|
›› 2018,Vol. 33 ›› Issue (2): 400-416.doi: 10.1007/s11390-018-1826-3
所属专题: Computer Architecture and Systems; Computer Networks and Distributed Computing
• Theory and Algorithms • 上一篇 下一篇
Xi Wang1,2, Member, CCF, Jian-Xi Fan1*, Member, CCF, Cheng-Kuan Lin1, Member, CCF, Jing-Ya Zhou1, Member, CCF, Zhao Liu1
Xi Wang1,2, Member, CCF, Jian-Xi Fan1*, Member, CCF, Cheng-Kuan Lin1, Member, CCF, Jing-Ya Zhou1, Member, CCF, Zhao Liu1
数据中心网络的性能在很大程度上决定云计算的性能,但随着应用需求的不断提高,数据中心网络中的服务器数量变得越来越庞大。如何将大量服务器连接起来,从而构建一个性能良好的数据中心网络,是提升云计算性能所面临的一个挑战。传统的树型数据中心网络存在带宽瓶颈和单点失效等问题,目前提出的DCell、BCube和FiConn等数据中心网络具有较大的带宽和容错性,但DCell和FiConn在交换机失效时服务器间的容错路径长度较大;而BCube在规模较大时对交换机性能有较高要求。综合上述考虑,基于具有优良性能的交叉立方体,我们提出了一种新的以服务器为中心的数据中心网络,称为BCDC。进一步,我们研究了BCDC网络的顶点度数,通信算法以及容错路由算法。另外,我们分析了BCDC上路由算法的性能及时间复杂度并进行相应的模拟实验。该研究将为新型数据中心网络的设计和实现提供重要依据。
[1] Harris D. Ballmer's millionserver claim doesn't seem so crazy. https://gigaom.com/2013/07/17/ballmers-million-server-claim-doesnt-seem-so-crazy/#comments, July 2013.[2] Dignan L. AWS financials on deck:The road to 3 million servers in operation. http://www.zdnet.com/article/awsfinancials-on-deck-the-road-to-3-million-servers-in-operation/, April 2015.[3] Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network architecture. In Proc. the ACM SIGCOMM Conf. Data Communication, August 2008, pp.63-74.[4] Guo C X, Wu H T, Tan K, Shi L, Zhang Y G, Lu S W. DCell:A scalable and fault-tolerant network structure for data centers. In Proc. the ACM SIGCOMM Conf. Data Communication, August 2008, pp.75-86.[5] Li D, Guo C X, Wu H T, Tan K, Zhang Y G, Lu S W. FiConn:Using backup port for server interconnection in data centers. In Proc. IEEE INFOCOM, April 2009, pp.2276-2285.[6] Guo C X, Lu G H, Li D, Wu H T, Zhang X, Shi Y F, Tian C, Zhang Y G, Lu S W. BCube:A high performance, servercentric network architecture for modular data centers. In Proc. the ACM SIGCOMM Conf. Data Communication, August 2009, pp.63-74.[7] Greenberg A, Hamilton J R, Jain N, Kandula S, Kim C, Lahiri P, Maltz D A, Patel P, Sengupta S. VL2:A scalable and flexible data center network. In Proc. the ACM SIGCOMM Conf. Data Communication, August 2009, pp.51-62.[8] Abu-Libdeh H, Costa P, Rowstron A, O'Shea G, Donnelly A. Symbiotic routing in future data centers. In Proc. ACM SIGCOMM, Aug.30-Sept.3, 2010, pp.51-62.[9] Yu Y, Qian C. Space shuffle:A scalable, flexible, and highperformance data center network. IEEE Trans. Parallel and Distributed Systems, 2016, 27(11):3351-3365.[10] Zheng K, Wang L, Yang B H, Sun Y, Uhlig S. LazyCtrl:A scalable hybrid network control plane design for cloud data centers. IEEE Trans. Parallel and Distributed Systems, 2017, 28(1):115-127.[11] Bhuyan L N, Agrawal D P. Generalized hypercube and hyperbus structures for a computer network. IEEE Trans. Computers, 1984, C-33(4):323-333.[12] Leiserson C E. Fat-trees:Universal networks for hardwareefficient supercomputing. IEEE Trans. Computers, 1985, 34(10):892-901.[13] Dally W J. Performance analysis of k-ary n-cube interconnection networks. IEEE Trans. Computers, 1990, 39(6):775-785.[14] Xiang D, Zhang Y L, Pan Y. Practical deadlock-free faulttolerant routing in meshes based on the planar network fault model. IEEE Trans. Computers, 2009, 58(5):620-633.[15] Xiang D. Deadlock-free adaptive routing in meshes with fault-tolerance ability based on channel overlapping. IEEE Trans. Dependable and Secure Computing, 2011, 8(1):74-88.[16] Lin D, Liu Y, Hamdi M, Muppala J. FlatNet:Towards a flatter data center network. In Proc. IEEE Global Communications Conf., December 2012, pp.2499-2504.[17] Wang T, Su Z Y, Xia Y, Qin B, Hamdi M. NovaCube:A low latency Torus-based network architecture for data centers. In Proc. IEEE Global Communications Conf., December 2014, pp.2252-2257.[18] Wang T, Su Z Y, Xia Y, Liu Y, Muppala J, Hamdi M. SprintNet:A high performance servercentric network architecture for data centers. In Proc. IEEE Int. Conf. Communications, June 2014, pp.4005-4010.[19] Wang T, Su Z Y, Xia Y, Muppala J, Hamdi M. Designing efficient high performance server-centric data center network architecture. Computer Networks, 2015, 79:283-296.[20] Wang T, Su Z Y, Xia Y, Hamdi M. CLOT:A cost-effective low-latency overlaid Torus-based network architecture for data centers. In Proc. IEEE Int. Conf. Communications, June 2015, pp.5479-5484.[21] Li D W, Wu J, Liu Z Y, Zhang F. Towards the tradeoffs in designing data center network architectures. IEEE Trans. Parallel and Distributed Systems, 2017, 28(1):260-273.[22] Efe K. A variation on the hypercube with lower diameter. IEEE Trans. Computers, 1991, 40(11):1312-1316.[23] Cull P, Larson S M. The Möbius cubes. IEEE Trans. Computers, 1995, 44(5):647-659.[24] Abraham S, Padmanabhan K. The twisted cube topology for multiprocessors:A study in network asymmetry. Journal of Parallel and Distributed Computing, 1991, 13(1):104-110.[25] Fan J X, He L Q. BC interconnection networks and their properties. Chinese Journal of Computers, 2003, 26(1):84-90. (in Chinese)[26] Wang D J. Hamiltonian embedding in crossed cubes with failed links. IEEE Trans. Parallel and Distributed Systems, 2012, 23(11):2117-2124.[27] Kulasinghe P, Bettayeb S. Embedding binary trees into crossed cubes. IEEE Trans. Computers, 1995, 44(7):923-929.[28] Fan J, Lin X, Jia X. Optimal path embedding in crossed cubes. IEEE Trans. Parallel and Distributed Systems, 2005, 16(12):1190-1200.[29] Efe K. The crossed cube architecture for parallel computation. IEEE Trans. Parallel and Distributed Systems, 1992, 3(5):513-524.[30] Chang C P, Sung T Y, Hsu L H. Edge congestion and topological properties of crossed cubes. IEEE Trans. Parallel and Distributed Systems, 2000, 11(1):64-80.[31] Efe K, Blackwell P K, Slough W, Shiau T. Topological properties of the crossed cube architecture. Parallel Computing, 1994, 20(12):1763-1775.[32] Kulasinghe P D. Connectivity of the crossed cube. Information Processing Letters, 1997, 61(4):221-226.[33] Fan J X, Jia X H. Edge-pancyclicity and pathembeddability of bijective connection graphs. Information Sciences, 2008, 178(2):340-351.[34] Yang X F, Dong Q, Tang Y Y. Embedding meshes/tori in faulty crossed cubes. Information Processing Letters, 2010, 110(14/15):559-564.[35] Zhou S M. The conditional diagnosability of crossed cubes under the comparison model. International Journal of Computer Mathematics, 2010, 87(15):3387-3396.[36] Dong Q, Zhou J L, Fu Y, Yang X F. Embedding a mesh of trees in the crossed cube. Information Processing Letters, 2012, 112(14/15):599-603.[37] Cheng B L, Fan J X, Jia X H, Zhang S K. Independent spanning trees in crossed cubes. Information Sciences, 2013, 233:276-289.[38] Cheng B L, Fan J X, Jia X H, Wang J. Dimension-adjacent trees and parallel construction of independent spanning trees on crossed cubes. Journal of Parallel and Distributed Computing, 2013, 73(5):641-652.[39] Chen H C, Kung T L, Hsu L Y. 2-disjoint-path-coverable panconnectedness of crossed cubes. The Journal of Supercomputing, 2015, 71(7):2767-2782.[40] Chen H C, Zou Y H, Wang Y L, Pai K J. A note on path embedding in crossed cubes with faulty vertices. Information Processing Letters, 2017, 121:34-38.[41] Cheng B L, Wang D J, Fan J X. Constructing completely independent spanning trees in crossed cubes. Discrete Applied Mathematics, 2017, 219:100-109.[42] Diestel R. Graph Theory (4th edition). Springer, 2010.[43] Ghemawat S, Gobioff H, Leung S T. The Google file system. In Proc. the 19th ACM Symp. Operating Systems Principles, October 2003, pp.29-43.[44] Dean J, Ghemawat S. MapReduce:Simplified data processing on large clusters. Communications of the ACM, 2008, 51(1):107-113. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |