|
›› 2018,Vol. 33 ›› Issue (1): 223-236.doi: 10.1007/s11390-017-1764-5
所属专题: Artificial Intelligence and Pattern Recognition; Computer Graphics and Multimedia
• Special Section on Selected Paper from NPC 2011 • 上一篇
Kang Li1,2,3, Fa-Zhi He1,2,*, Senior Member, CCF, Hai-Ping Yu1,2
Kang Li1,2,3, Fa-Zhi He1,2,*, Senior Member, CCF, Hai-Ping Yu1,2
视觉跟踪是计算机视觉中的一个重要领域。如何处理照明和遮挡问题是一个具有挑战性的问题。本文提出了一种新的和有效的跟踪算法来处理该问题。一方面,目标的初始外观总是具有清晰轮廓,具有光照不变性和鲁棒性。另一方面,特征在跟踪中起着重要作用,其中卷积特征具备良好性能。因此,我们采用卷积轮廓特征来描述目标外观。理论上,通过一阶边缘梯度算子对图像进行卷积来检测轮廓是有效的。特别是,Prewitt算子对水平边缘和垂直方向边缘更敏感,而Sobel算子对对角边缘更敏感,这样Prewitt算子和索贝尔具有内在互补性互补。技术上讲,设计了两组Prewitt和Sobel边缘检测算子来提取出一套完整的卷积特征,包括水平、垂直和对角边缘特征。在第一帧中,通过提取目标的轮廓特征来构造初始外观模型。通过分析这些轮廓特征的实验图像,可以发现,明亮的部分往往提供更多有用的信息来描述目标特性。因此,我们提出一种使用明亮的像素方法来比较候选样本和训练模型之间的相似性,从而可以处理部分遮挡问题。在得到新目标之后,提出了适应外观变化的、增量化的在线跟新策略。实验结果表明,通过集成Prewitt和Sobel边缘检测算作所提取的卷积特征可以有效学习鲁棒的外观模型。在9个具有挑战性的视频序列上的一系列实验结果表明,所提方法相比目前方法是非常有效和鲁棒。
[1] Wang N Y, Shi J P, Yeung D Y, Jia J Y. Understanding and diagnosing visual tracking systems. In Proc. IEEE Int. Conf. Computer Vision, December 2015, pp.3101-3109.[2] Zhang X Q, Hu W M, Bao H J, Maybank S. Robust head tracking based on multiple cues fusion in the kernelBayesian framework. IEEE Trans. Circuits and Systems for Video Technology, 2013, 23(7):1197-1208.[3] Zhang X Q, Hu W M, Xie N H, Bao H J, Maybank S. A robust tracking system for low frame rate video. International Journal of Computer Vision, 2015, 115(3):279-304.[4] Zhang X Q, Hu W M, Qu W, Maybank S. Multiple object tracking via species-based particle swarm optimization. IEEE Trans. Circuits and Systems for Video Technology, 2010, 20(11):1590-1602.[5] Sun J, He F Z, Chen Y L, Chen X. A multiple template approach for robust tracking of fast motion target. Applied Mathematics-A Journal of Chinese Universities, 2016, 31(2):177-197.[6] Grabner H, Grabner M, Bischof H. Realtime tracking via on-line boosting. In Proc. British Machine Vision Conf., September 2006, pp.47-56.[7] Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632.[8] Hare S, Golodetz S, Saffari A, Vineet V, Cheng M M, Hicks S L, Torr P H S. Struck:Structured output tracking with kernels. IEEE Trans. Pattern Analysis and Machine Intelligence, 2016, 38(10):2096-2109.[9] Mei X, Ling H B. Robust visual tracking using l1 minimization. In Proc. IEEE 12th Int. Conf. Computer Vision, September 2009, pp.1436-1443.[10] Li K, He F Z, Yu H P, Chen X. A correlative classifiers approach based on particle filter and sample set for tracking occluded target. Applied Mathematics-A Journal of Chinese Universities, 2017, 32(3):294-312[11] Zhong W, Lu H C, Yang M H. Robust object tracking via sparsity-based collaborative model. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp.1838-1845.[12] Wu Y Q, He F Z, Zhang D J, Li X X. Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Trans. Services Computing, 2015, PP(99). doi:10.1109/TSC.2015.2501981.[13] Bao C L, Wu Y, Ling H B, Ji H. Real time robust L1 tracker using accelerated proximal gradient approach. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp.1830-1837.[14] Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1/2/3):125-141.[15] Kwon J, Lee K M. Visual tracking decomposition. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp.1269-1276.[16] Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In Proc. the 12th European Conf. Computer Vision, October 2012, pp.864-877.[17] Ojala T, Pietikainen M, Mäenpaa T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.[18] Li K, He F Z, Chen X. Real-time object tracking via compressive feature selection. Frontiers of Computer Science, 2016, 10(4):689-701.[19] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, December 2001, pp.I-511-I-518.[20] Ni B, He F Z, Pan Y T, Yuan Z Y. Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy. Applied Mathematics-A Journal of Chinese Universities, 2016, 31(1):37-52.[21] Zhang D J, He F Z, Han S, Zou L, Wu Y Q, Chen Y L. An efficient approach to directly compute the exact Hausdorff distance for 3D point sets. Integrated Computer Aided Engineering, 2017, 24(3):261-277.[22] Chen Y L, He F Z, Wu Y Q, Hou N. A local start search algorithm to compute exact Hausdorff distance for arbitrary point sets. Pattern Recognition, 2017, 67:139-148[23] Li K, He F Z, Yu H, Chen X. A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning. Frontiers of Computer Science. doi:10.1007/s11704-018-6442-4[24] Zhang D J, He F Z, Han S H, Li X X. Quantitative optimization of interoperability during feature-based data exchange. Integrated Computer Aided Engineering, 2016, 23(1):31-50.[25] Wang L, Liu T, Wang G, Chan K L, Yang Q X. Video tracking using learned hierarchical features. IEEE Trans. Image Processing, 2015, 24(4):1424-1435.[26] Ma C, Huang J B, Yang X K, Yang M H. Hierarchical convolutional features for visual tracking. In Proc. IEEE Int. Conf. Computer Vision, December 2015, pp.3074-3082.[27] Wang L J, Ouyang W L, Wang X G, Lu H C. Visual tracking with fully convolutional networks. In Proc. IEEE Int. Conf. Computer Vision, December 2015, pp.3119-3127.[28] Wolffsohn J S, Mukhopadhyay D, Rubinstein M. Image enhancement of real-time television to benefit the visually impaired. American Journal of Ophthalmology, 2007, 144(3):436-440.[29] Raheja J L, Kumar U. Human facial expression detection from detected in captured image using back propagation neural network. International Journal of Computer Science & Information Technology, 2010, 2(1):116-123.[30] Sevilla-Lara L, Learned-Miller E. Distribution fields for tracking. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp.1910-1917.[31] Oron S, Bar-Hillel A, Levi D, Avidan S. Locally orderless tracking. International Journal of Computer Vision, 2015, 111(2):213-228.[32] Kalal Z, Mikolajczyk K, Matas J. Tracking-learningdetection. IEEE Trans. Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422.[33] Liu B Y, Huang J Z, Yang L, Kulikowsk C. Robust tracking using local sparse appearance model and K-selection. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp.1313-1320.[34] Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In Proc. the 12th European Conf. Computer Vision, October 2012, pp.702-715.[35] Wang D, Lu H C, Yang M H. Least soft-threshold squares tracking. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2013, pp.2371-2378.[36] Li Y, Zhu J K, Hoi S C H. Reliable patch trackers:Robust visual tracking by exploiting reliable patches. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2015, pp.353-361.[37] Sun C, Wang D, Lu H C. Occlusion-aware fragment-based tracking with spatial-temporal consistency. IEEE Trans. Image Processing, 2016, 25(8):3814-3825.[38] Lv X, He F Z, Cai W W, Cheng Y. A string-wise CRDT algorithm for smart and large-scale collaborative editing systems. Advanced Engineering Informatics, 2017, 33:397-409[39] Zhou Y, He F Z, Qiu Y M. Optimization of parallel iterated local search algorithms on graphics processing unit. The Journal of Supercomputing, 2016, 72(6):2394-2416.[40] Zhou Y, He F Z, Qiu Y M. Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Science China Information Sciences, 2017, 60:068102.[41] Yan X H, He F Z, Hou N, Ai H J. An efficient particle swarm optimization for largescale hardware/software codesign system. International Journal of Cooperative Information Systems. doi:10.1142/S0218843017410015.[42] Cheng Y, He F Z, Wu Y Q, Zhang D J. Meta-operation conflict resolution for human-human interaction in collaborative feature-based CAD systems. Cluster Computing, 2016, 19(1):237-253.[43] Yan X H, He F Z, Chen Y L. A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization. Journal of Computer Science and Technology, 2017, 32(2):340-355. |
No related articles found! |
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |