计算机科学技术学报 ›› 2019,Vol. 34 ›› Issue (4): 709-726.doi: 10.1007/s11390-019-1938-4

所属专题: 综述 Data Management and Data Mining

• • 上一篇    下一篇

具有运动方式的移动对象研究综述

Jian-Qiu Xu1, Member, CCF, Ralf Hartmut Güting2, Yu Zheng3, Senior Member, CCF, Ouri Wolfson4, Fellow, ACM, IEEE   

  1. 1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106, China;
    2 Faculty of Mathematics and Computer Science, University of Hagen, Hagen 58097, Germany;
    3 JD Intelligent City Research, Beijing 100176, China;
    4 Department of Computer Science, University of Illinois at Chicago, Chicago 60607, U.S.A
  • 收稿日期:2019-01-31 修回日期:2019-04-17 出版日期:2019-07-11 发布日期:2019-07-11
  • 作者简介:Jian-Qiu Xu got his Bachelor's and Master's degrees in computer science from Nanjing University of Aeronautics and Astronautics,Nanjing,in 2005 and 2008,respectively.Then,he got his Ph.D.degree supervised by Prof.Dr.Ralf Hartmut Güting in 2008-2012 from University of Hagen,Hagen,focusing on moving objects databases and spatial databases.In 2013,he joined Nanjing University of Aeronautics and Astronautics,Nanjing,as an assistant professor.His research has been funded by NSFC (National Natural Science Foundation of China).He has published a book on moving objects with transportation modes and more than 20 papers in journals and conferences such as TKDE,Geoinformatica,Information System and ICDE.He won the Best Demo Paper in APWeb/WAIM 2017.
  • 基金资助:
    Jian-Qiu Xu is supported by the National Key Research and Development Program of China under Grant No. 2018YFB1003900 and the Fundamental Research Funds for the Central Universities of China under Grant No. NS2017073.

Moving Objects with Transportation Modes: A Survey

Jian-Qiu Xu1, Member, CCF, Ralf Hartmut Güting2, Yu Zheng3, Senior Member, CCF, Ouri Wolfson4, Fellow, ACM, IEEE   

  1. 1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106, China;
    2 Faculty of Mathematics and Computer Science, University of Hagen, Hagen 58097, Germany;
    3 JD Intelligent City Research, Beijing 100176, China;
    4 Department of Computer Science, University of Illinois at Chicago, Chicago 60607, U.S.A
  • Received:2019-01-31 Revised:2019-04-17 Online:2019-07-11 Published:2019-07-11
  • Supported by:
    Jian-Qiu Xu is supported by the National Key Research and Development Program of China under Grant No. 2018YFB1003900 and the Fundamental Research Funds for the Central Universities of China under Grant No. NS2017073.

在这篇文章中我们将综述过去十多年内关于具有运动方式的移动对象研究进展。作为人的重要行为之一,运动方式反映运动特征并丰富了移动信息。我们将和与此内容密切相关的融入语义和描述属性的移动对象研究进行比较。这篇综述将从一下四个方面进行分析:(i)具有运动方式的移动对象建模和表示;(ii)具有运动方式的时空查询;(iii)查询优化方法;(iv)基于传感器数据的运动方式预测,例如GPS设备。同时提出了若干与运动方式相关的未来研究问题。

关键词: 移动对象, 运动方式, 建模, 预测

Abstract: In this article, we survey the main achievements of moving objects with transportation modes that span the past decade. As an important kind of human behavior, transportation modes reflect characteristic movement features and enrich the mobility with informative knowledge. We make explicit comparisons with closely related work that investigates moving objects by incorporating into location-dependent semantics and descriptive attributes. An exhaustive survey is offered by considering the following aspects:1) modeling and representing mobility data with motion modes; 2) answering spatio-temporal queries with transportation modes; 3) query optimization techniques; 4) predicting transportation modes from sensor data, e.g., GPS-enabled devices. Several new and emergent issues concerning transportation modes are proposed for future research.

Key words: moving object, transportation mode, data model, performance, data generator

[1] Sistla P, Wolfson O, Chamberlain S, Dao S. Modeling and querying moving objects. In Proc. the 13th International Conference on Data Engineering, April 1997, pp.422-432.
[2] Güting R H, Schneider M. Moving Objects Databases. Morgan Kaufmann, 2005.
[3] Zheng Y, Chen Y, Li Q, Xie X, Ma W Y. Understanding transportation mode based on GPS data for web application. ACM Transaction on the Web, 2010, 4(1):Article No. 1.
[4] Yu M, Yu T, Wang S, Lin C, Chang E Y. Big data small footprint:The design of a low-power classifier for detecting transportation modes. Proceedings of the VLDB Endowment, 2014, 7(13):1429-1440.
[5] Stenneth L, Wolfson O, Yu P, Xu B. Transportation mode detection using mobile phones and GIS information. In Proc. the 19th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, November 2011, pp.54-63.
[6] Tong Y, Zeng Y, Zhou Z, Chen L, Ye J, Xu K. A unified approach to route planning for shared mobility. Proceedings of the VLDB Endowment, 2018, 11(11):1633-1646.
[7] Booth J, Sistla P, Wolfson O, Cruz I F. A data model for trip planning in multimodal transportation systems. In Proc. the 12th International Conference on Extending Database Technology, March 2009, pp.994-1005.
[8] Xu J, Güting R H, Zheng Y. The TM-RTree:An index on generic moving objects for range queries. GeoInformatica, 2015, 19(3):487-524.
[9] Zografos K G, Androutsopoulos K N. Algorithms for itinerary planning in multimodal transportation networks. IEEE Trans. Intelligent Transportation Systems, 2008, 9(1):175-184.
[10] Chaturvedi M, Srivastava S. Multi-modal design of an intelligent transportation system. IEEE Trans. Intelligent Transportation Systems, 2017, 18(8):2017-2027.
[11] Li M, Dai J, Sahu S, Naphade M R. Trip analyzer through smartphone apps. In Proc. the 19th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, November 2011, pp.537-540.
[12] Froehlich J, Dillahunt T, Klasnja P V, Mankoff J, Consolvo S, Harrison B L, Landay J A. UbiGreen:Investigating a mobile tool for tracking and supporting green transportation habits. In Proc. the 27th International Conference on Human Factors in Computing Systems, April 2009, pp.1043-1052.
[13] Reddy S, Mun M, Burke J, Estrin D, Hansen M H, Srivastava M B. Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks, 2010, 6(2):Article No. 13.
[14] Prentow T S, Blunck H, Kjærgaard M B, Stisen A. Towards indoor transportation mode detection using mobile sensing. In Proc. the 7th International Conference on Mobile Computing, Applications, and Services, November 2015, pp.259-279.
[15] Asghari M, Shahabi C. An on-line truthful and individually rational pricing mechanism for ride-sharing. In Proc. the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2017, Article No. 7.
[16] Cheng P, Xin H, Chen L. Utility-aware ridesharing on road networks. In Proc. the 2017 ACM International Conference on Management of Data, May 2017, pp.1197-1210.
[17] Wolfson O, Lin J. Fairness versus optimality in ridesharing. In Proc. the 18th IEEE International Conference on Mobile Data Management, May 2017, pp.118-123.
[18] Chiang M, Lim E, Lee W, Hoang T. Inferring trip occupancies in the rise of ride-hailing services. In Proc. the 27th ACM International Conference on Information and Knowledge Management, October 2018, pp.2097-2105.
[19] Xu Z, Li Z, Guan Q et al. Large-scale order dispatch in on-demand ride-hailing platforms:A learning and planning approach. In Proc. the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, August 2018, pp.905-913.
[20] Agatz N A H, Bazzan A L C, Kutadinata R J, Mattfeld D C, Sester M, Winter S, Wolfson O. Autonomous car and ride sharing:Flexible road trains:(vision paper). In Proc. the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, October 2016, Article No. 10.
[21] Xu J, Güting R H. A generic data model for moving objects. GeoInformatica, 2013, 17(1):125-172.
[22] Zheng Y, Li Q, Chen Y, Xie X, Ma W Y. Understanding mobility based on GPS data. In Proc. the 10th International Conference on Ubiquitous Computing, September 2008, pp.312-321.
[23] Zheng Y, Liu L, Wang L, Xie X. Learning transportation mode from raw GPS data for geographic applications on the web. In Proc. the 17th International Conference on World Wide Web, April 2008, pp.247-256.
[24] Vu T H, Dung L, Wang J. Transportation mode detection on mobile devices using recurrent nets. In Proc. the 2016 ACM Conference on Multimedia Conference, October 2016, pp.392-396.
[25] Biljecki F, Ledoux H, van Oosterom P. Transportation mode-based segmentation and classification of movement trajectories. International Journal of Geographical Information Science, 2013, 27(2):385-407.
[26] Xiao Z, Wang Y, Fu K, Wu F. Identifying different transportation modes from trajectory data using tree-based ensemble classifiers. ISPRS International Journal of GeoInformation, 2017, 6(2):Article No. 57.
[27] Ashqar H I, Almannaa M H, Elhenawy M, Rakha H A, House L. Smartphone transportation mode recognition using a hierarchical machine learning classifier and pooled features from time and frequency domains. IEEE Trans. Intelligent Transportation Systems, 2019, 20(1):244-252.
[28] Hemminki S, Nurmi P, Tarkoma S. Accelerometer-based transportation mode detection on smartphones. In Proc. the 11th ACM Conference on Embedded Network Sensor Systems, November 2013, Article No. 13.
[29] Bloch A, Erdin R, Meyer S, Keller T, de Spindler A. Battery-efficient transportation mode detection on mobile devices. In Proc. the 16th IEEE International Conference on Mobile Data Management, June 2015, pp.185-190.
[30] Coffey C, Nair R, Pinelli F, Pozdnoukhov A, Calabrese F. Missed connections:Quantifying and optimizing multimodal interconnectivity in cities. In Proc. the 16th IEEE International Conference on Mobile Data Management, June 2012, pp.26-32.
[31] Xu J, Güting R H, Qin X. GMOBench:Benchmarking generic moving objects. GeoInformatica, 2015, 19(2):227-276.
[32] Xu J, Güting R H. MWGen:A mini world generator. In Proc. the 13th IEEE International Conference on Mobile Data Management, July 2012, pp.258-267.
[33] Wang W, Xu J. A tool for 3D visualizing moving objects. In Proc. the 1st International Joint Conference on Web and Big Data, July 2017, pp.353-357.
[34] Sohn T, Varshavsky A, LaMarca A, Chen M Y, Choudhury T, Smith I E, Consolvo S, Hightower J, Griswold W G, de Lara E. Mobility detection using everyday GSM traces. In Proc. the 8th International Conference on Ubiquitous Computing, September 2006, pp.212-224.
[35] Patterson D J, Liao L, Fox D, Kautz H A. Inferring high level behavior from low-level sensors. In Proc. the 5th International Conference on Ubiquitous Computing, October 2003, pp.73-89.
[36] Wang B, Gao L, Juan Z. Travel mode detection using GPS data and socioeconomic attributes based on a random forest classifier. IEEE Trans. Intelligent Transportation Systems, 2018, 19(5):1547-1558.
[37] Li G, Chen C, Huang S, Chou A, Gou X, Peng W, Yi C. Public transportation mode detection from cellular data. In Proc. the 2017 ACM Conference on Information and Knowledge Management, November 2017, pp.2499-2502.
[38] Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K. SeMiTri:A framework for semantic annotation of heterogeneous trajectories. In Proc. the 14th International Conference on Extending Database Technology, March 2011, pp.259-270.
[39] Zheng K, Shang S, Yuan N J, Yang Y. Towards efficient search for activity trajectories. In Proc. the 29th IEEE International Conference on Data Engineering, April 2013, pp.230-241.
[40] Zheng B, Yuan N J, Zheng K, Xie X, Sadiq S W, Zhou X. Approximate keyword search in semantic trajectory database. In Proc. the 31st IEEE International Conference on Data Engineering, April 2015, pp.975-986.
[41] Choi D W, Pei J, Heinis T. Efficient mining of regional movement patterns in semantic trajectories. Proceedings of the VLDB Endowment, 2017, 10(13):2073-2084.
[42] Wang S, Bao Z, Culpepper J S, Sellis T, Sanderson M, Qin X. Answering top-k exemplar trajectory queries. In Proc. the 33rd IEEE International Conference on Data Engineering, April 2017, pp.597-608.
[43] Zhuang C, Yuan N J, Song R, Xie X, Ma Q. Understanding people lifestyles:Construction of urban movement knowledge graph from GPS trajectory. In Proc. the 26th International Joint Conference on Artificial Intelligence, August 2017, pp.3616-3623.
[44] Prentow T S, Thom A, Blunck H, Vahrenhold J. Making sense of trajectory data in indoor spaces. In Proc. the 16th IEEE International Conference on Mobile Data Management, June 2015, pp.116-121.
[45] Valdés F, Güting R H. Index-supported pattern matching on symbolic trajectories. In Proc. the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2014, pp.53-62.
[46] Güting R H, Valdés F, Damiani M L. Symbolic trajectories. ACM Transactions on Spatial Algorithms and Systems, 2015, 1(2):Article No. 7.
[47] Xu J, Lu H, Güting R H. Range queries on multi-attribute trajectories. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6):1206-1211.
[48] Xu J, Güting R H, Gao Y. Continuous k nearest neighbor queries over large multi-attribute trajectories:A systematic approach. GeoInformatica, 2018, 22(4):723-766.
[49] Wolfson O, Xu B, Chamberlain S, Jiang L. Moving objects databases:Issues and solutions. In Proc. the 10th International Conference on Scientific and Statistical Database Management, July 1998, pp.111-122.
[50] Forlizzi L, Güting R H, Nardelli E, Schneider M. A data model and data structures for moving objects databases. In Proc. the 2000 ACM SIGMOD International Conference on Management of Data, May 2000, pp.319-330.
[51] Güting R H, Böhlen M H, Erwig M, Jensen C S, Lorentzos N A, Schneider M, Vazirgiannis M. A foundation for representing and querying moving objects. ACM Transactions on Database Systems, 2000, 25(1):1-42.
[52] Vazirgiannis M, Wolfson O. A spatiotemporal model and language for moving objects on road networks. In Proc. the 7th International Symposium on Spatial and Temporal Databases, July 2001, pp.20-35.
[53] Speicys L, Jensen C S, Kligys A. Computational data modeling for network-constrained moving objects. In Proc. the 11th ACM International Symposium on Advances in Geographic Information Systems, November 2003, pp.118-125.
[54] Hage C, Jensen C S, Pedersen T B, Speicys L, Timko I. Integrated data management for mobile services in the real world. In Proc. the 29th International Conference on Very Large Data Bases, September 2003, pp.1019-1030.
[55] Güting R H, de Almeida V T, Ding Z M. Modeling and querying moving objects in networks. The VLDB Journal, 2006, 15(2):165-190.
[56] Speičys L, Jensen C S. Enabling location-based services-Multi-graph representation of transportation networks. GeoInformatica, 2008, 12(2):219-253.
[57] Park S H, Lee J, Kim D. Spatial clustering based on moving distance in the presence of obstacles. In Proc. the 12th International Conference on Database Systems for Advanced Applications, April 2007, pp.1024-1027.
[58] Gao Y, Zheng B, Chen G, Chen C, Li Q. Continuous nearest-neighbor search in the presence of obstacles. ACM Transactions on Database Systems, 2011, 36(2):Article No. 9.
[59] Gao Y, Zheng B, Chen G, Li Q, Guo X. Continuous visible nearest neighbor query processing in spatial databases. The VLDB Journal, 2011, 20(3):371-396.
[60] Gao Y, Liu Q, Miao X, Yang J. Reverse k-nearest neighbor search in the presence of obstacles. Information Science, 2016, 330:274-292.
[61] Jensen C S, Lu H, Yang B. Graph model based indoor tracking. In Proc. the 10th International Conference on Mobile Data Management, May 2009, pp.122-131.
[62] Jensen C S, Lu H, Yang B. Indoor-A new data management frontier. IEEE Data Eng. Bull., 2010, 33(2):12-17.
[63] Xie X, Lu H, Pedersen T B. Efficient distance-aware query evaluation on indoor moving objects. In Proc. the 29th IEEE International Conference on Data Engineering, April 2013, pp.434-445.
[64] Xie X, Lu H, Pedersen T B. Distance-aware join for indoor moving objects. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(2):428-442.
[65] Lu H, Cheema M A. Indoor data management. In Proc. the 32nd IEEE International Conference on Data Engineering, May 2016, pp.1414-1417.
[66] Jensen C S, Lu H, Yang B. Indexing the trajectories of moving objects in symbolic indoor space. In Proc. the 11th International Symposium on Spatial and Temporal Databases, July 2009, pp.208-227.
[67] Yang B, Lu H, Jensen C S. Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space. In Proc. the 13th International Conference on Extending Database Technology, March 2010, pp.335-346.
[68] Koncz N A, Adams T M. A data model for multidimensional transportation applications. International Journal of Geographical Information Science, 2002, 16(6):551-569.
[69] Timko I, Pedersen T B. Capturing complex multidimensional data in location-based data warehouses. In Proc. the 12th ACM International Workshop on Geographic Information Systems, November 2004, pp.147-156.
[70] Jensen C S, Kligys A, Pedersen T B, Timko I. Multidimensional data modeling for location-based services. The VLDB Journal, 2004, 13:1-21.
[71] Hussein S H, Lu H, Pedersen T B. Towards a unified model of outdoor and indoor spaces. In Proc. the 2012 ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2012, pp.522-525.
[72] Lin J, Sasidharan S, Ma S, Wolfson O. A model of multimodal ridesharing and its analysis. In Proc. the 17th IEEE International Conference on Mobile Data Management, June 2016, pp.164-173.
[73] Yang Y, Gao H, Yu J X, Li J. Finding the cost-optimal path with time constraint over time-dependent graphs. Proceedings of the VLDB Endowment, 2014, 7(9):673-684.
[74] Li L, Hua W, Du X, Zhou X. Minimal on-road time route scheduling on time-dependent graphs. Proceedings of the VLDB Endowment, 2017, 10(11):1274-1285.
[75] Ding Z, Güting R H. Managing moving objects on dynamic transportation networks. In Proc. the 16th International Conference on Scientific and Statistical Database Management, June 2004, pp.287-296.
[76] Huang B, Wu Q, Zhan F B. A shortest path algorithm with novel heuristics for dynamic transportation networks. International Journal of Geographical Information Science, 2007, 21(6):625-644.
[77] Bakalov P, Hoel E G, Heng W, Tsotras V J. Maintaining connectivity in dynamic multimodal network models. In Proc. the 24th International Conference on Data Engineering, April 2008, pp.1267-1276.
[78] Bakalov P, Hoel E G, Heng W. Time dependent transportation network models. In Proc. the 31st International Conference on Data Engineering, April 2015, pp.1364-1375.
[79] Wang S, Lin W, Yang Y, Xiao X, Zhou S. Efficient route planning on public transportation networks:A labelling approach. In Proc. the 2015 ACM SIGMOD International Conference on Management of Data, May 2015, pp.967-982.
[80] Bauer V, Gamper J, Loperfido R, Profanter S, Putzer S, Timko I. Computing isochrones in multi-modal, schedulebased transport networks. In Proc. the 16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, November 2008, Article No. 78.
[81] Tang G, Keshav S, Golab L, Wu K. Bikeshare pool sizing for bike-and-ride multimodal transit. IEEE Trans. Intelligent Transportation Systems, 2018, 19(7):2279-2289.
[82] Bastani F, Xie X, Huang Y, Powell J W. A greener transportation mode:Flexible routes discovery from GPS trajectory data. In Proc. the 19th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, November 2011, pp.405-408.
[83] Ma S, Zheng Y, Wolfson O. T-share:A large-scale dynamic taxi ridesharing service. In Proc. the 29th IEEE International Conference on Data Engineering, April 2013, pp.410-421.
[84] Chen L, Zhong Q, Xiao X, Gao Y, Jin P, Jensen C S. Price-and-time-aware dynamic ridesharing. In Proc. the 34th IEEE International Conference on Data Engineering, April 2018, pp.1061-1072.
[85] Xu J, Güting R H. Manage and query generic moving objects in SECONDO. Proceedings of the VLDB Endowment, 2012, 5(12):2002-2005.
[86] Güting R H, Behr T, Düntgen C. SECONDO:A platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull., 2010, 33(2):56-63.
[87] Wei X, Xu J. MDBF:A tool for monitoring database files. In Proc. ER, October 2018, pp.54-58.
[88] Liao L, Patterson D J, Fox D, Kautz H A. Learning and inferring transportation routines. Artif. Intell., 2007, 171(5/6):311-331.
[89] Widhalm P, Nitsche P, Brändle N. Transport mode detection with realistic smartphone sensor data. In Proc. the 21st International Conference on Pattern Recognition, November 2012, pp.573-576.
[90] Gong H, Chen C, Bialostozky E, Lawson C T. A GPS/GIS method for travel mode detection in New York City. Computers, Environment and Urban Systems, 2012, 36(2):131-139.
[91] Asmar D C, Zelek J S, Abdallah S M. SmartSLAM:Localization and mapping across multi-environments. In Proc. the 2004 IEEE International Conference on Systems, Man and Cybernetics, October 2004, pp.5240-5245.
[92] Du H, Henry P, Ren X, Cheng M, Goldman D B, Seitz S M, Fox D. Interactive 3D modeling of indoor environments with a consumer depth camera. In Proc. the 13th International Conference on Ubiquitous Computing, September 2011, pp.75-84.
[93] Jiang Y, Yun X, Pan X, Li K, Lv Q, Dick R P, Shang L, Hannigan M. Hallway based automatic indoor floorplan construction using room fingerprints. In Proc. the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, September 2013, pp.315-324.
[94] Srivatsa M, Ganti R K, Wang J, Kolar V. Map matching:Facts and myths. In Proc. the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2013, pp.474-477.
[95] Taguchi S, Koide S, Yoshimura T. Online map matching with route prediction. IEEE Trans. Intelligent Transportation Systems, 2019, 20(1):338-347.
[96] AlDwyish A, Xie H, Tanin E, Karunasekera S, Ramamohanarao K. Using a traffic simulator for navigation service. In Proc. the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2017, Article No. 78.
[97] Keler A, Kaths J, Chucholowski F, Chucholowski M, Grigoropoulos G, Spangler M, Kaths H, Busch F. A bicycle simulator for experiencing microscopic traffic flow simulation in urban environments. In Proc. the 21st International Conference on Intelligent Transportation Systems, November 2018, pp.3020-3023.
[98] Liang Y, Gao S, Wu T, Wang S, Wu Y. Optimizing bus stop spacing using the simulated annealing algorithm with spatial interaction coverage model. In Proc. the 11th ACM SIGSPATIAL International Workshop on Computational Transportation Science, November 2018, pp.53-59.
[99] Xie H, Tanin E, Karunasekera S, Kulik L, Zhang R, Qi J, Ramamohanarao K. Studying transportation problems with the SMARTS simulator (demo paper). In Proc. the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2018, pp.580-583.
[100] Theodoridis Y, Silva J R O, Nascimento M A. On the generation of spatiotemporal datasets. In Proc. the 6th International Symposium on Spatial Databases, July 1999, pp.147-164.
[101] Pfoser D, Theodoridis Y. Generating semantics-based trajectories of moving objects. Computers, Environment and Urban Systems, 2003, 27(3):243-263.
[102] Saltenis S, Jensen C S, Leutenegger S T, López M A. Indexing the positions of continuously moving objects. In Proc. the 2000 ACM SIGMOD International Conference on Management of Data, May 2000, pp.331-342.
[103] Düntgen C, Behr T, Güting R H. BerlinMOD:A benchmark for moving objects database. The VLDB Journal, 2009, 18(6):1335-1368.
[104] Brinkhoff T. Generating network-based moving objects. In Proc. the 12th International Conference on Scientific and Statistical Database Management, July 2000, pp.253-255.
[105] Brinkhoff T. A framework for generating network-based moving objects. GeoInformatica, 2002, 6(2):153-180.
[106] Krajzewicz D, Hertkorn G, Rössel C, Wagner P. Sumo (simulation of urban mobility):An open-source traffic simulation. In Proc. the 4th Middle East Symposium on Simulation and Modelling, September 2002, pp.183-187.
[107] Hu H, Lee D L. GAMMA:A framework for moving object simulation. In Proc. the 9th International Symposium on Spatial and Temporal Databases, August 2005, pp.37-54.
[108] Pelekis N, Ntrigkogias C, Tampakis P, Sideridis S, Theodoridis Y. Hermoupolis:A trajectory generator for simulating generalized mobility patterns. In Proc. the 2013 European Conference on Machine Learning and Knowledge Discovery in Databases, September 2013, pp.659-662.
[109] Mokbel M F, Alarabi L, Bao J, Eldawy A, Magdy A, Sarwat M, Waytas E, Yackel S. A demonstration of MNTG-A web-based road network traffic generator. In Proc. the 30th IEEE International Conference on Data Engineering, March 2014, pp.1246-1249.
[110] Huang C, Jin P, Wang H, Wang N, Wan S, Yue L. IndoorSTG:A flexible tool to generate trajectory data for indoor moving objects. In Proc. the 14th International Conference on Mobile Data Management, June 2013, pp.341-343.
[111] Li H, Lu H, Chen X, Chen G, Chen K, Shou L. Vita:A versatile toolkit for generating indoor mobility data for real-world buildings. Proceedings of the VLDB Endowment, 2016, 9(13):1453-1456.
[1] Bo Chen, Liang Liu, Hua-Dong Ma. CDM:以信息为中心的网络的内容扩散模型[J]. 计算机科学技术学报, 2021, 36(6): 1431-1451.
[2] Lu-Tan Zhao, Rui Hou, Kai Wang, Yu-Lan Su, Pei-Nan Li, Dan Meng. 一种用于安全分支预测器的新颖概率饱和计数器设计[J]. 计算机科学技术学报, 2021, 36(5): 1022-1036.
[3] Songjie Niu, Shimin Chen. TransGPerf:利用迁移学习建模分布式图计算性能[J]. 计算机科学技术学报, 2021, 36(4): 778-791.
[4] Jason Liu, Pedro Espina, Xian-He Sun. 关于储存系统建模和优化的综述[J]. 计算机科学技术学报, 2021, 36(1): 71-89.
[5] Mohammad Y. Mhawish, Manjari Gupta. 使用机器学习技术和软件度量的代码异味预测与预测分析[J]. 计算机科学技术学报, 2020, 35(6): 1428-1445.
[6] Qian-Qian Lin, Shu-Ling Wang, Bo-Hua Zhan, Bin Gu. 基于Uppaal和Simulink/Stateflow的RTPS协议的建模和验证[J]. 计算机科学技术学报, 2020, 35(6): 1324-1342.
[7] Jung-Been Lee, Taek Lee, Hoh Peter In. 基于主题建模的软件资源库变更集预警优先级排序[J]. 计算机科学技术学报, 2020, 35(6): 1461-1479.
[8] Yue-Huan Wang, Ze-Nan Li, Jing-Wei Xu, Ping Yu, Taolue Chen, Xiao-Xing Ma. 基于鲁棒性预测的深度神经网络质量保障[J]. 计算机科学技术学报, 2020, 35(5): 999-1015.
[9] Xiang-Jun Lu, Chi Zhang, Da-Wu Gu, Jun-Rong Liu, Qian Peng, Hai-Feng Zhang. 对基于线性回归建模方法的分析与改进:正则化选择[J]. 计算机科学技术学报, 2020, 35(5): 1175-1197.
[10] De-Shuai Han, Qi-Liang Yang, Jian-Chun Xing, Guang-Lian Ma. 一种逐步精化的自适应软件建模与验证方法[J]. 计算机科学技术学报, 2020, 35(5): 1016-1046.
[11] Sara Elmidaoui, Laila Cheikhi, Ali Idri, Alain Abran. 用于软件可维护性预测的机器学习技术:精度分析[J]. 计算机科学技术学报, 2020, 35(5): 1147-1174.
[12] Monidipa Das, Soumya K. Ghosh. 用于时空分析的数据驱动方法:研究现状综述[J]. 计算机科学技术学报, 2020, 35(3): 665-696.
[13] Qiang Zhou, Jing-Jing Gu, Chao Ling, Wen-Bo Li, Yi Zhuang, Jian Wang. 利用城市区域间的多重相关性进行人群流动预测[J]. 计算机科学技术学报, 2020, 35(2): 338-352.
[14] Yu-Qi Li, Li-Quan Xiao, Jing-Hua Feng, Bin Xu, Jian Zhang. AquaSee:利用冷冻水数据预测超级计算机负载以及冷却系统故障[J]. 计算机科学技术学报, 2020, 35(1): 221-230.
[15] Pengfei Wang, Yongfeng Zhang, Shuzi Niu, Jiafeng Guo. 基于用户动态偏好建模的购物篮预测模型[J]. 计算机科学技术学报, 2019, 34(6): 1230-1240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程锦松;. A Parallel Algorithm for Finding Roots of a Complex Polynomial[J]. , 1990, 5(1): 71 -81 .
[2] 俞士汶;. Application of Grammatical Parsing Technique in Chinese Input[J]. , 1990, 5(4): 312 -318 .
[3] 虞慧群; 孙永强;. Hybridity in Embedded Computing Systems[J]. , 1996, 11(1): 90 -96 .
[4] 孙凝晖; 刘文卓; 刘宏; 王川宝; 陆雪琳; 张浩;. Dawning-1000 PROOS Distributed Operating System[J]. , 1997, 12(2): 160 -166 .
[5] Xiao-Dong Li, Wen-Jian Luo, and Xin Yao. Preface[J]. , 2008, 23(1): 1 .
[6] . 暂缺[J]. , 2008, 23(2): 188 -202 .
[7] . 基于核函数和丰富句法树结构的语义关系识别与分类研究[J]. , 2011, 26(1): 45 -56 .
[8] Dong-Hong Han, Xin Zhang, Guo-Ren Wang. 利用分布式极限学习机分类不确定演化数据流[J]. , 2015, 30(4): 874 -887 .
[9] Jia-Xu Liu, Yu-Dian Ji, Wei-Feng Lv, Ke Xu. 一种基于预算感知的空间众包激励机制[J]. , 2017, 32(5): 890 -904 .
[10] Hong Fang, Bo Zhao, Xiao-Wang Zhang, Xuan-Xing Yang. 大规模RDF流数据处理的统一框架[J]. 计算机科学技术学报, 2019, 34(4): 762 -774 .
版权所有 © 《计算机科学技术学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
总访问量: