01-05
  • Contact: Tian-Lei Hu E-mail:htl@zju.edu.cn
  • About author:Rong Wang is a Ph.D. candidate in the Database Laboratory of College of Computer Science and Technology, Zhejiang University, Hangzhou. His research interests include data mining and information retrieval.
  • Supported by:

    This work is supported by the National Natural Science Foundation of China under Grant No. M1552002 and the National High Technology Research and Development Program of China under Grant No. 2014AA015205.

最近几年,基于位置的社交网络得到了迅速增长.Top-N地点推荐,目的在于为每个用户推荐N个他最喜欢的新地点,它在近年来逐渐变得重要.然而传统的解决方法通常简单选取附近最流行的N个地点,或者利用协同过滤方法把每个地点当做一个离散项,忽视了地点之间的地理与语义关系.我们提出了GoTo方法,这是一种基于协同过滤的Top-N地点推荐方法.与传统的方法比起来,GoTo的主要思想是利用本地达人的访问历史实现高精度推荐.对于任何一个目标用户,他的本地达人是与他活动范围相近,且兴趣类似的用户.为了有效找出本地达人,我们设计了一种新型的用户相似度量,它结合了基于高斯混合模型的地理相似度量,以及基于话题模型的话题相似度量.我们的实验表明,通过引入本地达人的概念,GoTo能够大大提高传统协同过滤地点推荐方法的精确度.

Abstract: Recent years have witnessed the ever-growing popularity of location-based social network (LBSN) services. Top-N place recommendation, which aims at retrieving N most appealing places for a target user, has thus gained increasing importance. Yet existing solutions to this problem either provide non-personalized recommendations by selecting nearby popular places, or resort to collaborative filtering (CF) by treating each place as an independent item, overlooking the geographical and semantic correlations among places. In this paper, we propose GoTo, a collaborative recommender that provides top-N personalized place recommendation in LBSNs. Compared with existing methods, GoTo achieves its effectiveness by exploiting the wisdom of the so-called local experts, namely those who are geographically close and have similar preferences with regard to a certain user. At the core of GoTo lies a novel user similarity measure called geo-topical similarity, which combines geographical and semantic correlations among places for discovering local experts. In specific, the geo-topical similarity uses Gaussian mixtures to model users' real-life geographical patterns, and extracts users' topical preferences from the attached tags of historically visited places. Extensive experiments on real LBSN datasets show that compared with baseline methods, GoTo can improve the performance of top-N place recommendation by up to 50% in terms of accuracy.

[1] González M C, Hidalgo C A, Barabási A L. Understanding individual human mobility patterns. Nature, 2008, 453(7196):779-782.

[2] Ye M, Yin P F, Lee W C. Location recommendation for location-based social networks. In Proc. the 18th SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, November 2010, pp.458-461.

[3] Ye M, Yin P F, Lee W C, Lee D L. Exploiting geographical influence for collaborative point-of-interest recommendation. In Proc. the 34th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, July 2011, pp.325-334.

[4] Horozov T, Narasimhan N, Vasudevan V. Using location for personalized POI recommendations in mobile environments. In Proc. Int. Symp Applications and the Internet, Jan. 2006, pp.124-129.

[5] Levandoski J J, Sarwat M, Eldawy A, Mokbel M F. LARS:A location-aware recommender system. In Proc. the 28th Int. Conf. Data Engineering, April 2012, pp.450-461.

[6] McPherson M, Smith-Lovin L, Cook J M. Birds of a feather:Homophily in social networks. Annual Review of Sociology, 2001, 27:415-444.

[7] Ferman A M, Errico J H, van Beek P, Sezan M I. Contentbased filtering and personalization using structured metadata. In Proc. the 2nd ACM/IEEE-CS Joint Conf. Digital Libraries, July 2002.

[8] Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations. In Proc. the 18th National Conf. Artificial Intelligence, July 28-August 1, 2002, pp.187-192.

[9] Lops P, De Gemmis M, Semeraro G. Content-based recommender systems:State of the art and trends. In Recommender Systems Handbook, Ricci F, Rokach L, Shapira B, Kantor P B (eds.), Springer, 2011, pp.73-105.

[10] Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. In Proc. the 14th Conf. Uncertainty in Artificial Intelligence, July 1998, pp.43-52.

[11] Herlocker J L, Konstan J A, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In Proc. the 22nd Annual Int. ACM SIGIR Conf. Research and Development in Information Retrieval, August 1999, pp.230-237.

[12] Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms. In Proc. the 10th Int. Conf. World Wide Web, May 2001, pp.285-295.

[13] George T, Merugu S. A scalable collaborative filtering framework based on co-clustering. In Proc. the 5th IEEE Int. Conf. Data Mining, November 2005 pp.625-628.

[14] Billsus D, Pazzani M J. Learning collaborative information filters. In Proc. the 15th Int. Conf. Machine Learning, July 1998, pp.46-54.

[15] Heckerman D, Chickering D M, Meek C, Rounthwaite R, Kadie C. Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 2001, 1:49-75.

[16] Ma H, King I, Lyu M R. Learning to recommend with social trust ensemble. In Proc. the 32nd Int. ACM SIGIR Conf. Research and Development in Information Retrieval, July 2009, pp.203-210.

[17] Konstas I, Stathopoulos V, Jose J M. On social networks and collaborative recommendation. In Proc. the 32nd Int. ACM SIGIR Conf. Research and Development in Information Retrieval, July 2009, pp.195-202.

[18] Guy I, Zwerdling N, Ronen I, Carmel D, Uziel E. Social media recommendation based on people and tags. In Proc. the 33rd Int. ACM SIGIR Conf. Research and Development in Information Retrieval, July 2010, pp.194-201.

[19] Ma H, Zhou D Y, Liu C, Lyu M R, King I. Recommender systems with social regularization. In Proc. the 4th Int. Conf. Web Search and Data Mining, February 2011, pp.287-296.

[20] Zheng Y, Zhang L Z, Xie X, Ma W Y. Mining interesting locations and travel sequences from GPS trajectories. In Proc. the 18th Int. Conf. World Wide Web, April 2009, pp.791-800.

[21] Zheng V W, Zheng Y, Xie X, Yang Q. Collaborative location and activity recommendations with GPS history data. In Proc. the 19th Int. Conf. World Wide Web, April 2010, pp.1029-1038.

[22] Cheng C, Yang H Q, King I, Lyu M R. Fused matrix factorization with geographical and social influence in locationbased social networks. In Proc. the 26th AAAI Conf. Artificial Intelligence, July 2012, pp.17-23.

[23] Liu B, Fu Y J, Yao Z J, Xiong H. Learning geographical preferences for point-of-interest recommendation. In Proc. the 19th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, August 2013, pp.1043-1051.

[24] Jia Y T, Wang Y Z, Jin X L, Cheng X Q. Location prediction:A temporal-spatial Bayesian model. ACM Transactions on Intelligent Systems and Technology, 2016, 7(3):Article No. 31.

[25] Qian X M, Feng H, Zhao G S, Mei T. Personalized recommendation combining user interest and social circle. IEEE Trans. Knowledge and Data Engineering, 2014, 26(7):1763-1777.

[26] Wang X Y, Zhao Y L, Nie L Q, Gao Y, Nie W Z, Zha Z J, Chua T S. Semantic-based location recommendation with multimodal venue semantics. IEEE Trans. Multimedia, 2015, 17(3):409-419.

[27] Jiang S H, Qian X M, Shen J L, Fu Y, Mei T. Author topic model-based collaborative filtering for personalized POI recommendations. IEEE Trans. Multimedia, 2015, 17(6):907-918.

[28] Xie M, Yin H Z, Wang H, Xu F J, Chen W T, Wang S. Learning graph-based POI embedding for location-based recommendation. In Proc. the 25th ACM Int. Conf. Information and Knowledge Management, October 2016, pp.15-24.

[29] Lei X J, Qian X M, Zhao G S. Rating prediction based on social sentiment from textual reviews. IEEE Trans. Multimedia, 2016, 18(9):1910-1921.

[30] Zhao G S, Qian X M, Kang C. Service rating prediction by exploring social mobile users' geographical locations. IEEE Trans. Big Data, 2017, 3(1):67-78.

[31] Hu L K, Sun A X, Liu Y. Your neighbors affect your ratings:On geographical neighborhood influence to rating prediction. In Proc. the 37th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, July 2014, pp.345-354.

[32] Zhao G S, Qian X M, Xie X. User-service rating prediction by exploring social users' rating behaviors. IEEE Trans. Multimedia, 2016, 18(3):496-506.

[33] Jiang S, Qian X, Mei T et al. Personalized travel sequence recommendation on multi-source big social media. IEEE Trans. Big Data, 2016, 2(1):43-56.

[34] Yin Z J, Cao L L, Han J W, Zhai C X, Huang T. Geographical topic discovery and comparison. In Proc. the 20th Int. Conf. World Wide Web, March 28-April 1, 2011, pp.247-256.

[35] Zhang C, Zhang K Y, Yuan Q, Peng H R, Zheng Y, Hanratty T, Wang S W, Han J W. Regions, periods, activities:Uncovering urban dynamics via cross-modal representation learning. In Proc. the 26th Int. Conf. World Wide Web, April 2017, pp.361-370.

[36] Kang W, Tung A K H, Chen W, Li X Y, Song Q Y, Zhang C, Zhao F, Zhou X J. Trendspedia:An internet observatory for analyzing and visualizing the evolving web. In Proc. the 30th Int. Conf. Data Engineering, April 2014, pp.1206-1209.

[37] Zhang C, Zhou G Y, Yuan Q, Zhuang H L, Zheng Y, Kaplan L, Wang S W, Han J W. GeoBurst:Real-time local event detection in geo-tagged tweet streams. In Proc. the 39th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, July 2016, pp.513-522.

[38] Feng W, Zhang C, Zhang W, Han J W, Wang J Y, Aggarwal C, Huang J B. STREAMCUBE:Hierarchical spatiotemporal hashtag clustering for event exploration over the twitter stream. In Proc. the 31st Int. Conf. Data Engineering, April 2015, pp.1561-1572.

[39] Abdelhaq H, Sengstock C, Gertz M. EvenTweet:Online localized event detection from twitter. Proceedings of the VLDB Endowment, 2013, 6(12):1326-1329.

[40] Yuan Q, Zhang W, Zhang C, Geng X H, Cong G, Han J. PRED:Periodic region detection for mobility modeling of social media users. In Proc. the 10th ACM Int. Conf. Web Search and Data Mining, February 2017, pp.263-272.

[41] Zhang C, Han J W, Shou L D, Lu J J, La Porta T. Splitter:Mining fine-grained sequential patterns in semantic trajectories. Proceedings of the VLDB Endowment, 2014, 7(9):769-780.

[42] Zhang C, Zhang K Y, Yuan Q, Zhang L M, Hanratty T, Han J W. GMove:Group-level mobility modeling using geo-tagged social media. In Proc. the 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, August 2016, pp.1305-1314.

[43] Cremonesi P, Koren Y, Turrin R. Performance of recommender algorithms on top-n recommendation tasks. In Proc. the 4th ACM Conf. Recommender Systems, September 2010, pp.39-46.

[44] Cho E, Myers S A, Leskovec J. Friendship and mobility:User movement in location-based social networks. In Proc. the 17th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, August 2011, pp.1082-1090.

[45] Hershey J R, Olsen P A. Approximating the Kullback Leibler divergence between Gaussian mixture models. In Proc. the IEEE Int. Conf. Acoustics Speech and Signal Processing, April 2007, pp.317-320.

[46] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3:993-1022.

[47] Griffiths T L, Steyvers M. Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(S1):5228-5235.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘明业; 洪恩宇;. Some Covering Problems and Their Solutions in Automatic Logic Synthesis Systems[J]. , 1986, 1(2): 83 -92 .
[2] 陈世华;. On the Structure of (Weak) Inverses of an (Weakly) Invertible Finite Automaton[J]. , 1986, 1(3): 92 -100 .
[3] 高庆狮; 张祥; 杨树范; 陈树清;. Vector Computer 757[J]. , 1986, 1(3): 1 -14 .
[4] 陈肇雄; 高庆狮;. A Substitution Based Model for the Implementation of PROLOG——The Design and Implementation of LPROLOG[J]. , 1986, 1(4): 17 -26 .
[5] 黄河燕;. A Parallel Implementation Model of HPARLOG[J]. , 1986, 1(4): 27 -38 .
[6] 沈理; Stephen Y.H.Su;. Generalized Parallel Signature Analyzers with External Exclusive-OR Gates[J]. , 1986, 1(4): 49 -61 .
[7] 闵应骅; 韩智德;. A Built-in Test Pattern Generator[J]. , 1986, 1(4): 62 -74 .
[8] 许小曙;. Simplification of Multivalued Sequential SULM Network by Using Cascade Decomposition[J]. , 1986, 1(4): 84 -95 .
[9] 唐同诰; 招兆铿;. Stack Method in Program Semantics[J]. , 1987, 2(1): 51 -63 .
[10] 闵应骅;. Easy Test Generation PLAs[J]. , 1987, 2(1): 72 -80 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: