|
计算机科学技术学报 ›› 2019,Vol. 34 ›› Issue (1): 61-76.doi: 10.1007/s11390-019-1899-7
所属专题: Computer Architecture and Systems
Wen-Guo Liu1, Ling-Fang Zeng1,*, Senior Member, CCF, Member, ACM, IEEE Dan Feng1, Senior Member, CCF, Member, ACM, IEEE, and Kenneth B. Kent2, Senior Member, IEEE
Wen-Guo Liu1, Ling-Fang Zeng1,*, Senior Member, CCF, Member, ACM, IEEE Dan Feng1, Senior Member, CCF, Member, ACM, IEEE, and Kenneth B. Kent2, Senior Member, IEEE
叠瓦式磁记录技术能够有效地提高硬盘的容量,由于具备较好的兼容性和新的针对叠瓦式磁记录技术的接口,主机端感知的叠瓦式磁记录技术会比其他类型的叠瓦式磁记录技术更受欢迎。但是,由于非顺序的写数据保存在磁盘缓存中,主机端感知的叠瓦式磁记录磁盘在写操作密集的工作负载下经常有性能下降的现象。非顺序的写操作主要有三个来源:更新写操作,小的随机写操作以及乱序写操作。本文提出了一种称为ROCO的混合存储系统,使用固态来做缓存来提高主机端感知的叠瓦式磁记录磁盘的性能。ROCO对属于同一数据区的乱序写操作重新排序,并使用固态盘来吸收更新数据和小的随机写数据。本文为固态盘缓存设计了一种称为CREA的缓存替换算法。CREA首先执行面向数据区的冷热数据识别,以此识别出缓存中冷的数据区和热的数据区,然后优先将能够顺序写或者通过主机端的读-更改写操作进行写的属于同一冷数据区的数据迁移到主机端感知的叠瓦式磁记录磁盘中。对于缓存中那些不能够顺序写的属于最热的数据区的数据,给以最低的数据替换优先级。实验结果表明,ROCO可以有效地减少写向主机端感知的叠瓦式磁记录磁盘的数据,并提高叠瓦式磁记录磁盘的性能。
[1] Wood R, Williams M, Kavcic A, Miles J. The feasibility of magnetic recording at 10 terabits per square inch on conventional media. IEEE Trans. Magnetics, 2009, 45(2):917-923. [2] Venkataraman K S, Dong G, Zhang T. Techniques mitigating update-induced latency overhead in shingled magnetic recording. IEEE Trans. Magnetics, 2012, 48(5):1899-1905. [3] Feldman T, Gibson G. Shingled magnetic recording areal density increase requires new data management. Login:the USENIX Magazine, 2013, 38(3):22-30. [4] Zeng L F, Zhang Z H, Wang Y, Feng D, Kent K B. CosaFS:A cooperative shingle-aware file system. ACM Trans. Storage, 2017, 13(4):Article No. 34. [5] Aghayev A, Shafaei M, Desnoyers P. Skylight-A window on shingled disk operation. ACM Trans. Storage, 2015, 11(4):Article No. 16. [6] Wu F G, Yang M C, Fan Z Q, Zhang B Q, Ge X Z, Du D H. Evaluating host aware SMR drives. In Proc. the 8th USENIX Workshop on Hot Topics in Storage and File Systems, June 2016, pp.31-35. [7] Wu F G, Fan Z Q, Yang M C, Zhang B Q, Ge X Z, Du D H. Performance evaluation of host aware shingled magnetic recording (HA-SMR) drives. IEEE Trans. Computers, 2017, 66(11):1932-1945. [8] Wang C L, Wang D D, Chai Y P, Wang C W, Sun D S. Larger, cheaper, but faster:SSD-SMR hybrid storage boosted by a new SMR-oriented cache framework. In Proc. the 33rd Int. Conf. Massive Storage Systems and Technology, May 2017, pp.1-16. [9] Chen F, Koufaty D A, Zhang X. Hystor:Making the best use of solid state drives in high performance storage systems. In Proc. the 25th Int. Conf. Supercomputing, May 2011, pp.22-32. [10] Luo D, Wan J G, Zhu Y F, Zhao N N, Li F, Xie C S. Design and implementation of a hybrid shingled write disk system. IEEE Trans. Parallel and Distributed Systems, 2015, 27(4):1017-1029. [11] Kim H, Shin D, Jeong Y et al. SHRD:Improving spatial locality in flash storage accesses by sequentializing in host and randomizing in device. In Proc. the 15th USENIX Conf. File and Storage Technologies, February 2017, pp.271-284. [12] Bucy J S, Schindler J, Schlosser S W, Greger G R. The DiskSim simulation environment version 4.0 reference manual. Technical Report, Carnegie Mellon University, 2008. http://www.pdl.cmu.edu/DiskSim, May 2018. [13] Narayanan D, Donnelly A, Rowstron A. Write off-loading:Practical power management for enterprise storage. ACM Trans. Storage, 2008, 4(3):Article No. 10. [14] Cassuto Y, Sanvido M A A, Guyot C, Hall D R, Bandic Z Z. Indirection systems for shingled-recording disk drives. In Proc. the 26th IEEE Symp. Mass Storage Systems and Technologies, May 2010. [15] Lin C I, Park D, He W P, Du D H. H-SWD:Incorporating hot data identification into shingled write disks. In Proc. the 20th IEEE Int. Symp. Modeling, Analysis and Simulation of Computer and Telecommunication Systems, August 2012, pp.321-330. [16] Jones S N, Amer A, Miller E L, Long D D E, Pitchumani R, Strong C R. Classifying data to reduce long-term data movement in shingled write disks. ACM Trans. Storage, 2016, 12(1):Article No. 2. [17] He W, Du D. SMaRT:An approach to shingled magnetic recording translation. In Proc. the 15th USENIX Conf. File and Storage Technologies, February 2017, pp.121-133. [18] Xie T, Sun Y. Dynamic data reallocation in hybrid disk arrays. IEEE Trans. Parallel and Distributed Systems, 2010, 21(9):1330-1341. [19] Mao B, Jiang H, Wu S Z, Tian L, Feng D, Chen J X, Zeng L F. HPDA:A hybrid parity-based disk array for enhanced performance and reliability. ACM Trans. Storage, 2012, 8(1):Article No. 4. [20] Zeng L F, Feng D, Chen J X, Wei Q S, Veeravalli B, Liu W G. HRAID6ML:A hybrid RAID6 storage architecture with mirrored logging. In Proc. the 28th IEEE Symp. Mass Storage Systems and Technologies. April 2012. [21] Jung H, Shim H, Park S, Kang S, Cha J. LRU-WSR:Integration of LRU and writes sequence reordering for flash memory. IEEE Trans. Consumer Electronics, 2008, 54(3):1215-1223. [22] Park S, Jung D, Kang J, Kim J, Lee J. CFLRU:A replacement algorithm for flash memory. In Proc. the 2006 Int. Conf. Compilers, Architecture and Synthesis for Embedded Systems, October 2006, pp.234-241. [23] Fan Z Q, Haghdoost A, Du D H, Voigt D. I/O-Cache:A non-volatile memory based buffer cache policy to improve storage performance. In Proc. the 23rd IEEE Int. Symp. Modeling, Analysis and Simulation of Computer and Telecommunication Systems, October 2015, pp.102-111. [24] Fan Z, Wu F, Park D, Diehl J, Voigt D, Du D H. Hibachi:A cooperative hybrid cache with NVRAM and DRAM for storage arrays. In Proc. the 33rd IEEE Symp. Mass Storage Systems and Technologies, May 2017, pp.90-101. [25] Park D, Fan Z Q, Nam Y J, Du D H. A lookahead read cache:Improving read performance for deduplication backup storage. Journal of Computer Science and Technology, 2017, 32(1):26-40. |
No related articles found! |
|
版权所有 © 《计算机科学技术学报》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 总访问量: |