|
›› 2018,Vol. 33 ›› Issue (2): 323-334.doi: 10.1007/s11390-018-1821-8
所属专题: Artificial Intelligence and Pattern Recognition; Data Management and Data Mining
• Artificial Intelligence and Pattern Recognition • 上一篇 下一篇
Ji-Zhao Zhu1,2, Yan-Tao Jia2, Member, CCF, ACM, Jun Xu2*, Member, CCF, ACM, IEEE, Jian-Zhong Qiao1*, Senior Member, CCF, Xue-Qi Cheng2, Fellow, CCF, Member, ACM, IEEE
Ji-Zhao Zhu1,2, Yan-Tao Jia2, Member, CCF, ACM, Jun Xu2*, Member, CCF, ACM, IEEE, Jian-Zhong Qiao1*, Senior Member, CCF, Xue-Qi Cheng2, Fellow, CCF, Member, ACM, IEEE
知识图谱表示是将实体和关系映射到低维向量空间中,把实体和关系分别表示成低维的向量形式。在链接预测、关系抽取等诸多任务中的应用验证了该类方法的高效性。其中,最具代表性的知识图谱表示方法有:TransE,TransH和TransR。以上这些方法把关系各自独立的映射到向量空间,而忽略了他们之间的内在相关性。通常情况下,不同的关系可能与同一实体连接,例如:三元组(Steve Jobs,PlaceOfBrith,California)和(Apple Inc.,Location,California)共用同一个实体California,这暗示了关系间存在着一定的相关性。我们首先使用TransE,TransH和TransR分别在知识图谱FB15K上学习得到关系表示矩阵,再通过对关系表示矩阵进行分析,结果表明了该矩阵呈现出低秩结构,进而证明了关系间相关性的存在。那么,能否利用关系间的相关性学习得到更好的实体和关系的向量表达呢?本文提出了一种通过矩阵分解将关系表达矩阵转化为两个低维矩阵的方式进行学习,从而明确的刻画这种低秩结构。所提出的方法被称作TransCoRe,是一种基于翻译框架学习实体和关系表达的方法。在基准测试数据集WordNet和Freebase上的实验表明,本文所提方法在链接预测和三元组分类任务中与已有的代表性方法相比,取得了较好的效果。
[1] Miller G A. WordNet:A lexical database for English. Communications of the ACM, 1995, 38(11):39-41.[2] Bollacker K, Cook R, Tufts P. Freebase:A shared database of structured general human knowledge. In Proc. the 22nd National Conf. Artificial Intelligence, July 2007, pp.1962-1963.[3] Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase:A collaboratively created graph database for structuring human knowledge. In Proc. ACM SIGMOD Int. Conf. Management of Data, June 2008, pp.1247-1250.[4] Suchanek F M, Kasneci G, Weikum G. YAGO:A core of semantic knowledge unifying WordNet and Wikipedia. In Proc. the 16th Int. World Wide Web Conf., May 2007, pp.697-706.[5] Tang J, Lou T C, Kleinberg J, Wu S. Transfer learning to infer social ties across heterogeneous networks. ACM Trans. Information Systems, 2016, 34(2):Article No. 7.[6] Jia Y T, Wang Y Z, Lin H L, Jin X L, Cheng X Q. Locally adaptive translation for knowledge graph embedding. In Proc. the 30th AAAI Conf. Artificial Intelligence, February 2016, pp.992-998.[7] Wu W T, Li H S, Wang H X, Zhu K Q. Probase:A probabilistic taxonomy for text understanding. In Proc. the ACM Int. Conf. Management of Data, May 2012, pp.481-492.[8] Jayaram N, Khan A, Li C K, Yan X F, Elmasri R. Querying knowledge graphs by example entity tuples. IEEE Trans. Knowledge and Data Engineering, 2015, 27(10):2797-2811.[9] Bordes A, Usunier N, Garcia-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multirelational data. In Proc. the 26th Int. Conf. Neural Information Processing Systems, December 2013, pp.2787-2795.[10] Wang Z, Zhang J W, Feng J L, Chen Z. Knowledge graph embedding by translating on hyperplanes. In Proc. the 28th AAAI Conf. Artificial Intelligence, July 2014, pp.1112-1119.[11] Lin Y K, Liu Z Y, Sun M S, Liu Y, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In Proc. the 29th AAAI Conf. Artificial Intelligence, January 2015.[12] Alter O, Brown P O, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(18):10101-10106.[13] de Lathauwer L, de Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4):1253-1278.[14] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. In Proc. the 26th Int. Conf. Neural Information Processing Systems, December 2013, pp.3111-3119.[15] Nickel M, Tresp V, Kriegel H P. Factorizing YAGO:Scalable machine learning for linked data. In Proc. the 21st Int. Conf. World Wide Web, April 2012, pp.271-280.[16] Franz T, Schultz A, Sizov S, Staab S. TripleRank:Ranking semantic Web data by tensor decomposition. In Proc. the 8th Int. Semantic Web Conf., October 2009, pp.213-228.[17] Chang K W, Yih W T, Yang B S, Meek C. Typed tensor decomposition of knowledge bases for relation extraction. In Proc. Conf. Empirical Methods in Natural Language Processing, October 2014, pp.1568-1579.[18] Chang K W, Yih W T, Meek C. Multi-relational latent semantic analysis. In Proc. Conf. Empirical Methods in Natural Language Processing, October 2013, pp.1602-1612.[19] Kiers H A L. Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics, 2000, 14(3):105-122.[20] Bordes A, Glorot X, Weston J, Bengio Y. Joint learning of words and meaning representations for open-text semantic parsing. In Proc. the 15th Int. Conf. Artificial Intelligence and Statistics, April 2012, pp.127-135.[21] Bordes A, Glorot X, Weston J, Bengio Y. A semantic matching energy function for learning with multi-relational data. Machine Learning, 2014, 94(2):233-259.[22] Bordes A, Weston J, Collobert R, Bengio Y. Learning structured embeddings of knowledge bases. In Proc. the 25th Int. Conf. Artificial Intelligence, August 2011, pp.301-306.[23] Jenatton R, Le Roux N, Bordes A, Obozinski G. A latent factor model for highly multi-relational data. In Proc. the 25th Int. Conf. Neural Information Processing Systems, December 2012, pp.3167-3175.[24] Socher R, Chen D Q, Manning C D, Ng A. Reasoning with neural tensor networks for knowledge base completion. In Proc. the 26th Int. Conf. Neural Information Processing Systems, December 2013, pp.926-934.[25] Pearson K. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 1895, 58(347/348/349/350/351/352):240-242.[26] Ji G L, He S Z, Xu L H, Liu K, Zhao J. Knowledge graph embedding via dynamic mapping matrix. In Proc. the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int. Joint Conf. Natural Language Processing, July 2015, pp.687-696.[27] Lin Y K, Liu Z Y, Luan H B, Sun M S, Rao S W, Liu S. Modeling relation paths for representation learning of knowledge bases. In Proc. Conf. Empirical Methods in Natural Language Processing, September 2015, pp.705-714. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |